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Abstract. Recently, Eckert and Vach (2020, Biometrical Journal 62: 598–609)
pointed out that both confidence and comparison regions are useful tools to vi-
sualize uncertainty in a two-dimensional estimate. Both types of regions can be
based on inverting Wald tests or likelihood-ratio tests. confcomptwo enables Stata
users to draw both types of regions following one of the two principles for various
two-dimensional estimation problems. The use of confcomptwo is illustrated by
several examples.
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1 Introduction
1.1 The value of two-dimensional confidence regions

Today, scientists are accustomed to describing the uncertainty of single-parameter esti-
mates with confidence intervals. Even when several parameter estimates are considered
simultaneously—for example, when reporting results from multiple regression models—
the uncertainty is usually described separately for each single-parameter estimate. This
is despite the fact that a methodology for describing uncertainty simultaneously in sev-
eral parameters is available: confidence regions. The value of using confidence regions
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is illustrated in figure 1, depicting the joint uncertainty in two regression coefficient
estimates from a multiple regression analysis. First, the confidence region is a gentle
reminder that the two covariates—grip strength and age—are positively correlated, and
consequently the two regression coefficient estimates are negatively correlated. When
interpreting the magnitude of the two estimates, one should consider that an overes-
timation of one parameter probably implies an underestimation in the other. Second,
it is immediately apparent that the point (0, 0) is outside the confidence region, which
means that the null hypotheses of no effect of both covariates can be rejected. This can
be highly relevant if both regression parameters are not significantly different from 0.
In this case, the confidence region is a gentle reminder that this should not be misin-
terpreted as absence of any association between the outcome and these two covariates.
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Figure 1. A 95% confidence region for two regression coefficients

Despite this rather obvious value of two-dimensional confidence regions in specific
situations, they are rarely used in scientific publications, probably because of the lack
of appropriate software for visualization. Indeed, when one uses the Wald test principle
to construct two-dimensional confidence regions, visualization requires drawing an el-
lipsoid. This is usually not supported in standard statistical software packages. When
one uses the likelihood-ratio (LR) test principle for construction, a fixed-point problem
must be solved numerically for many directions in the two-dimensional space, as recently
pointed out by Jaeger (2016). One aim of confcomptwo is to close this gap in Stata.
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1.2 The need for comparison regions

Formally, confidence regions allow the post hoc testing of null hypotheses that fix the
parameter at a certain value. For such a value θ0 ∈ R2, the null hypothesis θ = θ0 can
be rejected at the level α if the point θ0 is not covered by the (1−α) confidence region.
This property was used in the previous subsection when we considered the location of
the point (0, 0) relative to the confidence region.

In some statistical applications, such hypotheses on single specific point values are
of minor interest. Instead, the interest is in demonstrating that the two parameters
of interest are within a certain region R, for example, that their average is above a
certain threshold. (Concrete examples are given in the following subsection.) Thus, the
interest is in testing the null hypothesis H0 : θ /∈ R. In the post hoc setting, this can
be approached by checking whether the (1−α) confidence region completely covers the
region of interest. If this is the case, the null hypothesis can be rejected at level α.

However, this test approach is very conservative, and the actual level of the test
is much lower than α. To address this issue, Eckert and Vach (2020) introduced the
concept of a comparison region. A level-α comparison region is a data-dependent region
C ⊆ R2 with the following property:

1(C ⊆ R) defines a level-α test for H0 : θ /∈ R for any convex set R ⊂ R2

Consequently, a comparison region can be used for post hoc testing of the null hypothesis
of interest. The logic of the approach is illustrated in figure 2. Comparison regions
can be constructed very similarly to confidence regions. Consequently, confcomptwo
supports drawing of both confidence regions and comparison regions.
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Figure 2. Presentation of a point estimate with a comparison region in a publication and
three post hoc comparisons with regions of interest: The null hypotheses H0 : θ /∈ R1

and H0 : θ /∈ R2 can be rejected, and the null hypothesis H0 : θ /∈ R3 cannot be rejected.
(This figure was previously published in Eckert and Vach [2020].)
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1.3 Motivating examples

1.3.1 Diagnostic accuracy studies

Diagnostic accuracy is a genuine two-dimensional concept. By sharpening the criteria
of a diagnostic test, one can reduce the number of false-positive (FP) decisions, but
the number of true-positive (TP) decisions decreases, too. Consequently, the standard
approach to analyzing the diagnostic accuracy of one test is to consider a pair of pa-
rameters such as sensitivity and specificity, positive and negative predictive values, the
relative frequency of TP and FP decisions, or the positive and negative LRs. When one
analyzes screening tests, it might also be of interest to relate sensitivity to the rate of
positive test results because the aim is to achieve a high sensitivity while keeping the
number of subjects to be followed up with as low as possible. When one compares two
diagnostic tests, the focus is typically on the change in such a pair of parameter values.

There is no universal answer to the question of how to combine the two parame-
ter estimates when a final decision about the usefulness of the test (or the new test
in a comparative study) must be made (compare Vach, Gerke, and Hœilund-Carlsen
[2012]). When one considers sensitivity and specificity, one is often advised to think
about which parameter is more important in the specific clinical context. It is a rather
straightforward idea to consider a weighted average of sensitivity and specificity. In
practice, however, it seems cumbersome to agree on specific weights. The use of a
range of weights has been considered with respect to analyzing sensitivity and speci-
ficity (Newcombe 2001) as well as when considering the rate of TP and FP decisions,
particularly as part of a decision curve approach (Vickers 2008).

When different stakeholders post hoc perform analyses of a diagnostic accuracy
study, each stakeholder may specify different weights and thresholds. Each stakeholder
is interested in demonstrating that wθ1+(1−w)θ2 ≥ t for some w, t ∈ R, that is, that the
two parameters are within a certain half-space. If we want to satisfy all stakeholders, we
have to reject the null hypothesis that the true parameters are outside the intersection
of all of these half-spaces. This intersection is a convex subset of R2 and represents the
common region of interest of all stakeholders.
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1.3.2 Balancing between favorable and unfavorable consequences of an interven-
tion

In evaluating a new intervention, one must often judge the balance between favorable
and unfavorable consequences. Cost-effectiveness analyses are a classical example. To-
day, they are standard tools in health technology assessments and play important roles
in deciding whether the additional costs can be justified by a gain in effectiveness or
whether cost savings are so substantial that they can justify some loss in effectiveness.
Similarly, there may be a need to balance the benefit and the risk associated with an in-
tervention, and in benefit–risk assessments, it is common to consider a benefit–risk plane
similar to a cost-effectiveness plane (Guo et al. 2010; Mt-Isa et al. 2014). Considering a
two-dimensional approach can be particularly helpful to overcome some obstacles with
noninferiority trials (Gladstone and Vach 2015).

In these types of analyses, because the parameters of interest are measured on dif-
fering scales, it is common to consider the ratio θ2/θ1 for the joint evaluation of two
parameter estimates and to define acceptable ratios r. Because θ2/θ1 ≥ r is equivalent
to θ2 − rθ1 ≥ 0, this still leads to linear hypotheses about the parameters of interest.

1.4 Construction of confidence regions and comparison regions

1.4.1 A general construction principle for comparison regions

Eckert and Vach (2020) describe the following general construction principle for a com-
parison region:

Lemma 1: Let φH denote a family of level-α tests for all half spaces H ⊂ Θ, that is, all
subsets of the two-dimensional parameter space Θ of the type {(θ1,θ2)|w1θ1+w2θ2 ≥ t}
for some w1, w2, t ∈ R. φH provides a test for the null hypothesis H0 : θ ∈ H. Then
(under some regularity conditions on the family of tests),

C := ∩
φH=1

H

defines a level-α comparison region. Here H denotes the complement of a set H.

Roughly speaking, C can be interpreted as the intersection of all regions of interest
that were “confirmed” by the tests. This general principle can be applied using the
family of Wald tests or the family of LR tests. In both cases, the construction of
comparison regions turns out to be very similar to the construction of confidence regions.

1.4.2 Explicit formulas for confidence regions and comparison regions

Given an estimate of the covariance matrix Σ of θ̂, applying the Wald test principle
results in confidence and comparison regions of the type

Cα =

{
θ ∈ Θ |

(
θ − θ̂

)′
Σ̂−1

(
θ − θ̂

)
< c

}
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The only difference is the choice of the threshold c. c = χ2
2,1−α defines a (1 − α)

confidence region. c = χ2
1,1−2α defines a level-α comparison region.

Using (asymptotic) LR tests as construction principles results in confidence and
comparison regions of the type

Cα =

{
θ ∈ Θ | l(θ)− l∗ > −1

2
c

}
with l∗ denoting the value of the loglikehood function l(θ) at the maximum likelihood
estimate. Again, the only difference is the choice of the threshold c. c = χ2

2,1−α defines
a (1 − α) confidence region. c = χ2

1,1−2α defines a level-α comparison region for any
α < 0.5.

Note that, for both approaches, it does hold that 74.2% confidence regions define 5%
comparison regions. Consequently, 5% comparison regions are distinctly smaller than
95% confidence regions.

2 The confcomptwo command
2.1 The scope of confcomptwo

The command confcomptwo allows comparison and confidence regions to be drawn in
two-parameter estimation problems. The approaches based on inverting Wald tests
and on inverting LR tests are both supported. With the Wald-test-based approach,
confcomptwo can be used as a postestimation command or as an immediate command
specifying the five necessary input values. With the LR approach, the user must specify
a program to compute a log likelihood depending on two parameters.

Eckert and Vach (2020) considered the case of a two-parameter likelihood, but the
approach can also be applied to a two-parameter profile likelihood obtained by maxi-
mizing a higher-dimensional likelihood over the remaining nuisance parameters. Hence,
confcomptwo also extends the pllf command to compute one-dimensional profile-
likelihood-based confidence intervals. This command was provided by Royston (2007).

Actually, confcomptwo does not draw a line directly but uses a grid of points, plots
the points, and connects the points with straight lines. The drawing is hence based on
Stata’s twoway line command, but confcomptwo also supports representing the line
with a series of small points. A comparison region and a confidence region can both
be drawn simultaneously if both post hoc testing of hypotheses on half spaces and post
hoc testing of single-point hypotheses are of interest. Furthermore, confcomptwo also
allows following the recommendation of Eckert and Vach (2020) to draw comparison
regions by a solid line and to draw confidence regions by a dotted line, reminding the
user of the intended function—a comparison with a region of interest or with a single
point.
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2.2 The syntax of confcomptwo

The syntax of confcomptwo depends on whether you intend to use the Wald principle
after fitting some model, the immediate form, or the LR principle.

If you intend to use confcomptwo as a postestimation command and apply the Wald
test principle, the syntax is given by

confcomptwo parname1 parname2
[
, confcomp_options twoway_options

]
and the program expects to find entries with the column names parname1 and parname2
in the vector e(b), including the estimates and corresponding entries for the variances
and covariance in the matrix e(V).

The immediate form has the syntax

confcomptwo #1 #2, se1(real) se2(real)
[
corr(real) confcomp_options

twoway_options
]

with #1 and #2 denoting the values of the two parameter estimates. The standard
errors are provided using the required se1() and se2() options. The default correlation
is corr(0).

If you intend to use the LR test principle, the syntax is given by

confcomptwo #1 #2, call(expr)
[
confcomp_options twoway_options

linesearch_options
]

and the expr in the required call() option describes the call of a user-written program
that returns a log-likelihood value in r(ll). It should also return a binary indicator,
r(inside), indicating whether the two arguments provided are within the allowed pa-
rameter values. The symbols #1 and #2 in this expression refer to the two parameter
values at which the log likelihood should be evaluated. The parameter set allowed must
be equal to R2 or an open and convex subset of R2. The log-likelihood function must
be strictly concave, and it must tend toward −∞ if the parameter values approach the
boundary of the open set or if they tend toward ±∞.

confcomptwo allows the following confcomp_options:

alpha(real) defines the level of the comparison region or 1 minus the level of the confi-
dence region. The default is alpha(0.05).

points(numlist) defines the points to be drawn. If numlist contains one number, it
is interpreted as the number of points required. Otherwise, it defines a grid of
directions in which the points are chosen relative to the parameter estimates. 0 and
1 refer to the direction “top of the graph”, 0.25 and 0.75 to the directions “right
side of the graph” and “left side of the graph”, and 0.5 to the direction “bottom of
the graph”. The default is points(101).
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rescale(expr) modifies the choice of the directions. The argument of the expression is
noted with a # sign. Details are described in section 4.1.

loptsconf(line_options) specifies the look of the line used to draw the confidence
region. The default is loptsconf(lpat(dot)).

loptscomp(line_options) specifies the look of the line used to draw the comparison
region. The default is loptscomp(lpat(solid)).

mopts(marker_options) specifies the look of the marker used to draw the point estimate.
The default is mopts(mcol(black) msym(O)).

only(comp | conf) indicates that only confidence regions or comparison regions are to
be computed.

nograph suppresses the graph.

savepoints(filename
[
, saveoptions

]
) saves the points computed as a Stata dataset

with the given filename. The dataset includes the variables est1, est2, xi1, xi2,
pcomp1, pcomp2, pconf1, and pconf2. The first two variables represent the input
parameter values, and the next two variables represent the direction in which the
point was searched for. The last four variables include the coordinates of the points
used when drawing the lines. saveoptions can be any options allowed by Stata’s save
command.

reverse exchanges the two axes in the plot. The default is to use the y axis for the
first parameter and the x axis for the second parameter.

addplot(plot . . .
[
||plot . . .

[
. . .

] ][
, below

]
) adds twoway plots to the graph and

should work similarly to Stata’s addplot() option.

In addition, any twoway_options affecting the entire graph can be used except those
involving a variable (such as the by() option). confcomptwo automatically generates a
legend, and the label() suboption of the legend() option can be used to change the
text. If the addplot() option is used, further entries are generated, and the order()
suboption must be used to select the entries to be displayed.

If you are using the LR principle, you can also specify some linesearch_options, which
are explained in section 4.3.

The dot line pattern style of Stata produces very small dots that are often hard to
see. To address this issue, the options loptsconf() and loptscomp() also accept
specifications of the following type:

points, n(integer)
[
yxratio(real) scatteroptions

]
This indicates that the line is drawn by n() single points using the twoway scatter

command. The points are drawn equidistantly, and their appearances can be changed
using any option allowed with twoway scatter. yxratio() must be specified if the
span of the y axis is not equal to the span of the x axis. If the savepoints() option is
used, these additional points are also saved.
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2.3 Stored results

confcomptwo stores in r(cmd) the command that was used to generate the graph. In
combination with the savepoints() option, this allows the reproduction and further
manipulation of the graph, if necessary. The point estimate is stored in the two scalars
r(est1) and r(est2). If the Wald test principle is used, the variance–covariance matrix
Σ is stored in the matrix r(Sigma).

2.4 Auxiliary commands to compute a log likelihood

To support the use of the LR principle, we provide the following three commands to
compute the (profile) log likelihood for some standard situations that particularly appear
in the context of analyzing diagnostic accuracy studies. All commands consider an open
subset of R2 as parameter space.

llproptwosamples #1 #2
[
if
] [

in
] [

weight
]
, var(varname) by(varname)

computes the log likelihood for a binary outcome variable with success probabilities
differing between two subgroups. The log likelihood is evaluated for the two probabilities
#1 and #2, referring to the two subgroups that must be labeled with the values 1 and
2. The following two options are required:

var(varname) defines the binary variable.

by(varname) defines the dichotomous grouping variable.

fweights are allowed; see [U] 11.1.6 weight. In particular, this likelihood can be
used to evaluate sensitivity and specificity together (or positive and negative predictive
values) for one diagnostic test. The parameter space is (0, 1)2.

llproptwocats #1 #2
[
if
] [

in
] [

weight
]
, var(varname) cats(numlist)

computes the profile log likelihood for a categorical variable. The log likelihood is
evaluated for the two probabilities #1 and #2, referring to the probabilities of two
categories. The probabilities of the other categories remain unspecified. The following
two options are required:

var(varname) defines the categorical variable.

cats(numlist) defines the two categories.

fweights are allowed; see [U] 11.1.6 weight. In particular, this likelihood can be used
to evaluate the relative frequency of FP and TP decisions in analyzing one diagnostic
test. The two arguments must be greater than 0, and their sum must be less than 1.

llriskcomptwosamples #1 #2
[
if
] [

in
] [

weight
]
, var(varlist) by(varname)

{diff | logrr | logor | rr | or}
[
noisily maximize_options

]
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computes the profile log likelihood for two binary variables observed in two subgroups
evaluated at two values#1 and#2, referring to the difference in the proportions between
the two variables within subgroup 1 and within subgroup 2, respectively. The difference
can be expressed as a difference, a log relative-risk, a log odds-ratio, a relative risk, or
an odds ratio. The subgroups must be labeled with the values 1 and 2. The following
options are required:

var(varlist) defines the two binary variables. The marginal proportion of the second
variable is compared with the marginal proportion in the first variable when building
differences, risk ratios, or odds ratios.

by(varname) defines the dichotomous grouping variable.

diff, logrr, logor, rr, or or specifies how the difference in proportions is expressed.
Exactly one of these five options must be specified.

fweights are allowed; see [U] 11.1.6 weight. The noisily option allows inspection
of the output of the ml max command, and the maximize_options are passed to this
command. In particular, this specific likelihood can be used to evaluate changes in sen-
sitivity and specificity in a comparative diagnostic accuracy study with a paired design.
The parameter space depends on the choice of the option to express the difference.

note: For relative risks and odds ratios, it typically makes little sense to consider
weighted averages. However, confidence and comparison regions still provide a visual
impression about the imprecision of the estimates.

All three commands also allow a force option that forces the computation of the
log likelihood even if parameter values outside the parameter space are specified. This
can be useful to plot regions for an estimate on the boundary. An example is given in
section 3.5.

3 Examples
3.1 Example 1: Joint confidence region for two regression coeffi-

cients

Stata provides auto.dta, allowing study of the relation of mileage rating to the weight
and the origin (foreign or domestic) of automobiles. The corresponding model is used in
the Stata Base Reference Manual to illustrate linear regression. confcomptwo can sup-
plement this standard analysis by depicting the joint uncertainty of the two regression
coefficient estimates:
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. sysuse auto
(1978 automobile data)
. regress mpg weight foreign

Source SS df MS Number of obs = 74
F(2, 71) = 69.75

Model 1619.2877 2 809.643849 Prob > F = 0.0000
Residual 824.171761 71 11.608053 R-squared = 0.6627

Adj R-squared = 0.6532
Total 2443.45946 73 33.4720474 Root MSE = 3.4071

mpg Coefficient Std. err. t P>|t| [95% conf. interval]

weight -.0065879 .0006371 -10.34 0.000 -.0078583 -.0053175
foreign -1.650029 1.075994 -1.53 0.130 -3.7955 .4954422

_cons 41.6797 2.165547 19.25 0.000 37.36172 45.99768

. confcomptwo weight foreign, only(conf) rescale(1666)
> legend(cols(1)) loptsconf(lpattern(solid))
> ytitle({&beta}(weight)) xtitle({&beta}(foreign))
> aspect(1) xsize(4) ysize(4.5)
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Figure 3. A 95% confidence region for the two regression coefficients considered in
example 1.
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The resulting figure 3 informs us that the two regression coefficients are positively
correlated. This is a simple consequence of the negative correlation between the two
covariates: on average, foreign automobiles have lower weights than domestic automo-
biles.

Note that the parameter rescale was used in this example. This was necessary
because the two estimates have very different magnitudes. The value 1,666 reflects the
ratio between the span on the x axis (5) and the span on the y axis (0.003). Here we
also followed the tradition of drawing confidence regions with solid lines.

3.2 Example 2: Analysis of a single-arm diagnostic accuracy study

Xu et al. (2017) presented a study on the diagnosis of hemodynamically significant
coronary stenosis defined by fractional flow reserve ≤ 0.80. One goal was to assess the
diagnostic accuracy of angiography-based quantitative flow ratio measurements using
the same cutpoint. Using fractional flow reserve as the reference standard, they observed
a sensitivity of 106/112 = 94.6% and a specificity of 198/216 = 91.7% based on overall
328 interrogated vessels.

Computing the standard errors of sensitivity and specificity manually, we can use
the immediate version of confcomptwo to obtain a two-dimensional Wald-test-based
comparison region:

. confcomptwo 0.946 0.917,
> se1(`=sqrt((0.946)*(1-0.946)/112)')
> se2(`=sqrt((0.917)*(1-0.917)/216)')
> only(comp) xtitle(specificity) ytitle(sensitivity)
> aspect(1.0) xsize(4) ysize(4.5) xlabel(.85(.05)1) ylabel(.85(.05)1)
> legend(cols(1))

To facilitate the interpretation of the comparison region, we can add a reference line
referring to an average of sensitivity and specificity of 0.9 to mimic a specific posttest
situation:

. confcomptwo 0.946 0.917,
> se1(`=sqrt((0.946)*(1-0.946)/112)')
> se2(`=sqrt((0.917)*(1-0.917)/216)')
> only(comp) xtitle(specificity) ytitle(sensitivity)
> aspect(1.0) xsize(4) ysize(4.5) xlabel(.85(.05)1) ylabel(.85(.05)1)
> legend(cols(1))
> addplot((scatteri .95 .85 .85 .95, connect(l) msymbol(i) lpattern(dash)
> lcolor(gs7)))
> legend(order(1 2))
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Figure 4. Wald-test-based 5% comparison region for sensitivity and specificity in exam-
ple 2 with a reference line added

The resulting figure 4 allows the comparison of the reference line with the comparison
region. The line is located below the comparison region. This supports the conclusion
that the average between sensitivity and specificity is above 0.9.

In the computations carried out above, we have taken advantage of the fact that
sensitivity and specificity are based on two separate samples, and we therefore know
that they are uncorrelated when conditioning on the observed sample sizes. If manual
computation of standard errors is to be avoided, we can use the postestimation version
of confcomptwo. This requires obtaining the estimates of sensitivity and specificity to-
gether from one command and simultaneously an estimate of the variance–covariance
matrix. One can approach this by generating a dataset with the study results, trans-
lating the index test results into a variable correct indicating correct test results, and
modeling this variable in a generalized linear model with identity-link and Bernoulli-
type variances as a function of the results of the reference test encoded by two indicator
variables:
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. clear

. input indextest reference freq
indextest reference freq

1. 1 1 106
2. 0 1 6
3. 1 0 18
4. 0 0 198
5. end

. generate correct = indextest == reference

. generate r1 = reference == 1

. generate r0 = reference == 0

. glm correct r1 r0 [fw=freq], nocons family(bernoulli) link(id)
Iteration 0: Log likelihood = -85.353345
Iteration 1: Log likelihood = -85.353345
Generalized linear models Number of obs = 328
Optimization : ML Residual df = 326

Scale parameter = 1
Deviance = 170.7066903 (1/df) Deviance = .5236402
Pearson = 328 (1/df) Pearson = 1.006135
Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = u [Identity]

AIC = .5326423
Log likelihood = -85.35334513 BIC = -1717.816

OIM
correct Coefficient std. err. z P>|z| [95% conf. interval]

r1 .9464286 .0212766 44.48 0.000 .9047273 .9881299
r0 .9166667 .0188056 48.74 0.000 .8798083 .9535251

Coefficients are the risk differences.
. confcomptwo r1 r0, only(comp) xtitle(specificity) ytitle(sensitivity)
> aspect(1.0) xsize(4) ysize(4.5) xlabel(.85(.05)1) ylabel(.85(.05)1)
> addplot((scatteri .95 .85 .85 .95, connect(l) msymbol(i) lpattern(dash)
> lcolor(gs7)))
> legend(order(1 2) cols(1))

To obtain LR-test-based regions, we use the llproptwosamples command because
sensitivity and specificity are proportions from two independent samples. To do so, we
must store the values of sensitivity and specificity and recode the variable reference
because llproptwosamples expects the two groups to be labeled with the values 1
and 2:
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. local sens = _b[r1]

. local spec = _b[r0]

. recode reference (0=2)
(2 changes made to reference)
. confcomptwo `sens' `spec',
> call(llproptwosamples #1 #2 [fw=freq], var(correct) by(reference))
> xtitle(specificity) ytitle(sensitivity) only(comp)
> aspect(1.0) xsize(4) ysize(4.5) xlabel(.85(.05)1) ylabel(.85(.05)1)
> addplot((scatteri .95 .85 .85 .95, connect(l) msymbol(i) lpattern(dash)
> lcolor(gs7))
> (scatteri 1 .85 .85 .925, connect(l) msymbol(i) lpattern(shortdash)
> lcolor(gs7))
> (scatteri .925 .85 .85 1, connect(l) msymbol(i) lpattern(longdash)
> lcolor(gs7)))
> legend(order(1 2) col(1))
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Figure 5. LR-test-based 5% comparison regions for sensitivity and specificity in exam-
ple 2 with three reference lines added

The resulting figure 5 indicates that the shape of the LR-test-based region is distinctly
different from the shape of the Wald-test-based region. This can be explained by the
proximities of sensitivity and specificity to 1.0. Two further reference lines were added
to the figure, giving the sensitivity twice the weight of specificity and vice versa. For all
three choices of weights, one can conclude that the weighted average of sensitivity and
specificity is above 0.9.



470 confcomptwo

3.3 Example 3: Analysis of a paired diagnostic accuracy study

Ng et al. (2008) reported a study comparing the diagnostic accuracy of 18F-fluoro-2-
deoxyglucose positron emission tomography with extended-field multidetector computed
tomography for the detection of distant malignancies in patients with oropharyngeal or
hypopharyngeal squamous cell carcinoma. All patients were followed up with for at least
12 months or until death to construct a reference standard. For a suspected malignant
lesion, a biopsy of the tissue was taken if possible or close clinical and imaging follow-
up was performed. Distant malignancies were found in 26 out of 160 patients enrolled
in the study. The two diagnostic tools investigated yielded a sensitivity/specificity of
50.0%/97.8% and of 76.9%/94.0%. The study was conducted in a paired design, so the
results can be summarized in a 2 × 2 × 2 contingency table with the frequencies for
each combination of results for the two index tests to be compared and the reference
standard. This contingency table is available in studyng.dta.

. use studyng, clear

. list

test1 test2 refere~e freq

1. 1 1 1 12
2. 1 1 0 2
3. 1 0 1 1
4. 1 0 0 1
5. 0 1 1 8

6. 0 1 0 6
7. 0 0 1 5
8. 0 0 0 125

In a first analysis, the interest is in studying the changes in sensitivity and specificity
when replacing test 1 with test 2. Because there are no simple formulas to compute
the standard errors of the change, we use the postestimation version of confcomptwo
to compute Wald-test-based regions. This requires the derivation of the estimates and
their covariance matrices with one estimation command. We hence compute estimates of
the sensitivities and specificities of both tests—that is, simple relative frequencies—by
fitting four intercept-only generalized linear models with identity-link and Bernoulli-
type variances, saving the estimates, using Stata’s suest to obtain the joint covariance
matrix, and finally using the nlcom command to obtain the two differences of interest
and their covariance matrices. In this setting, it might be of interest to also test the
null hypotheses of no change in both sensitivity and specificity. Consequently, both
comparison and confidence regions are drawn.

. generate correct1 = test1 == reference

. generate correct2 = test2 == reference

. quietly glm correct1 if reference == 1 [fw=freq], family(bernoulli) link(id)

. estimates store sens1

. quietly glm correct2 if reference == 1 [fw=freq], family(bernoulli) link(id)
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. estimates store sens2

. quietly glm correct1 if reference == 0 [fw=freq], family(bernoulli) link(id)

. estimates store spec1

. quietly glm correct2 if reference == 0 [fw=freq], family(bernoulli) link(id)

. estimates store spec2

. suest sens1 sens2 spec1 spec2
Simultaneous results for sens1, sens2, spec1, spec2

Number of obs = 8

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

sens1_corre~1
_cons .5 .0983659 5.08 0.000 .3072063 .6927937

sens2_corre~2
_cons .7692308 .0828881 9.28 0.000 .6067731 .9316884

spec1_corre~1
_cons .9776119 .0128204 76.25 0.000 .9524845 1.002739

spec2_corre~2
_cons .9402985 .0205322 45.80 0.000 .9000562 .9805408

. nlcom (deltasens:[sens2_correct2]_cons-[sens1_correct1]_cons)
> (deltaspec:[spec2_correct2]_cons-[spec1_correct1]_cons), post

deltasens: [sens2_correct2]_cons-[sens1_correct1]_cons
deltaspec: [spec2_correct2]_cons-[spec1_correct1]_cons

Coefficient Std. err. z P>|z| [95% conf. interval]

deltasens .2692308 .102917 2.62 0.009 .0675171 .4709445
deltaspec -.0373134 .0195407 -1.91 0.056 -.0756125 .0009856

. confcomptwo deltasens deltaspec,
> loptsconf(points, n(100) yxratio(2) msize(*0.2) mcol(black))
> xtitle({&Delta} specificity) ytitle({&Delta} sensitivity)
> addplot(
> (scatteri 0.15 -0.15 -0.1 0.1, connect(l) msymbol(i) lpattern(dot)
> lcolor(gs7))
> (scatteri 0.225 -0.15 -0.1 .066666, connect(l) msymbol(i)
> lpattern(shortdash) lcolor(gs7))
> (scatteri .3 -0.15 -.1 0.05, connect(l) msymbol(i) lpattern(longdash)
> lcolor(gs7)))
> legend(cols(1) order(1 2 3)) xline(0, lcolor(gs14)) yline(0, lcolor(gs14))
> xlabel(-.15(.1).15) ylabel(-.1(.1).5) aspect(2)
> xsize(2.5) ysize(4)
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Figure 6. Wald-test-based 5% comparison and 95% confidence regions for the changes
in sensitivity and specificity in example 3 with three reference lines added

The resulting figure 6 indicates a distinct improvement in sensitivity and a slight
deterioration in specificity. Because of the low prevalence of the disease state of interest,
the precision of the estimate of the change in sensitivity is rather low. We included
three lines in the graph referring to the situation where some weighted averages of the
changes in sensitivity and specificity are equal to zero. The dotted line refers to equal
weights, and we can conclude that the increase in sensitivity is larger than the loss in
specificity. However, because the sensitivity of the standard test is rather low and the
specificity is already rather high, we are actually interested in a substantial improvement
in sensitivity. The line with short dashes refers to giving the change in sensitivity a
weight 1.5 times higher than the weight given to the change in specificity, and the line
with long dashes refers to weighting the change in sensitivity two times higher than the
change in specificity. In all three cases, the line does not hit the comparison region.
Consequently, we can conclude that the gain in sensitivity is at least twice as great as
the loss in specificity.
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Note the use of the aspect() and yxratio() options. Because the precision of the
change in sensitivity is much lower than the precision of the change in specificity, the
span of the y axis is 0.6, whereas the span of the x axis is only 0.3. The option aspect(2)
ensures that a change of 0.1 is nevertheless represented by the same distance in y and
x direction in the visual inspection of the graph. The option yxratio(2) ensures that
the points drawn to represent the confidence interval are equidistant.

To obtain LR-test-based regions, we store the two estimates, and then we use the
llriskcomptwosamples command. The latter requires recoding the reference vari-
able:

. local deltasens = _b[deltasens]

. local deltaspec = _b[deltaspec]

. generate group = cond(reference == 1,1,2)

. confcomptwo `deltasens' `deltaspec',
> loptsconf(points, n(100) yxratio(2) msize(*0.2) mcol(black))
> call(llriskcomptwosamples #1 #2 [fw=freq],
> var(correct1 correct2) by(group) diff)
> xtitle({&Delta} specificity) ytitle({&Delta} sensitivity)
> addplot(
> (scatteri 0.15 -0.15 -0.1 0.1, connect(l) msymbol(i) lpattern(dot)
> lcolor(gs7))
> (scatteri 0.225 -0.15 -0.1 .066666, connect(l) msymbol(i)
> lpattern(shortdash) lcolor(gs7))
> (scatteri .3 -0.15 -.1 0.05, connect(l) msymbol(i) lpattern(longdash)
> lcolor(gs7)))
> legend(col(1) order(1 2 3)) xline(0, lcolor(gs14)) yline(0, lcolor(gs14))
> xlabel(-.15(.1).15) ylabel(-.1(.1).5) aspect(2) rescale(2.0)
> xsize(2.5) ysize(4)

The resulting figure is not shown, because it is nearly identical to the one obtained
using the Wald test.

Next we present a second analysis considering the change in the relative frequency
of TP and FP decisions. Wald-test-based comparison and confidence regions can be
approached similarly to above, starting with the empirical estimates of the four relative
frequencies expressed as estimates from an intercept-only generalized linear model:

. use studyng, clear

. generate TP1 = test1 & reference == 1

. generate TP2 = test2 & reference == 1

. generate FP1 = test1 & reference == 0

. generate FP2 = test2 & reference == 0

. quietly glm TP1 [fw=freq], family(bernoulli) link(id)

. estimates store TP1

. quietly glm TP2 [fw=freq], family(bernoulli) link(id)

. estimates store TP2

. quietly glm FP1 [fw=freq], family(bernoulli) link(id)

. estimates store FP1

. quietly glm FP2 [fw=freq], family(bernoulli) link(id)

. estimates store FP2
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. suest TP1 TP2 FP1 FP2
Simultaneous results for TP1, TP2, FP1, FP2 Number of obs = 8

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

TP1_TP1
_cons .08125 .0216676 3.75 0.000 .0387822 .1237178

TP2_TP2
_cons .125 .0262277 4.77 0.000 .0735946 .1764054

FP1_FP1
_cons .01875 .010757 1.74 0.081 -.0023334 .0398334

FP2_FP2
_cons .05 .0172842 2.89 0.004 .0161237 .0838763

. nlcom (deltaTP:[TP2_TP2]_cons-[TP1_TP1]_cons)
> (deltaFP:[FP2_FP2]_cons-[FP1_FP1]_cons), post

deltaTP: [TP2_TP2]_cons-[TP1_TP1]_cons
deltaFP: [FP2_FP2]_cons-[FP1_FP1]_cons

Coefficient Std. err. z P>|z| [95% conf. interval]

deltaTP .04375 .0184861 2.37 0.018 .0075179 .0799821
deltaFP .03125 .0164017 1.91 0.057 -.0008967 .0633967

. confcomptwo deltaTP deltaFP,
> xtitle({&Delta} FP) ytitle({&Delta} TP)
> loptsconf(points, n(150) mcol(black) msize(*0.15))
> addplot(
> (scatteri -.01 -.01 .08 .08, connect(line) msymbol(i) lpattern(dot)
> lcolor(gs7))
> (scatteri -.01 -.02 .04 .08, connect(line) msymbol(i) lpattern(shortdash)
> lcolor(gs7))
> (scatteri -.0067 -.02 .0266 .08, connect(line) msymbol(i)
> lpattern(longdash) lcolor(gs7)))
> legend(col(1) order(1 2 3)) xline(0, lcolor(gs14)) yline(0, lcolor(gs14))
> xlabel(-.02(.02).08) ylabel(0(.02).1)
> yscale(range(-0.005 0.1)) aspect(1.1)
> xsize(4) ysize(5)
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Figure 7. Wald-test-based 5% comparison and 95% confidence regions for the change
in the relative frequency of TP and FP decisions in example 3 with three reference lines
added

In the resulting figure 7, we observe an increase in the frequency of TP decisions
by 4.4%, which is about a factor 1.5 higher than the increase in FP decisions. This
looks less impressive than the changes in sensitivity and specificity, which are due to
the low prevalence of the disease state of interest in this example. Different stakeholders
may have different views on how many additional FP decisions they may accept for one
additional TP decision. If they maximally accept only one FP, they are interested in
demonstrating that the difference between the TP rate and the FP rate is above 0, that
is, in points above the dotted line referring to the weights 1 and −1 for the TP rate and
the FP rate, respectively. If they are willing to accept two FP decisions for a gain in one
TP decision, they are interested in points above the line with short dashes referring to
the weights 1 and −2 for the TP rate and the FP rate, respectively. If they are willing
to accept three FP decisions for a gain in one TP decision, they are interested in points
above the line with long dashes, which refers to the weights 1 and −3 for the TP rate
and the FP rate, respectively. We can observe that they can conclude that the new test
implies an advantage only in the last case.
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To use the LR approach, we must write a specific program to evaluate the log likeli-
hood. We will present this in section 5 after we have taken a closer look at the formulas
used by llriskcomptwosamples.

3.4 Example 4: Joint evaluation of benefit and risk in a randomized
controlled trial

Saxer et al. (2018) reported the results of a randomized controlled trial comparing two
surgical techniques to be used to treat femoral neck fractures in patients over 60 years
of age requiring hemiarthroplasty. The aim was to demonstrate that an anterior mini-
mally invasive approach is beneficial to patients in terms of accelerated remobilization
compared with a standard lateral Hardinge approach. The primary endpoint was early
mobility evaluated at three weeks via the “timed up and go” (TUG) test. This test
measures the time needed to get up from a chair, to walk a distance of three meters,
and to sit down again. A 20% reduction was regarded as clinically relevant. Various
secondary endpoints were considered. We focus here on the endpoint occurrence of local
infections, reflecting a potential safety concern about the minimally invasive approach.

The study analyzed the primary endpoint by applying a regression model with the
covariates treatment arm, age, and functional independence measure at baseline to the
log-transformed TUG values. The back-transformed treatment effect was interpreted as
an estimate of the median reduction in time required for the TUG. This resulted in an
effect estimate corresponding to a 21.5% reduction. The frequency for local infections
was 5 out of 96 in the lateral Hardinge arm and 7 out of 79 in the anterior minimally
invasive arm, corresponding to an increase of 3.6 infections in 100 patients.

confcomptwo can be used to visualize the joint uncertainty in these two estimates
in a benefit–risk plane. One can approach this by computing the two estimates using
regression commands, combining these results using the suest command to determine
the correlation, and finally using confcomptwo as a postestimation command:

. use datarct, clear

. regress logtug arm fim0 age
Source SS df MS Number of obs = 144

F(3, 140) = 12.34
Model 28.384212 3 9.46140399 Prob > F = 0.0000

Residual 107.312516 140 .76651797 R-squared = 0.2092
Adj R-squared = 0.1922

Total 135.696728 143 .948928166 Root MSE = .87551

logtug Coefficient Std. err. t P>|t| [95% conf. interval]

arm -.2422539 .1469085 -1.65 0.101 -.5326998 .048192
fim0 -.0140444 .0028972 -4.85 0.000 -.0197723 -.0083166
age .0276489 .0112462 2.46 0.015 .0054145 .0498833

_cons 3.164169 1.04663 3.02 0.003 1.094925 5.233412

. estimates store logtug
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. glm localinf arm, link(id) family(bernoulli)
Iteration 0: Log likelihood = -43.28707
Iteration 1: Log likelihood = -43.28707
Generalized linear models Number of obs = 175
Optimization : ML Residual df = 173

Scale parameter = 1
Deviance = 86.57414092 (1/df) Deviance = .5004286
Pearson = 175 (1/df) Pearson = 1.011561
Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = u [Identity]

AIC = .5175665
Log likelihood = -43.28707046 BIC = -806.9338

OIM
localinf Coefficient std. err. z P>|z| [95% conf. interval]

arm .0365243 .0391983 0.93 0.351 -.0403031 .1133516
_cons .0520833 .0226777 2.30 0.022 .0076359 .0965308

Coefficients are the risk differences.
. estimates store localinf
. suest logtug localinf
Simultaneous results for logtug, localinf Number of obs = 175

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

logtug_mean
arm -.2422539 .1433648 -1.69 0.091 -.5232438 .038736
fim0 -.0140444 .0032706 -4.29 0.000 -.0204548 -.0076341
age .0276489 .009611 2.88 0.004 .0088118 .046486

_cons 3.164169 .9455341 3.35 0.001 1.310956 5.017382

logtug_lnvar
_cons -.2658971 .1217107 -2.18 0.029 -.5044457 -.0273486

localinf_lo~f
arm .0365243 .0393108 0.93 0.353 -.0405235 .113572

_cons .0520833 .0227428 2.29 0.022 .0075083 .0966583

. nlcom (tug:100*(1-exp(_b[logtug_mean:arm])))
> (localinf:100*_b[localinf_localinf:arm]), post

tug: 100*(1-exp(_b[logtug_mean:arm]))
localinf: 100*_b[localinf_localinf:arm]

Coefficient Std. err. z P>|z| [95% conf. interval]

tug 21.51431 11.25209 1.91 0.056 -.5393694 43.56799
localinf 3.652426 3.931081 0.93 0.353 -4.052351 11.3572
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. confcomptwo tug localinf,
> ytitle(median gain % TUG)
> xtitle(increase in local infections per 100 patients)
> loptsconf(points, n(150) mcol(black) msize(*0.15) yxratio(4))
> aspect(1) xsize(4) ysize(5)
> addplot((scatteri -2.5 -5 7.5 15, connect(l) msymbol(i) lpattern(dash)
> lcolor(gs7)))
> legend(order(1 2 3) col(1))
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Figure 8. Wald-test-based 5% comparison and 95% confidence regions for the gain in
TUG and the increase in number of local infections in example 4

The resulting figure 8 indicates that it is hard to draw firm conclusions because of
the substantial imprecision of the estimates. Only if we would regard a very small gain
in TUG time as justification for an increase by 1 local infection in 100 patients could
we conclude that the true parameter values are above this line. To illustrate this, we
show a reference line referring to a ratio between the gain in TUG and the number of
additional local infections per 100 patients of 0.5. For 10 additional local infections,
this would imply a 5% gain in TUG.
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3.5 Example 5: LR-test-based regions for an estimate on the bound-
ary

If the parameter space of a two-dimensional parameter estimation problem is bounded,
it is possible for the point estimate to be on the boundary. LR-test-based comparison
and confidence regions are then still defined, but drawing is slightly more complicated.
However, if we restrict the drawing to directions into the inner part of the parameter
space, it is still possible to draw regions. This is illustrated by an artificial example
from a single-arm diagnostic study with a sensitivity estimate of 1.0, which results in
figure 9:

. clear

. input indextest reference freq
indextest reference freq

1. 1 1 17
2. 0 0 57
3. 1 0 7
4. end

. generate correct = indextest == reference

. recode reference (0=2)
(2 changes made to reference)
. confcomptwo 1.0 `=57/64',
> call(llproptwosamples #1 #2 [fw=freq], var(correct) by(reference) force)
> points(0.2501(0.009996)0.7499) only(comp)
> ytitle(sensitivity) xtitle(specificity)
> aspect(1.0) xsize(4) ysize(5) xlabel(.8(.05)1) ylabel(.8(.05)1)
> legend(col(1))
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Figure 9. LR-test-based 5% comparison region for sensitivity and specificity in example 5

Note that it was necessary to use the force option to ensure that the log likelihood
could be evaluated at the point estimate, and note that the points() option was used
to explicitly specify the range of directions to be considered.

4 Methods and formulas
4.1 Parameterization of directions

The following two subsections describe how to determine the point on the boundary of
a comparison or confidence region when looking from the point estimate in a certain
direction ξ ∈ R2\(0, 0). A first, straightforward choice for the directions may be ξt =
(cos t, sin t)′ with values t from the grid tj = {(j − 1)/(J − 1)}2π for j = 1, . . . , J
with J denoting the overall number of directions considered. This implies that all
angles between two neighboring directions are equal, and this is indeed also the default
choice in confcomptwo. However, the equality of angles holds only with respect to the
parameter space with the Euclidean metric. It does not hold with respect to the plane
in which we plot the regions in the figure we want to create, because the two dimensions
are typically rescaled as part of the drawing process. Moreover, equal angles are optimal
only if the shape of the region is close to a circle, and it can be a poor choice in the



M. Eckert and W. Vach 481

case of other shapes. Hence, confcomptwo also offers a more general approach: A
list of values tj can be provided (using the points() option with a numlist), and a
function s(t) can be provided in the rescale() option. The directions are determined
as ξt = {s(t) cos t, sin t}′. If s(t) is chosen as a constant, this just implies a rescaling of
the directions with respect to the parameter shown on the y axis.

If the units of the axes in the plot plane roughly correspond to the same physical
length and the shape of the regions is close to a circle, the default value of J = 101 is
typically large enough to ensure that the boundary lines of the comparison and con-
fidence regions appear as smooth lines when plotting the calculated points in a graph
and connecting them with straight lines.

4.2 Drawing comparison and confidence regions based on the Wald
test principle

Given a direction ξ ∈ R2\(0, 0), the point on the boundary of Cα in this direction
(starting at θ̂) is given by

θ(ξ) = θ̂ + Σ̂ξ

√
χ2
1,1−2α

ξ′Σ̂ξ

(When ξ′Σ̂ξ equals 0, we set θ(ξ) = θ̂.) Cα can easily be drawn by plotting and
connecting the points θ(ξt) with t chosen as described in the previous subsection.

When we use the Wald test principle to construct (1− α) confidence regions for θ,
the points are given by

θ(ξ) = θ̂ + Σ̂ξ

√
χ2
2,1−α

ξ′Σ̂ξ

4.3 Drawing comparison and confidence regions based on the LR test
principle

Given a direction ξ ∈ R2\(0, 0), the point on the boundary of Cα in this direction
[starting at θ̂ML with the log-likelihood value l∗ = l(θ̂ML)] can be determined by solving
the equation

l
(
θ̂ML + γξ

)
= l∗ − 1

2
χ2
1,1−2α

for γ > 0. Because γ 7→ l(θ̂ML + γξ) is a strictly monotone decreasing function with
maximum 0, the solution γ(ξ) is unique and can easily be determined by a simple line
search. We can then plot all points θ̂ML + γ(ξt)ξt with t chosen as described above and
connect these points.

The same approach has been recently recommended by Jaeger (2016) for plotting
LR-test-based confidence regions. This requires just the replacement of χ2

1,1−2α with
χ2
2,1−α.
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The line search is conducted as follows. Let l̃(γ) := l(θ̂ML + γξ) and τ := l∗ −
(1/2)χ2

1,1−2α. When the point θ̂ML + γξt is outside the parameter space Θ of interest
(as indicated by the returned value of r(inside)), l̃(γ) is set to −∞. For a starting
value γ0 > 0, we check whether l̃(γ0) is less than, greater than, or equal to τ . In the
first case, we decrease γ by the factor 1/f until l̃(γ) is greater or equal to τ . In the
second case, we increase γ by the factor f until l̃(γ) is less than τ . The last two values
in this sequence are then used as starting values for a bisectioning search, making use
of the regula falsi. The bisectioning stops if the absolute value of the difference between
l̃(γ) and τ is less than 10−4, a value that can be changed by the lstoler() option.

For the first grid value t, γ0 is specified by the lsstartgamma() option with a default
value of 1.0, and f is specified by the lsstartfactor() option with a default value of
10.0. For subsequent grid values, γ0 is chosen as the final value from the previous search,
and f is specified by the lsfactor() option with a default value of 1.02 in the case of
100 or more points and is linearly increasing up to 2.0 in the case of only 2 points. These
choices usually work properly if the number of points J is large enough. You can use the
lstrace() option to obtain information about the γ values and corresponding points
and log-likelihood values considered in each line search. It is well known that the regula
falsi is a suboptimal procedure to determine the root of a concave function. However,
using a factor of 1.02 in the line search implies that usually only one bisectioning step
is required; hence, there is no need to consider more efficient algorithms. The use of
the optimal γ value of the previous step as the starting point for the line search implies
that usually only one or two line search steps are required before starting bisectioning.

When the call to the program provided by the user results in an error code different
from 0 or the log likelihood evaluates to a missing value, no point is plotted in the
corresponding direction, and a warning message is shown.

The validity of the comparison and confidence regions drawn depends heavily on the
correct specification of the values of the maximum likelihood (ML) estimate. Hence,
confcomptwo automatically performs two checks. First, every log-likelihood value com-
puted is compared with the value obtained for the specified ML estimate, and the pro-
gram stops with an error message if the difference is larger than 10−5. Second, after
constructing a point on the boundary, the log likelihood is also evaluated at the param-
eter value obtained by moving only 0.01% into the direction of the point.

4.4 The llproptwosamples command

The llproptwosamples command refers to the following likelihood for a single obser-
vation of the binary variable Y and the grouping variable B:

L(p1, p2) =

{
pY1 (1− p1)

1−Y if B = 1
pY2 (1− p2)

1−Y if B = 2

The command computes the sum of logL(p1, p2) over all observations.
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4.5 The llproptwocats command

The llproptwocats command refers to the following likelihood for a single observation
of the categorical variable Y with prespecified categories c1 and c2:

L(p1, p2) =

 p1 if Y = c1
p2 if Y = c2
1− p1 − p2 otherwise

The command computes the sum of logL(p1, p2) over all observations.

4.6 The llriskcomptwosamples command

The implementation of the llriskcomptwosamples command requires one to find a
parameterization for the joint distribution of two binary variables Y1 and Y2, which
allows one to fix the difference (risk ratio, odds ratio, log risk-ratio, log odds-ratio)
between the two marginal probabilities while allowing the other parameters to vary freely
without any further restrictions. We use a tetrachoric parameterization (Pearson 1900),
which is simple to implement in Stata because of the availability of the binormal()
function, allowing the computation of the joint cumulative distribution of a bivariate
normal distribution with correlation ρ, marginal means 0, and marginal variances 1.
This parameterization assumes that Y1 and Y2 are derived from two continuous random
variables Z1 and Z2 following such a bivariate normal distribution by dichotomization
at qk = Φ−1(pk) for k = 1, 2, with pk denoting the prevalence of Yk. The likelihood of
an observation (Y1, Y2) is then given by

LY1=1,Y2=1(p1, p2, ρ) = P (Z1 < q1, Z2 < q2) = binormal(q1, q2, ρ)

LY1=1,Y2=0(p1, p2, ρ) = P (Z1 < q1, Z2 > q2) = P (Z1 < q1)− P (Z1 < q1, Z2 < q2)

= p1 − binormal(q1, q2, ρ)

LY1=0,Y2=1(p1, p2, ρ) = P (Z1 > q1, Z2 < q2) = P (Z2 < q2)− P (Z1 < q1, Z2 < q2)

= p2 − binormal(q1, q2, ρ)

LY1=0,Y2=0(p1, p2, ρ) = P (Z1 > q1, Z2 > q2)

= 1− P (Z1 < q1)− P (Z2 < q2) + binormal(q1, q2, ρ)

= 1− p1 − p2 + binormal(q1, q2, ρ)

With B denoting the grouping variable, the profile log likelihood is then obtained
by maximizing for b = 1, 2 ∑

i,Bi=b

logLy1i,y2i(ρb, pb1, p
b
2)

under the constraints on pb1 and pb2 specified when calling the command and then sum-
ming up the two values.

The maximization task is approached using Stata’s ml command. The correlation ρ
is expressed as tanh ρ′ with ρ′ varying between −∞ and +∞ and p1 and p2 are expressed
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as functions of the given value ζ of the constraint in the group considered (and the type
of the constraint) and a freely varying parameter α as follows:

Type of Allowed p1(α, ζ) p2(α, ζ)
constraint values

for ζ

diff (−1, 1) if ζ ≥ 0 logit(α)(1− ζ) ζ + logit(α)(1− ζ)
(ζ = p2 − p1) if ζ < 0 −ζ + logit(α)(1 + ζ) logit(α)(1 + ζ)
rr (0,∞). if ζ ≥ 1 logit(α)/ζ logit(α)
(ζ = p2/p1) if ζ < 1 logit(α) logit(α)ζ
or (0,∞) logit(α) logit(α+ logζ)(
ζ = p2

1−p2
/ p1

1−p1

)
logrr R if ζ ≥ 0 logit(α)/exp(ζ) logit(α)
{ζ = log(p2/p1)} if ζ < 0 logit(α) logit(α)exp(ζ)
logor R logit(α) logit(α+ ζ){
ζ = log

(
p2

1−p2
/ p1

1−p1

)}
Consequently, the profile log likelihood is obtained by maximizing∑

b=1,2

∑
i,Bi=b

logL̃y1i,y2i(ρ′b, αb, ζb)

with
L̃y1,y2(ρ′, α, ζ) = Ly1,y2{tanh ρ′, p1(α, ζ), p2(α, ζ)}

over ρ′1, ρ′2, α1, and α2.

Note that the profile likelihood can be interpreted as a conditional likelihood given
the frequencies of B = 1 and B = 2 as well as an unconditional likelihood because,
in the latter case, the additional contribution depending on the prevalence π does not
affect the maximization task.



M. Eckert and W. Vach 485

5 An example involving a user-defined program to com-
pute the profile log likelihood

To continue with example 3 in section 3.3, we need an appropriate parameterization
of the joint distribution of Y1, Y2, and D. We use the fact that the change in relative
frequency of TP decisions ∆TP can be related to the change in sensitivity ∆sens and
the prevalence π, and the change in relative frequency of FP decisions ∆FP can be
related to the change in specificity ∆spec and the prevalence. To be precise, we have
∆sens = ∆TP/π and ∆spec = −∆FP/(1 − π). We now use the framework developed
for the llriskcomptwosamples command in section 4.6 in the case of using the diff
option. With the notation introduced there, we can express the log likelihood for a
trivariate observation (Y1, Y2, D) as

logL̃Y1,Y2{ρ′0, α0,−∆FP/(1− π)}+ log(1− π) if D = 0

logL̃Y1,Y2(ρ′1, α1,∆TP/π) + logπ if D = 1

The profile log likelihood for given values of ∆TP and ∆FP is then obtained by maxi-
mization over ρ′0, ρ′1, α0, α1, and logit π.

To apply the LR approach, we must provide a program to compute the profile log-
likelihood function. We start with defining the program tetrall to define the log
likelihood corresponding to a tetrachoric parameterization of a bivariate binary distri-
bution. We then define the program modeldeltaFPTP to compute the log likelihood
suitably for Stata’s ml command, and we finally define the program lldeltaFPTP to
compute the profile log likelihood by calling ml.

. local deltaTP = _b[deltaTP]

. local deltaFP = _b[deltaFP]

. program define tetrall
1. syntax varlist(min=2 max=2), cond(string) rho(real) genll(name) p1(real)

> p2(real)
2. gettoken y1 y2 : varlist
3. tempname q1 q2
4. scalar `q1' = invnormal(`p1')
5. scalar `q2' = invnormal(`p2')
6. quietly generate double `genll'= log(

> cond(`y1'==1,
> cond(`y2'==1, binorm(`q1',`q2',`rho'), `p1'- binorm(`q1',`q2',`rho')),
> cond(`y2'==1, `p2'- binorm(`q1',`q2',`rho'),
> 1 - `p1' - `p2' + binorm(`q1',`q2',`rho'))
> ))

7. end
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. program define modeldeltaFPTP
1. args lnf alpha0 atanhrho0 alpha1 atanhrho1 logitpi
2. local testvars : char _dta[testvars]
3. local refvar : char _dta[refvar]
4. local deltaTP: char _dta[deltaTP]
5. local deltaFP: char _dta[deltaFP]
6. local pi = invlogit(`logitpi')
7. local rho0 = tanh(`atanhrho0')
8. local rho1 = tanh(`atanhrho1')
9. local deltasens = `deltaTP'/`pi'
10. local deltaspec = -`deltaFP'/(1-`pi')
11. if `deltasens'>=0 {
12. local p1alpze1 = invlogit(`alpha1')*(1-`deltasens')
13. local p2alpze1 = `deltasens' + invlogit(`alpha1')*(1-`deltasens')
14. }
15. else {
16. local p1alpze1 = -`deltasens' + invlogit(`alpha1')*(1+`deltasens')
17. local p2alpze1 = invlogit(`alpha1')*(1+`deltasens')
18. }
19. if `deltaspec'>=0 {
20. local p1alpze0 = invlogit(`alpha0')*(1-`deltaspec')
21. local p2alpze0 = `deltaspec' + invlogit(`alpha0')*(1-`deltaspec')
22. }
23. else {
24. local p1alpze0 = -`deltaspec' + invlogit(`alpha0')*(1+`deltaspec')
25. local p2alpze0 = invlogit(`alpha0')*(1+`deltaspec')
26. }
27. tempvar aux1 aux0
28. tetrall `testvars',
> rho(`rho1') p1(`p1alpze1') p2(`p2alpze1') genll(`aux1') cond(`refvar'==1)
29. tetrall `testvars',
> rho(`rho0') p1(`p1alpze0') p2(`p2alpze0') genll(`aux0') cond(`refvar'==0)
30. quietly replace `lnf' = cond(`refvar'==1,`aux1',`aux0') +
> log(cond(`refvar'==1,`pi',1-`pi'))
31. end
. program define lldeltaFPTP, rclass

1. syntax anything [if] [in] [fw], testvars(varlist) refvar(varname) *
2. preserve
3. marksample touse
4. quietly keep if `touse'
5. numlist "`anything'", min(2) max(2)
6. gettoken deltaFP deltaTP : anything
7. local inside = -1<min(`deltaFP',`deltaTP') & max(`deltaFP',`deltaTP') <1
8. return local inside `inside'
9. if `inside' {
10. char _dta[testvars] `testvars'
11. char _dta[refvar] `refvar'
12. char _dta[deltaFP] `deltaFP'
13. char _dta[deltaTP] `deltaTP'
14. ml model lf modeldeltaFPTP
> (alpha0:) (atanhro0:) (alpha1:) (atanrho1:) (logitpi:) [`weight'`exp']
15. ml max, `options'
16. return scalar ll=e(ll)
17. }
18. else return scalar ll=.
19. restore
20. end
. generate correct1 = test1 == reference
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. generate correct2 = test2 == reference

. confcomptwo `deltaFP' `deltaTP',
> call(lldeltaFPTP #1 #2 [fw=freq], testvars(correct1 correct2)
> refvar(reference))
> xtitle({&Delta} FP) ytitle({&Delta} TP) reverse
> addplot(
> (scatteri -0.01 -0.01 .08 .08, connect(l) msymbol(i) lpattern(dot)
> lcolor(gs7))
> (scatteri -.01 -.02 .04 .08, connect(line) msymbol(i) lpattern(shortdash)
> lcolor(gs7))
> (scatteri -.0067 -.02 .0266 .08, connect(line) msymbol(i)
> lpattern(longdash) lcolor(gs7)))
> legend(col(1) order(1 2 3)) xline(0, lcolor(gs14)) yline(0, lcolor(gs14))
> xlabel(-.02(.02).08) ylabel(0(.02).1)
> yscale(range(-0.005 0.1)) aspect(1.1)
> xsize(4) ysize(5)
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Figure 10. LR-test-based 5% comparison and 95% confidence regions for the change in
the relative frequency of FP and TP decisions in example 3

In the resulting figure 10, we can observe that the shape of the regions based on
the LR test principle deviates distinctly from the elliptic shape of the Wald-test-based
regions. However, the conclusions remain the same.
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6 Conclusions
In some areas of statistical applications (such as diagnostic accuracy studies), it is
essential to present a joint evaluation of two parameter estimates. Two-dimensional
confidence and comparison regions are useful tools supporting this goal. Drawing such
regions is quite challenging and not easily accomplished within the existing graphical
tools in Stata. Therefore, the confcomptwo command presented in this article can be
seen as a useful and necessary addition that may stimulate an improved presentation of
estimation results in specific settings.

The examples presented in this article indicate that Wald-test-based and LR-test-
based comparison regions may substantially differ in their shape. First investigations
of finite-sample properties (Eckert and Vach 2020) suggest that LR-test-based compar-
ison regions are closer to their nominal level than Wald-test-based comparison regions.
Therefore, we recommend using LR-test-based comparison regions. However, LR-test-
based comparison regions also rely on inverting tests that are only asymptotically valid.
In the long run, the use of exact methods might be desirable.

The optimal choice of directions for drawing the boundary points of the regions is
a nontrivial problem. confcomptwo gives the user a flexible framework for the choice
of directions, but in principle this choice can be optimized automatically. This holds at
least in the case of Wald-test-based regions, for which the shape is determined by the
variance–covariance matrix.

It can be seen as a disadvantage of confcomptwo that the computation of the ML es-
timates is decoupled from the drawing of the LR-test-based confidence regions. However,
it is not trivial to derive profile likelihood functions from ordinary likelihood functions
when nonstandard transformations of the parameters (such as those considered in our
examples) are involved.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2

. net install st0716 (to install program files, if available)

. net get st0716 (to install ancillary files, if available)



M. Eckert and W. Vach 489

9 References
Eckert, M., and W. Vach. 2020. On the use of comparison regions in visualizing stochas-
tic uncertainty in some two-parameter estimation problems. Biometrical Journal 62:
598–609. https://doi.org/10.1002/bimj.201800232.

Gladstone, B. P., and W. Vach. 2015. Analyzing noninferiority trials: It is time for ad-
vantage deficit assessment—An observational study of published noninferiority trials.
Open Access Journal of Clinical Trials 7: 11–21. https://doi.org/10.2147/OAJCT.
S74821.

Guo, J. J., S. Pandey, J. Doyle, B. Bian, Y. Lis, and D. W. Raisch. 2010. A review of
quantitative risk-benefit methodologies for assessing drug safety and efficacy-report
of the ISPOR risk-benefit management working group. Value in Health 13: 657–666.
https://doi.org/10.1111/j.1524-4733.2010.00725.x.

Jaeger, A. 2016. Computation of two- and three-dimensional confidence regions with
the likelihood ratio. American Statistician 70: 395–398. https: //doi.org / 10.1080 /
00031305.2016.1182946.

Mt-Isa, S., C. E. Hallgreen, N. Wang, T. Callréus, G. Genov, I. Hirsch, et al. 2014.
Balancing benefit and risk of medicines: A systematic review and classification of
available methodologies. Pharmacoepidemiology and Drug Safety 23: 667–678. https:
//doi.org/10.1002/pds.3636.

Newcombe, R. G. 2001. Simultaneous comparison of sensitivity and specificity of
two tests in the paired design: A straightforward graphical approach. Statistics in
Medicine 20: 907–915. https://doi.org/10.1002/sim.906.

Ng, S.-H., S.-C. Chan, C.-T. Liao, J. T.-C. Chang, S.-F. Ko, H.-M. Wang, S.-C. Chin, C.-
Y. Lin, S.-F. Huang, and T.-C. Yen. 2008. Distant metastases and synchronous second
primary tumors in patients with newly diagnosed oropharyngeal and hypopharyngeal
carcinomas: Evaluation of 18F-FDG PET and extended-field multi-detector row CT.
Neuroradiology 50: 969–979. https://doi.org/10.1007/s00234-008-0426-2.

Pearson, K. 1900. Mathematical contributions to the theory of evolution. VII: on the
correlation of characters not quantitatively measurable. Philosophical Transactions
of the Royal Society of London, Series A 195: 1–47. https: //doi.org/10.1098/ rsta.
1900.0022.

Royston, P. 2007. Profile likelihood for estimation and confidence intervals. Stata
Journal 7: 376–387. https://doi.org/10.1177/1536867X0700700305.

Saxer, F., P. Studer, M. Jakob, N. Suhm, R. Rosenthal, S. Dell-Kuster, W. Vach,
and N. Bless. 2018. Minimally invasive anterior muscle-sparing versus a transgluteal
approach for hemiarthroplasty in femoral neck fractures—A prospective randomised
controlled trial including 190 elderly patients. BMC Geriatrics 18: 222. https://doi.
org/10.1186/s12877-018-0898-9.

https://doi.org/10.1002/bimj.201800232
https://doi.org/10.2147/OAJCT.S74821
https://doi.org/10.2147/OAJCT.S74821
https://doi.org/10.1111/j.1524-4733.2010.00725.x
https://doi.org/10.1080/00031305.2016.1182946
https://doi.org/10.1080/00031305.2016.1182946
https://doi.org/10.1002/pds.3636
https://doi.org/10.1002/pds.3636
https://doi.org/10.1002/sim.906
https://doi.org/10.1007/s00234-008-0426-2
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1177/1536867X0700700305
https://doi.org/10.1186/s12877-018-0898-9
https://doi.org/10.1186/s12877-018-0898-9


490 confcomptwo

Vach, W., O. Gerke, and P. F. Hœilund-Carlsen. 2012. Three principles to define the
success of a diagnostic study could be identified. Journal of Clinical Epidemiology
65: 293–300. https://doi.org/10.1016/j.jclinepi.2011.07.004.

Vickers, A. J. 2008. Decision analysis for the evaluation of diagnostic tests, prediction
models, and molecular markers. American Statistician 62: 314–320. https://doi.org/
10.1198/000313008x370302.

Xu, B., S. Tu, S. Qiao, X. Qu, Y. Chen, J. Yang, L. Guo, et al. 2017. Diagnostic accuracy
of angiography-based quantitative flow ratio measurements for online assessment of
coronary stenosis. Journal of the American College of Cardiology 70: 3077–3087.
https://doi.org/10.1016/j.jacc.2017.10.035.

About the authors

Maren Eckert is a research associate at the Institute of Medical Biometry and Statistics. The
work presented here is part of her PhD thesis.

Werner Vach is a senior researcher in applied methodology at the Basel Academy for Quality
and Research in Medicine and has supervised the thesis.

https://doi.org/10.1016/j.jclinepi.2011.07.004
https://doi.org/10.1198/000313008x370302
https://doi.org/10.1198/000313008x370302
https://doi.org/10.1016/j.jacc.2017.10.035



