
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2023)
23, Number 2, pp. 589–594 DOI: 10.1177/1536867X231175349

Stata tip 152: if and if: When to use the if qualifier and
when to use the if command
Nicholas J. Cox
Department of Geography
Durham University
Durham, U.K.
n.j.cox@durham.ac.uk

Clyde B. Schechter
Albert Einstein College of Medicine
Bronx, NY
clyde.schechter@einsteinmed.edu

1 Introduction
Stata has an if qualifier and an if command. Here we discuss generally when you
should use either and specifically flag a common pitfall in using the if command. In a
nutshell, the pitfall arises from confusing the two constructs: the if command does not
loop over the data but, at most, looks in the first observation of a dataset. There has
long been a StataCorp FAQ on this topic (Wernow 2005), but we and others have usually
tried to explain matters otherwise. This tip is intended as a more durable version of
the story that should be easier to find than occasional Statalist postings that are vivid
when read but hard to find later.

2 The if qualifier
The if qualifier is met by most users early in their Stata experience. Its purpose is to
select observations (cases, records, or rows in the dataset) for some action. Thus, you
could run the following commands to read in a dataset and first summarize a variable
and then summarize that variable again for a subset of observations. Here we suppress
the results, but if you are new to Stata and unfamiliar with summarize, it would be
worth your time to run the code yourself to find out about a valuable command.

. sysuse auto

. summarize mpg

. summarize mpg if foreign == 1

When the if qualifier is used (or, in other words, when an if condition is speci-
fied), Stata tests the expression given—here foreign == 1—in each observation to see
whether it is satisfied (is true) in that observation. Observations for which the expres-
sion is true are selected for the action. In this example, foreign is an indicator variable
that is 1 if a car is foreign (made outside the United States) and 0 if a car is domestic
(made inside the United States). The operator == tests for equality, noting that in Stata
the = operator typically indicates assignment of a value or values, say, to a variable. Out
of 74 cars, 22 qualify as being foreign, so their observations will be summarized for the
variable mpg.

© 2023 StataCorp LLC st0721

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231175349&domain=pdf&date_stamp=2023-06-22


590 Stata tip 152

Stata follows a very widely used convention, running across statistics, mathematics,
and computing, that in logical tests, a value of 1 means true and a value of 0 means
false. In fact, Stata’s rule is more general: Any numeric value that is not 0 means true,
while only the numeric value 0 means false. Watch out with missing values because any
numeric value that represents missing (whether system missing, ., or extended missing
values from .a to .z) is certainly not 0 and so yields true in a logical test.

Logical tests in Stata take two forms. First, and more commonly, some logical
operator is used in an expression. Tests for equality, using the == operator, may be
what you need; otherwise, some test for inequality may be needed. See the help for
operators to see the complete list. Thus, in auto.dta you could select cars with high
mpg by, say, mpg > 25. Logical tests can combine two or more conditions, but even so
the keyword if appears only once in any comparison.

Second, you can ask Stata to look inside a numeric variable and check whether its
values are 0 or not. In auto.dta, foreign is only ever 1 or 0 and never missing. So the
test if foreign is precisely the same test in practice as if foreign == 1. Presented
with if foreign, Stata looks inside the variable and selects those observations for
which it is not 0, which in practice is the same subset of observations as those for which
the condition if foreign == 1 is true.

There are positive and negative sides to this flexibility. The positive side is that
we can write Stata code that may appeal to readers as idiomatic in their own language
and in Stata too. “Let’s focus on the cars that are foreign” becomes the condition
if foreign. Such coding works best if you follow a convention, which we strongly
recommend, of naming an indicator variable for the condition coded as 1. That is
precisely what the developers of Stata did at the very beginning when coding up the
auto data.

The negative side is that the inclusiveness here could bite if there are nonzero values
that the condition if foreign would catch too, even though that is not what you
intend. As said, nonzero values include any numeric missing values. So you might well
prefer to be safe rather than succinct and always spell out, say, if foreign == 1.

For more on truth and falsity in Stata, see Cox (2005, 2016). For more on indicator
variables, see Cox and Schechter (2019), especially if you have been thinking “Don’t you
mean dummy variables?” (Yes, we do.)



N. J. Cox and C. B. Schechter 591

3 The if command
The previous section may have strengthened your understanding of the if qualifier,
say, by spelling out some nuances. At this point in the story, the most important
detail about the if command is that it is emphatically not a way to do the same thing
differently. Oddly, or otherwise, a misunderstanding that the two are equivalent (or at
least overlap in what they do) seems to arise most often with people new to Stata who
are accustomed to programming in some other language. Such programmers may guess
or hope that Stata’s if command is similar to, or an extension of, what they know
already.

Whatever the explanation, constructs using if or some equivalent keyword have
been present in many programming languages over several decades. Examples can be
found in Sammet (1969), Kernighan and Plauger (1978), and Bal and Grune (1994).

We will pursue this negative theme before turning to when and why the if command
is appropriate or useful. Otherwise, there would be no point to including it within Stata.

Any puzzlement is intensified whenever Stata allows use of the if command in a way
that seems equivalent to use of the if qualifier. It then gives results that occasionally
are what you want but more often just seem bizarre. As examples, consider these two
statements and their results:

. if foreign == 1 summarize mpg

. if foreign == 0 summarize mpg
Variable Obs Mean Std. dev. Min Max

mpg 74 21.2973 5.785503 12 41

Stata complains about neither statement, so each is perfectly legal. But you might
even wonder whether you have unearthed a bug. The first statement yields no results,
whereas we already know that there are observations for which foreign == 1. Other
way round, the second statement yields results, but if you look carefully, you will see
that the results are for the entire dataset and so include both foreign and domestic cars.

The explanation is immediate given one extra piece of information. When an if
command refers to a variable (or variables) in the dataset, Stata looks only in the first
observation. It is exactly as if you wrote if foreign[1] == 1 or if foreign[1] ==
0. It so happens that the first statement is false and the second statement is true, as
can be checked independently by looking at the data with, say, list in 1 or edit in
1 or display foreign[1]. Because the first statement was false, Stata did not execute
the next command, summarize mpg. Because the second statement was true, Stata did
execute the (same) next command. In both cases, the subset of observations specified
was not part of the syntax for the next command.



592 Stata tip 152

We could make that plainer by writing the same syntax using curly brackets or
braces:

if foreign[1] == 0 {
summarize mpg

}

Backing up slightly: Here a so-called subscript such as [1] attached to a variable
name indicates an observation number, so in another example foreign[42] would be the
value of foreign in observation 42. We say “subscript” as an allusion to mathematical
notation such as y1 or y42, but naturally writing sub scriptum, below the line, is not
strictly possible in Stata.

A more general point to emphasize is that there is no sense in Stata in which the if
command iterates or loops over the observations in the dataset. (Here we are assuming
that there are data in memory; it is perfectly possible to use Stata with no variables in
memory, and you may wish to think through what could be done depending on what
else is allowed.) Positively put, the if command makes one and only one decision,
depending on whether the condition specified is true.

The if command is very widely used within do-files and within programs, including
within programs that define other commands.

There are many examples within Stata programs. Options are typically implemented
in this way. In many commands, there are optional choices, either for extra actions or
to vary some action from the default. Inside the command code, there is typically a
switch for each option whereby different code is executed. The summarize command has
options, such as meanonly (to do less than the default) or detail (to do more). That
command is built in, so users may not see the internal code, but very many commands
are implemented through ado-code, so much of or all the code is visible. If you are
curious, you can look inside ado-code with, say,

. viewsource tabstat.ado

and you will immediately see a series of switches all using the if command to set up
calculations according to whatever a user did (or did not) specify when issuing the
tabstat command.

Another common sequence within ado-code is something like this.

. marksample touse

. count if `touse'
74

. if r(N) == 0 error 2000

Here marksample has the job of creating a temporary indicator variable `touse'
that is 1 when observations are to be used and 0 otherwise. (If the name touse looks
odd to you, think “to use”.) Exclusions arise for one of two reasons: whenever missing
values make the use of observations impossible or whenever an if qualifier (there it
is again) or an in qualifier excludes observations by implication. We then count the



N. J. Cox and C. B. Schechter 593

observations to be used. The result is left in r(N). If that result is 0, then there are no
observations to use, which here and usually is regarded as an error. If, as it were, no
news is good news, such as when we are checking for something bad but fail to find it,
then the syntax would be different. We might well condition on, say, r(N) > 0.

There are other vital differences between the if qualifier and the if command,
beyond the cosmetic (but still crucial) difference that the first follows and the second
precedes associated code.

The if command can be associated with code following else to indicate what should
be done if the condition specified is false. Indeed, a more or less complicated series of
branching decisions may be needed depending on a menu of possible choices. Again, if
you are curious, look at the results of

. viewsource duplicates.ado

which show a series of branches aimed at identifying the subcommand that a user
specified after the command itself, such as duplicates report or duplicates list.

Lest you think that the if command is primarily of interest to Stata programmers,
let’s look at an example of its use in a common situation that arises in data analysis.
Suppose you want to analyze some panel data, performing some specific calculations
separately in each panel but only in those panels that offer a minimum sample size.
Here we assume for simplicity that firms have distinct numeric identifiers. The code in
your do-file might look like this:

generate abnormal_return = .
levelsof firm, local(firms)
foreach f of local firms {

count if firm == `f' // N.B. if qualifier
if r(N) >= 30 { // N.B. if command

regress return market_return if firm == `f' // if qualifier
predict resid, resid
replace abnormal_return = resid if firm == `f' // if qualifier
drop resid

}
}

Notice that both the if command and the if qualifier are used in this code, with
very different effects. The if qualifier applies only to the single command in which
it appears, and it restricts those commands to the observations for which firm ==
`f'. The if command appears only once in the code, but it controls execution of the
following four commands; they are executed only if the result of the preceding count
command is at least 30. Note, in particular, that this if command does not examine
any observations in the data in memory: it refers only to the result returned by the
preceding count command. Note also the use of curly braces to apply the single if
command to an entire block of commands. Those four commands are all executed, or
none are, depending on the available sample size for the firm.

You may be thinking of refinements, such as counting observations with nonmissing
values, because observations with missing values are of no use for any regression. You



594 Stata tip 152

may also know of community-contributed commands in this area, but discussing those
is beyond our scope here. Even if you have access to such commands, understanding
the principles in this last example is valuable in many contexts.

References
Bal, H. E., and D. Grune. 1994. Programming Language Essentials. Wokingham:
Addison–Wesley.

Cox, N. J. 2005. FAQ: What is true or false in Stata? https://www.stata.com/support/
faqs/data-management/true-and-false/ .

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229–236. https://doi.org/10.1177/1536867X1601600117.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246–259. https: // doi.org / 10.1177 /
1536867X19830921.

Kernighan, B. W., and P. J. Plauger. 1978. The Elements of Programming Style. New
York: McGraw–Hill.

Sammet, J. E. 1969. Programming Languages: History and Fundamentals. Englewood
Cliffs, NJ: Prentice-Hall.

Wernow, J. 2005. FAQ: I have an if or while command in my program that only seems
to evaluate the first observation. What’s going on? http://www.stata.com/support/
faqs/programming/if-command-versus-if-qualifier/ .

https://www.stata.com/support/faqs/data-management/true-and-false/
https://www.stata.com/support/faqs/data-management/true-and-false/
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921
http://www.stata.com/support/faqs/programming/if-command-versus-if-qualifier/
http://www.stata.com/support/faqs/programming/if-command-versus-if-qualifier/



