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Abstract. In this article, we introduce a new community-contributed command,
xtnumfac, for estimating the number of common factors in time-series and panel
datasets using the methods of Bai and Ng (2002, Econometrica 70: 191–221), Ahn
and Horenstein (2013, Econometrica 81: 1203–1227), Onatski (2010, Review of
Economics and Statistics 92: 1004–1016), and Gagliardini, Ossola, and Scaillet
(2019, Journal of Econometrics 212: 503–521). Common factors are usually unob-
served or unobservable. In time series, they influence all predictors, while in panel-
data models, they influence all cross-sectional units at different degrees. Examples
are shocks from oil prices, inflation, or demand or supply shocks. Knowledge
about the number of factors is key for multiple econometric estimation methods,
such as Pesaran (2006, Econometrica 74: 967–1012), Bai (2009, Econometrica 77:
1229–1279), Norkute et al. (2021, Journal of Econometrics 220: 416–446), and
Kripfganz and Sarafidis (2021, Stata Journal 21: 659–686). This article discusses
a total of 10 methods to estimate the number of common factors. Examples based
on Kapetanios, Pesaran, and Reese (2021, Journal of Econometrics 221: 510–541)
show that U.S. house prices are exposed to up to 10 common factors. Therefore,
when one fits models with house prices as a dependent variable, the number of
factors must be considered.

Keywords: st0715, xtnumfac, common factors, factor models, cross-section depen-
dence, panel-data models, time-series models

1 Introduction
The notion that one or more common factors drive economic or social variables is
predominant in the empirical macroeconomics and finance literature. For example,
Ross (1976) argues that many asset returns are influenced by a few common factors.
Stock and Watson (1989) propose to use three indexes to model the co-movements of
several macroeconomic variables. Common factors are also a recurring phenomenon in
modeling house prices (Holly, Pesaran, and Yamagata 2010, 2011), economic growth
(Eberhardt, Helmers, and Strauss 2013; Ditzen 2018b; Chudik et al. 2017), and the
effect of oil price shocks (El-Anshasy, Mohaddes, and Nugent 2017). In such models,
common factors are often interpreted as shocks that affect all countries at the same
point in time but with different magnitude.
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An understanding of the number of factors is important for the practitioner. Com-
mon factors are modeled by principal components in macroeconomic time series. Know-
ing their number is key for forecasting (Stock and Watson 2002), break point estimation
(Duan, Bai, and Han 2023), or in general for asset pricing models, where the number
of common factors is used to verify whether all systematic determinants in the cross-
section of returns are accounted for. Models with common factors are popular in panel
data (Sul 2019). If not accounted for, common factors can bias regression results.
Methods such as the common correlated effects (CCE) estimator (Pesaran 2006) do not
require exact knowledge about the number of factors. However, the number of common
factors has to be less than the number of observables used to approximate them (Kara-
biyik, Reese, and Westerlund 2017) to ensure the asymptotic theory of the estimator is
valid. Other methods, such as the principal component-based estimators (Bai 2009) or
the instrumental-variables estimator for large panel-data models (Norkute et al. 2021;
Kripfganz and Sarafidis 2021), require knowledge about the number of factors. The
number of factors is also necessary in the estimation of the exponent of cross-section
dependence (Bailey, Kapetanios, and Pesaran 2016, 2019).

This article introduces the community-contributed command xtnumfac, which al-
lows obtaining 10 different estimators for the number of common factors. The six infor-
mation criteria by Bai and Ng (2002) are implemented, as well as the eigenvalue-based
estimators of Ahn and Horenstein (2013), Onatski (2010), and Gagliardini, Ossola, and
Scaillet (2019). The latter is particularly designed for the estimation of the number
of common factors of residuals. All estimators are designed for high-dimensional time-
series models or panel-data models with many observations over time and cross-section
dimensions.

The community-contributed baing command (Núñez and Otero 2020) allows the
estimation of the number of common factors following the methods in Bai and Ng
(2002) of variables in wide format. That is, each cross-section is represented by a
variable. xtnumfac offers more functionality. First, it includes the methods by Ahn
and Horenstein (2013), Onatski (2010), and Gagliardini, Ossola, and Scaillet (2019), in
addition to those by Bai and Ng. Second, xtnumfac can be directly applied to panel data
without reshaping the data into wide format. Finally, unbalanced panels are supported
using an expectation-maximization algorithm, as proposed in Stock and Watson (1998)
and Bai, Liao, and Yang (2015).

The next section specifies the factor-model framework used in all four articles men-
tioned above and reviews all estimators that are implemented by xtnumfac from a
theoretical perspective. Section 3 provides an overview of the command xtnumfac. The
article closes with examples drawn from Kapetanios, Pesaran, and Reese (2021).
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2 Econometric theory
The model to which estimators for the number of factors apply is the approximate factor
model of Chamberlain and Rothschild (1983), which we can formally write as

Xt = ΛFt + et, t = 1, 2, . . . , T (1)

Here Xt is a vector containing observations over N cross-sections at time t, Ft is an
r × 1 vector of common factors, Λ = (λ1,λ2, . . . ,λN )

′ is an N × r matrix containing
the corresponding factor loadings, and et = (e1t, e2t, . . . , eNt)

′ is a random noise com-
ponent. None of the latter three components is observed. In appendix A, we provide
a comprehensible description of the assumptions typically made on factors, loadings,
and random noise to specify which properties they must have. r is the number of com-
mon factors, unknown to the researcher and also the main parameter of interest in this
article. Equation (1) is often embedded in the following model:

Yt = Xtβ + ut (2)
ut = ΓFt + vt

Here Yt is the variable of interest, and Xt is a matrix with k explanatory variables
and N observations over the cross-section dimension. ut is a multifactor error term
and consists of r common factors Ft, an N × r matrix of associated loadings Γ, and a
random noise component vt. In time series and panel data, it is of interest to estimate
the common factors in Y and X. Panel model (2) collapses to a time-series model if
N = 1. In this framework, common factors are often used to predict an individual
macroeconomic time series Yt. In panel data, the parameter of interest is mostly β. If
the common factors in Xt and the composite error ut are not accounted for, regressing
Xt on Yt can lead to a biased estimate of β. It is popular to approximate the common
factors by either principal components (Bai 2009) or cross-section averages (Pesaran
2006).1 The principal component approach requires exact knowledge about the number
of common factors for a consistent and efficient estimation of β. The CCE estimator
in Pesaran hinges on the rank condition of the common factors, which implies that
the number of common factors should not exceed the number of cross-section averages
(Karabiyik, Reese, and Westerlund 2017).

2.1 Bai and Ng’s (2002) information criteria

Bai and Ng (2002) suggest estimating the number of factors using an information cri-
terion where a loss function is penalized by a strictly increasing function of the number
of cross-sections N and time periods T . In particular, Bai and Ng propose two differ-
ent types of criteria: the panel criterion (PC) and the panel information criterion (IC).
Formally, they are given by

PC(k) = V (k, F k)− kσ̂2g(N,T ) (3)
IC(k) = ln

{
V
(
k, F k

)}
− kg(N,T ) (4)

1. The two estimation methods are implemented in Stata by regife (Gomez 2015) and xtdcce2
(Ditzen 2018a, 2021).
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Here V (k, F k) is further specified to be squared loss. That is, we have

V (k, F k) = min
Λ

1

NT

N∑
i=1

T∑
t=1

(
xi,t − λk,iF

k
t

)2
where λk,i are the factor loadings with k factors and Fk

t are the common factors. The
loss function depends on an estimate of the factor loadings and requires knowledge
about the factors. If the factors are selected out of a set of known factors, one could
compare all possible solutions for PC(k̂) and IC(k̂). In the more realistic case of unknown
common factors, the factors can be estimated by principal components (Forni and Lippi
1997; Forni and Reichlein 1998). Thus, Ft is replaced by F̂t. In this case, V (k, F̂ k) =

1/N
∑N

i=1 σ̂
2
i,k = 1/N

∑N
i=1

∑T
t=1 ê

2
i,t,k, where êi,t,k is the residual from a regression

of the k first principal components on X.2 The estimate of σ2 = N−1
∑N

i=1 σ
2
i that

explicitly enters the penalty term of PC(k) is usually obtained from the model with the
maximum number of factors considered, kmax. This ensures an unbiased estimator of
E
(
e2i,t

)
and ensures that all components of the penalty, except the number of factors k

itself, are unaffected by the value of k.

The correction applied to loss V (k, F̂k) or its logarithm ensures consistent estimation
of the number of factors under general conditions on the penalty function g(N,T ) (see
Bai and Ng [2002, theorem 2]). For a principal components-based estimator of the
unobserved factors, Bai and Ng make three specific suggestions for g (N,T ). Together
with the two general types of criteria (3) and (4), this results in the following six
statistics:

PCp1 = V
(
k, F̂ k

)
+ kσ̂2

kmax

N + T

NT
ln

(
NT

N + T

)
PCp2 = V

(
k, F̂ k

)
+ kσ̂2

kmax

N + T

NT
ln {min(N,T )}

PCp3 = V
(
k, F̂ k

)
+ kσ̂2

kmax

ln {min(N,T )}
min(N,T )

ICp1 = ln
{
V
(
k, F̂ k

)}
+ k

N + T

NT
ln

(
NT

N + T

)
ICp2 = ln

{
V
(
k, F̂ k

)}
+ k

N + T

NT
ln {min(N,T )}

ICp3 = ln
{
V
(
k, F̂ k

)}
+ k

ln {min(N,T )}
min(N,T )

For any of the six statistics above, estimating the number of factors requires obtain-
ing the values of the chosen statistics within a user-specified range of factors k ∈
{1, 2, . . . , kmax}. The estimated number of factors is then the value of k that mini-
mizes the chosen statistic.
2. Equivalently, V (k, F̂k) is equal to the sum of all but the first k eigenvalues of X′X/ (NT ). This

result allows representing the information criteria of Bai and Ng (2002) in a formal framework
similar to those of the three articles referred to in the following three sections.
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2.2 Ahn and Horenstein’s (2013) estimators

Ahn and Horenstein (2013) point out two disadvantages of the approach by Bai and Ng
(2002). First, the criteria functions are prespecified and not data driven. Second, the
maximum number of possible factors, kmax, has to be set ex ante, and the estimation
method should not be sensitive to the choice of kmax. To overcome these shortcomings,
Ahn and Horenstein suggest two alternative estimators, the eigenvalue ratio (ER) and
growth rate (GR) estimators. Both estimators account for the ratio of residual variances
when an additional common factor is added. In detail, the estimators for a given number
of common factors k are

ER(k) =
µ̃NT,k

µ̃NT,k+1
, k = 1, 2, . . . , kmax

GR(k) =
ln
(
1 + µ̃∗

NT,k

)
ln
(
1 + µ̃∗

NT,k+1

)
with µ̃NT,k being the kth largest eigenvalue of X′X/(NT ) and µ̃∗

NT,k = µ̃NT,k/V (k),
where V (k) is the mean of the squared residuals of a regression of X on the first k
principal components of X′X/(NT ). The number of common factors is then

k̃ER = max
1≤k≤kmax

ER(k)

k̃GR = max
1≤k≤kmax

GR(k)

2.3 Onatski’s (2010) estimator

Onatski (2010) exploits differences in the properties of the first r eigenvalues and a
limited number of subsequent eigenvalues of X′X/T . The author emphasizes that the
eigenvalues with order index slightly larger than k tend to cluster around a particular
finite value. The differences between subsequent eigenvalues in this cluster constitute a
threshold δ that differences between eigenvalues representing factors in the data should
surpass. Accordingly, the magnitude by which each of the first kmax eigenvalues of
X′X/T exceeds the next smaller eigenvalue is investigated. The smallest eigenvalue
with more than a δ distance to its next smaller successor indicates the true number of
factors. The specific algorithm suggested by Onatski (p. 1008) is as follows:

1. Obtain the eigenvalues µ1, µ2, . . . , µN of T−1
∑T

t=1 XtX
′
t. Set j = kmax + 1.

2. Estimate the slope coefficient β̂ in a linear regression of µj , . . . , µj+4 on (j − 1)
2/3

,

. . . , (j + 3)
2/3 and a constant, and set the threshold δ to δ = 2|β̂|.

3. Obtain the estimated number of factors as r̂(δ) = max(i ≤ rNmax : µi − µi+1 ≥ δ)
if there exists some i ≤ rNmax subject to µi − µi+1 ≥ δ. Otherwise, set r̂(δ) = 0.

4. Set j = r̂ (δ). Repeat steps 2 and 3 until r̂(δ) remains unchanged in two subsequent
repetitions. Let this final estimator be denoted r̃ED.
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Without step 4 in the algorithm above, the estimator of Onatski would merely amount
to going through a list of sorted eigenvalues and picking the smallest such eigenvalue
with sufficient distance to its next smaller neighbor. However, the iterations of step 4
update the threshold value for a sufficient distance and hence make the entire procedure
somewhat less intuitive.

One disadvantage with Onatski’s (2010) edge distribution (ED) estimator is that the
error component may be only weakly correlated over time or over cross-sections but
not over both dimensions of the panel dataset. Only under the additional assumption
of normally distributed noise is it possible to allow for weak dependence over both
time and cross-sections. However, an interesting advantage of the estimator is that the
theoretical framework, under which its consistency is proven, allows for factors that
have an integration order of 1.

2.4 Gagliardini, Ossola, and Scaillet’s (2019) estimator

The method of Gagliardini, Ossola, and Scaillet (2019) focuses on residuals from linear
models and can be used as a postestimation criterion. It is based on two rival models,
one with a weakly cross-section dependence structure and the second with a factor
structure. To establish the first model, one calculates the difference between the largest
eigenvalue and a penalty depending on N and T . If the penalty is larger than 0, at least
one factor exists. The selection rule picks the number of factors. The number equals the
kth largest eigenvalue for which the difference between the eigenvalue and the penalty
is negative for the first time.

The difference between the kth largest eigenvalue, µ(k), and the penalty g(N,T ) is

ξ(k) = µ(k)− g(N,T )

g(N,T ) =

(√
N +

√
T
)2

NT
ln

 NT(√
N +

√
T
)2


The number of factors is then selected according to

no factors : ξ(1) < 0

k̂ factors : k̂ = min{0, . . . , T − 1 : ξ(k) < 0}

If ξ(ki) > 0 ∀ ki = 0, . . . , T − 1, then k̂ = T .

The method relies on standardized variables or residuals to ensure that the eigenval-
ues are measured with a common scale. Gagliardini, Ossola, and Scaillet (2019) show
that the method consistently estimates the number of factors if the cross-section dimen-
sion is comparable or much larger than the time dimension, that is, N = O(T 1/γ) and
T = O(Nγ) with γ > 0 and γ ∈ (0, 1].

The estimator of Gagliardini, Ossola, and Scaillet (2019) is proven to be consistent
under considerably stricter assumptions than all other estimators. However, this may
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be due to the authors’ explicitly allowing for missing data. By contrast, the theoretical
properties of all other estimators discussed above rely on the availability of a balanced
panel dataset.

3 The xtnumfac command
3.1 Syntax

xtnumfac varlist
[
if
] [

in
] [

, kmax(#) detail standardize(#)
]

Data must be tsset or xtset (see [TS] tsset or [XT] xtset) before using xtnumfac.
varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

3.2 Options

kmax(#) specifies how many factors to consider at most when estimating its true num-
ber. The default is kmax(8). The choice of kmax() mostly affects the length of the
reported table of results. Additionally, the values of the PC_{p1}, PC_{p2}, and
PC_{p3} statistics may be slightly affected because they are functions of an esti-
mated error variance in the idiosyncratic component that is obtained from the most
general model (that is, the one with kmax() factors).

detail reports exact values for the IC, PC, ER, GR, and GOS for every possible number
of factors. The estimator of Onatski (2010) is left out from this representation to
avoid confusion about how the estimated number of factors is obtained from a list
of potential values.

standardize(#) specifies how to transform variables prior to factor estimation. Stan-
dardization is important when using the criterion in Gagliardini, Ossola, and Scaillet
(2019) because it requires standardized data. The default is standardize(1). #
may be one of the following:

# Description

1 No transformations
2 Remove individual fixed effects
3 Remove individual fixed effects, and standardize variance of each

cross-section to 1
4 Remove individual and time fixed effects
5 Remove individual and time fixed effects, and standardize variance of each

cross-section to 1
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3.3 Stored results

xtnumfac stores the following in e():

Scalars
e(N) number of observations
e(N_g) number of cross-sections
e(T) number of time periods
e(kmax) maximum number of factors considered, kmax

e(missnum) number of missing values that are imputed
Matrices

e(best_numfac) a (1× 10) matrix containing the number of factors estimated by any
of the 10 criteria; the order is as in the reported function output

e(allICs) a (kmax×10) matrix containing the value of all measures for all num-
bers of factors under consideration; corresponds to the values in
the reported function output (albeit without asterisks)

3.4 Unbalanced panel data

Estimation of the number of common factors requires a balanced dataset. In practice,
many datasets are unbalanced, and selecting a balanced subset might be either impossi-
ble or undesirable. To accommodate practitioners’ needs, xtnumfac imputes data in the
case of unbalanced datasets using an expectation-maximization algorithm as proposed
in Stock and Watson (1998); Bai, Liao, and Yang (2015); and Kripfganz and Sarafidis
(2021). This algorithm is itself based on repeated estimation of a factor model. The
number of factors chosen here is set to kmax+5 to avoid interference with the estimation
of the number of factors in the range {1, 2, . . . , kmax}.

4 Examples
As an example, we use quarterly house price changes for 48 mainland states of the
United States over the years 1975 to 2014 from Kapetanios, Pesaran, and Reese (2021).
Changes in house prices in the United States are well known to be exposed to common
factors; see, for example, Holly, Pesaran, and Yamagata (2010) and Bailey, Holly, and
Pesaran (2016a). The variable of interest is d_lrhp, which is the rate of change of real
house prices after seasonal adjustment and nominal price deflation. We search for up
to 10 common factors by setting kmax(10).
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The criteria from Bai and Ng (2002) are labeled as PC1 to IC3. The two criteria
from Ahn and Horenstein (2013) are displayed as ER and GR; the one from Gagliardini,
Ossola, and Scaillet (2019) as GOS; and the criterion from Onatski (2010) as ED. The
results are the following:

. use kpr2021_hpdata

. xtnumfac d_lrhp, kmax(10)
N = 7632 T = 159
N_g = 48 vars. = 1

IC # factors IC # factors

PC_{p1} 10 IC_{p1} 8
PC_{p2} 9 IC_{p2} 8
PC_{p3} 10 IC_{p3} 10
ER 1 GR 1
GOS 0 ED 3

10 factors maximally considered.
PC_{p1},...,IC_{p3} from Bai and Ng (2002)
ER, GR from Ahn and Horenstein (2013)
ED from Onatski (2010)
GOS from Gagliardini, Ossola, Scaillet (2019)

The criteria of Bai and Ng (2002) find between 8 and 10 common factors, while
the ratio tests by Ahn and Horenstein (2013) find 1 common factor. The estimator
by Onatski (2010) estimates 3 common factors. The estimator by Gagliardini, Ossola,
and Scaillet (2019) finds no factors. However, in the default setting, the data are not
transformed. The GOS estimator requires standardized data and thus leads to invalid
results. Onatski suggests in the empirical application to standardize the data as well.
To remove potential state individual effects and standardize the variance of each cross-
section to unity, we specify standardize(3):

. xtnumfac d_lrhp, kmax(10) standardize(3)
N = 7632 T = 159
N_g = 48 vars. = 1

IC # factors IC # factors

PC_{p1} 10 IC_{p1} 9
PC_{p2} 9 IC_{p2} 5
PC_{p3} 10 IC_{p3} 10
ER 1 GR 1
GOS 1 ED 2

10 factors maximally considered.
PC_{p1},...,IC_{p3} from Bai and Ng (2002)
ER, GR from Ahn and Horenstein (2013)
ED from Onatski (2010)
GOS from Gagliardini, Ossola, Scaillet (2019)
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Once again, the criteria by Ahn and Horenstein (2013) point to 1 common factor
that drives changes in house prices. The result is in line with the estimate from the
Gagliardini, Ossola, and Scaillet (2019) estimator. The estimator by Onatski (2010) now
finds 2 common factors. The information criteria from Bai and Ng (2002) vary between
5 to 10 common factors. A reason for the difference is that the criteria by information
criteria rely on a penalty, while the estimators by Onatski, Ahn and Horenstein, and
Gagliardini, Ossola, and Scaillet rely on functions on the eigenvalues.

The economic implication of the findings is that house prices in the United States are
exposed to at least one common factor. The common factor can be observed in things
such as changes in the interest rate, shocks to labor markets, or unobserved nationwide
factors. If house prices are estimated, the factor structure needs to be accounted for.
If the principal component analysis estimator in Bai (2009) is used, the number of
principal components equals the number of common factors for a consistent and efficient
estimation; see Bai (2009, remark 4). If instead the CCE estimator (Pesaran 2006) is
used, then the number of common factors should not exceed the number of cross-section
averages (Karabiyik, Reese, and Westerlund 2017).
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As a final exercise, we want to display the values of IC, PC, ER, GR, and GOS for
every possible number of factors. We do so by using the detail option:

. xtnumfac d_lrhp, kmax(10) standardize(3) detail
Statistics for number of common factors in d_lrhp

Number of obs = 7632 Obs per group = 159
Number of groups = 48 Number of variables = 1

# factors PC_{p1} PC_{p2} PC_{p3} IC_{p1} IC_{p2} IC_{p3}

0 1.000 1.000 1.000 0.000 0.000 0.000
1 0.497 0.498 0.494 -0.632 -0.625 -0.649
2 0.406 0.409 0.401 -0.783 -0.768 -0.817
3 0.373 0.377 0.365 -0.823 -0.801 -0.874
4 0.352 0.357 0.342 -0.842 -0.813 -0.910
5 0.333 0.338 0.319 -0.871 -0.836* -0.957
6 0.324 0.330 0.308 -0.874 -0.831 -0.977
7 0.316 0.324 0.297 -0.879 -0.829 -0.999
8 0.312 0.321 0.290 -0.880 -0.823 -1.018
9 0.308 0.319* 0.284 -0.884* -0.820 -1.039
10 0.308* 0.320 0.282* -0.880 -0.808 -1.052*

# factors ER GR GOS

0 0.499 0.315 0.368
1 4.891* 2.940* -0.044*
2 2.190 1.802 -0.101
3 1.341 1.181 -0.114
4 1.033 0.915 -0.115
5 1.429 1.275 -0.125
6 1.073 0.969 -0.127
7 1.151 1.040 -0.130
8 1.078 0.975 -0.131
9 1.202 1.090 -0.135
10 1.139 1.039 -0.136

10 factors maximally considered.
PC_{p1},...,IC_{p3} from Bai and Ng (2002)
ER, GR from Ahn and Horenstein (2013)
ED from Onatski (2010)
GOS from Gagliardini, Ossola, Scaillet (2019)

Because the number of factors is directly estimated in Onatski (2010), the ED crite-
rion is not displayed. The column GOS, denoting the Gagliardini, Ossola, and Scaillet
(2019) estimator, shows the difference between the eigenvalue and the penalty. We note
that the first difference is slightly above 0, indicating that the factor structure identified
by the estimator is very weak.

5 Conclusions
Understanding the number of common factors is important for empirical analysis. We
introduced a community-contributed command called xtnumfac, which implements a
total of 10 estimation methods of the number of factors. The methods are based on
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Bai and Ng (2002), Ahn and Horenstein (2013), Onatski (2010), and, for residuals,
Gagliardini, Ossola, and Scaillet (2019). We discussed the use of xtnumfac with an
empirical example and showed that house prices in the United States are exposed to
multiple common factors. xtnumfac can be applied to balanced and unbalanced panel
data and to a single or multiple variables.

The methods presented here and, thus, xtnumfac are limited to static factor models.
Accordingly, none of the methods presented in this article is capable of estimating the
number of factors in a dynamic factor model while accounting for their dynamic impact
on the observed data. Only the number of factors in a static representation of the
dynamic model can be estimated. However, this identifies the contemporaneous and
lagged impact of a single factor erroneously as several individual factors.

Furthermore, xtnumfac is limited to presenting a smorgasbord of different estimators
for the number of factors. The choice of selecting an appropriate criterion is left to the
researcher. For example, while the criterion in Bai and Ng (2002) can be applied to
a wide range of models, the criterion in Gagliardini, Ossola, and Scaillet (2019) is
particularly designed for residuals.

Lastly, in a panel-data setting, dominant units or units with pervasive effects can
appear. Such units influence all other units and mimic common factors. While the
literature (Kapetanios, Pesaran, and Reese 2021; Brownlees and Mesters 2021) iden-
tifying those units is closely related to the methods presented here, xtnumfac cannot
distinguish between common factors and such units. Such differentiation is left to the
researcher.
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-2

. net install st0715 (to install program files, if available)

. net get st0715 (to install ancillary files, if available)
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A Assumptions on the approximate factor model (1)
xtnumfac implements methods from four different scientific articles whose theoretical
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as the largest or smallest singular value. However, most econometricians have only ele-
mentary training in matrix analysis, which makes an interpretation of the assumptions
mentioned above difficult. Thus, we specify a single set of assumptions that follows more
closely the modeling conventions in econometrics. This set of assumptions also serves as
a least common denominator for properties of the data-generating process under which
consistency of all 10 estimators implemented by xtnumfac has been shown.

Assumption 1. For some finite fixed number M , ‖Ft‖ ≤ M holds almost surely.
Additionally, T−1

∑T
t=1 FtF

′
t

p→ ΣF , where ΣF is a deterministic, positive definite
r × r matrix, and there exist η, η ∈ (0, 1] and C1, C2, C3, C4 > 0 such that

Pr

{∥∥∥∥∥T−1
T∑

t=1

(FtF
′
t −ΣF )

∥∥∥∥∥ > δ

}
≤ C1T exp

(
−C2δ

2T η
)
+ C3δ

−1 exp
(
C4T

η
)

Assumption 2. For every i = 1, 2, . . . , N , λi is deterministic and satisfies ‖λi‖ < M.

Furthermore, N−1
∑T

i=1 λiλ
′
i → ΣΛ, where ΣΛ is positive definite.

Assumption 3. 1. The T ×N matrix E = (e1, e2, . . . , eT )
′ is defined as E = RUG,

where G = (gij) is N ×N and R = (rts) is T × T .

2. The elements of U = (uit) are independent and identically distributed random
variables satisfying E (uit) = 0, E

(
u2it

)
= 1, and E

(
u8it

)
<∞.

3. For i, j = 1, 2, . . . , N, (gij) are nonstochastic and satisfy maxi
∑N

j=1|gij | ≤M and
maxj

∑N
i=1|gij | ≤M .

4. For t, s = 1, 2, . . . , T , (rts) are nonstochastic and satisfy rts = 0 for all t 6= s as
well as maxt|rtt| ≤M .

5. For all N,T , the T th largest eigenvalue of RR′ and the N th largest eigenvalue of
G′G equal some small, positive number δ.

Assumption 4. E
(
N−1

∑N
i=1‖T−1/2

∑T
t=1 Fteit‖2

)
≤M .

Assumption 5. The asymptotic approximation considered is one where sample dimen-
sions N and T diverge subject to the restrictions N/T → c ∈ (0,∞) as N,T → ∞.

Assumption 1 requires factors to be realized from a distribution whose density has
bounded support. Furthermore, the tail probabilities of the difference between factor
sample covariance matrices and their limits are assumed to disappear at an exponential
rate. This restricts the degree of serial dependence in Ft. More specifically, depen-
dence must be weak enough to satisfy the conditions of a concentration inequality with
much tighter bounds than that of Chebyshev’s inequality. Our assumptions on unob-
served factors are strictly required by Gagliardini, Ossola, and Scaillet (2019). The
estimators of Bai and Ng (2002) as well as of Ahn and Horenstein (2013) are developed
under much weaker assumptions; namely, i) the fourth moments of Ft are bounded,
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and ii) T−1
∑T

t=1 FtF
′
t converges to its positive definite limit ΣF at an arbitrary rate.

Onatski (2010) even allows for factors with stationary differences.

In assumption 2, the perspective on factor loadings λi as nonstochastic model compo-
nents is more restrictive than necessary but allows us to circumvent additional assump-
tions about the relation between loadings, factors, and idiosyncratic noise. Convergence
of N−1

∑T
i=1 λiλ

′
i to a positive definite limit implies “[. . .] that the cumulative effect

of the least influential factor rises proportionally to [the number of cross-sections]”
(Onatski 2010, 1005). This assumption is required by all estimators except for that
of Onatski, who explicitly accounts for what Chudik and Pesaran (2015) refer to as
“semistrong” factors.

The structure imposed on model errors ei,t, turning them into linear combinations
of independent and identically distributed random variables, follows Ahn and Horen-
stein (2013) and Onatski (2010). Furthermore, our conditions in assumption 3 on the
properties of the matrices R and G impose conditions for the degree of serial and cross-
section correlation in ei,t. These conditions are sufficient for corresponding assumptions
in all four articles considered by xtnumfac. Gagliardini, Ossola, and Scaillet (2019) and
Onatski require the absence of serial correlation, requiring R to be a diagonal matrix.
However, as emphasized by Onatski, consistency of the ED estimator can be shown even
in the presence of weak serial correlation at the expense of assuming ei,t to be normally
distributed. Under this assumption, an absolute summability condition on the rows and
columns of R, analogous to those of assumption 3.3, covers the theoretical frameworks
of all estimators except that of Gagliardini, Ossola, and Scaillet.

Assumption 4 is required by Bai and Ng (2002) and Ahn and Horenstein (2013).
Sufficient conditions for this assumption are given by mutual independence of Ft and
eis for all i, t, s or the applicability of a central limit theorem to T−1/2

∑T
t=1 Fteit.

Lastly, assumption 5 is strictly required only for the estimator of Onatski (2010)
because the theoretical properties of the ED estimator are established using well-known
results from random matrix theory. These results require that the rate of divergence of
time periods and cross-sections be proportional. The remaining estimators make weaker
assumptions (Gagliardini, Ossola, and Scaillet 2019) or no such assumptions (Bai and
Ng 2002; Ahn and Horenstein 2013), meaning that their asymptotic results may be a
better approximation of finite-sample behavior in panel datasets with highly unequal
dimensions.




