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Abstract. Recently, a new statistical methodology to assess the bias and precision
of a new measurement method, which circumvents the deficiencies of the Bland
and Altman (1986, Lancet 327: 307–310) limits of agreement method, was de-
veloped by Taffé (2018, Statistical Methods in Medical Research 27: 1650–1660).
Later, the methodology was extended to assess the agreement. In addition, to
allow for inferences, simultaneous confidence bands around the bias, precision,
and agreement lines were developed (Taffé, 2020, Statistical Methods in Medi-
cal Research 29: 778–796). The goal of this article is to introduce the extended
biasplot command, which implements these latest developments, and to illustrate
its use by applying it to simulated data included with the command. Note that
the Taffé method assumes that there are several measurements by one of the two
measurement methods and possibly as few as one measurement by the other for
each individual. The repeated measurements need not come from the reference
standard but from any of the two measurement methods. This is a great advan-
tage because it may sometimes be more feasible to gather repeated measurements
either with the reference standard or the new measurement method.

Keywords: gr0068_1, biasplot, agreement, bias, precision, limits of agreement,
differential bias, proportional bias, method comparison

© 2023 StataCorp LLC gr0068_1

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X231161978&domain=pdf&date_stamp=2023-04-05


98 Extended biasplot command

1 Introduction
In clinical research, Bland and Altman’s limits of agreement (LoA) method is frequently
used to assess the agreement or interchangeability between two measurement methods,
when the characteristic of interest is continuous (Altman and Bland 1983; Bland and
Altman 1986). Often, this is motivated by a new, perhaps less expensive or easier,
method of measurement against an established reference standard. To evaluate the
comparability of the methods, the investigator collects measurements, perhaps one or
several, from each method for a set of subjects. Bland and Altman’s LoA are then
computed by adding and subtracting 1.96 times the estimated standard deviation (SD)
from the mean differences. A scatterplot of the differences versus the means of the
two variables with the LoA superimposed is used to visually appraise the degree of
agreement and quantify the magnitude. Further, a regression of the differences as a
function of the means is added to the plot to indicate whether there is a bias and the
direction of that bias (Bland and Altman 1999).

Bland and Altman’s plot may be misleading, however, in situations where the vari-
ances of the measurement error for each method differ from one another. When this is
the case, the regression line may show an upward or downward trend when there is no
bias or a zero slope when there is a bias (Carstensen 2010; Taffé 2018).

Recently, a new statistical methodology to assess the bias and precision of a new
measurement method, which circumvents the deficiencies of the Bland and Altman’s
LoA method, was developed (Taffé 2018). Later, that methodology was extended to
include the assessment of the agreement, and the inference was developed to build
simultaneous confidence bands (CBs) around the bias, precision, and agreement lines
(Taffé 2020).

In this article, we will present the implementation of the extended methods proposed
by Taffé (2020). A series of new graphs will be introduced to help the investigator as-
sess bias, precision, and agreement between the different measurement methods. The
methodology requires repeated measurements on each individual for at least one of the
two measurement methods (otherwise, one cannot identify the differential and propor-
tional biases). It was originally developed based on repeated measurements from the
reference standard, but it has been extended to the setting where repeated measure-
ments come from the new measurement method (however, this option has not been
implemented in the current command and has to be done manually). This is a great
advantage because it may sometimes be more feasible to gather repeated measurements
with the new measurement method.

The extended biasplot command now includes an option to allow the user to save
the results of the estimation procedure and build plots including several competitive
measurement methods. Thanks to the simultaneous CBs, inference can be carried out
for the whole curve and is not limited to only a specific value of the latent trait (as with
pointwise CBs).
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2 The measurement error model
2.1 Formulation and estimation of the model

Following Taffé (2018), we define the relationship between the true latent trait, xij , and
the measured outcomes, y1ij (by method 1) and y2ij (by method 2), on individual i at
measurement j, by

y1ij = α1 + β1xij + ε1ij , ε1ij |xij ∼ N{0, σ2
ε1(xij ;θ1)}

y2ij = α2 + β2xij + ε2ij , ε2ij |xij ∼ N{0, σ2
ε2(xij ;θ2)}

xij ∼ fx(µx, σ
2
x)

where ε1ij and ε2ij are the measurement errors by methods 1 and 2 and fx is the
density of the true unknown trait. The parameters α1 and α2 measure the differential
bias, whereas β1 and β2 the proportional bias. This formulation makes it clear that
neither method 1 nor method 2 needs to be unbiased. The goal is to compare the two
measurement methods and assess the bias of one of the two versus the other (which will
be called the “reference method” whether genuinely unbiased or not).

For the sake of clarity, we now consider method 2 to be the reference standard and
method 1 the new method to be evaluated. We also assume that the individual latent
trait is constant within individual i; that is, xij ≡ xi, although this assumption could
be relaxed (Taffé 2018). Therefore, the model reduces to

y1ij = α1 + β1xi + ε1ij , ε1ij |xi ∼ N{0, σ2
ε1(xi;θ1)} (1)

y2ij = xi + ε2ij , ε2ij |xi ∼ N{0, σ2
ε2(xi;θ2)}

xi ∼ fx(µx, σ
2
x)

and α1 measures the differential and β1 the proportional bias relative to measurement
method 2. We assume that there are replicate measurements j = 1, . . . , ni on each
individual i, i = 1, . . . , N , by at least one of the two measurement methods and that the
variances σ2

ε1(xi;θ1) and σ2
ε2(xi;θ2), which depend on vectors of unknown parameters,

θ1 and θ2, are heteroskedastic and depend on the level of the true latent trait, xi, by
the relationships

σε1(xi;θ1) =
(
θ
(0)
1 + θ

(1)
1 xi

)√
π/2

σε2(xi;θ2) =
(
θ
(0)
2 + θ

(1)
2 xi

)√
π/2

(2)

Actually, the form of the heterogeneity need not be a straight line, and a fractional
polynomial may be used instead if the investigator believes that the straight-line model
is too restrictive. The presence of the square root term

√
π/2 is related to the half-

normal distribution of the absolute value of the residuals.

Taffé (2018) has developed a two-step procedure to estimate the parameters of (2)
and (2), which does not rely on the density of the true unknown trait, fx. Simulations
have shown that this two-step approach works well to estimate the differential and
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proportional biases, even with as few as three to five repeated measurements by one of
the two methods and only one by the other.

When the repeated measurements are available for method 1 instead of method 2
(the reference), the two-step procedure operates the same way as in Taffé (2018), except
that the role of y2ij is taken by y1ij and computation of the differential and propor-
tional biases is modified accordingly. That is, in this case, the user proceeds by first
fitting a regression model for y1ij by marginal maximum likelihood. Then, the mean of
the conditional distribution of xi given the vector y1i is computed, and the regression
model y2ij = α+ βÊ(xi|y1i) + ε2ij estimated by ordinary least squares. Therefore, the
differential bias is given by −α/β, and proportional bias by 1/β. Finally, the best linear
unbiased prediction (BLUP) of xi is simply computed as x̂i = α̂ + β̂Ê(xi|y1i). Based
on the estimated parameters and their estimated variance–covariance matrix, inference
regarding the differential and proportional bias can be carried out by using the delta
method.

When repeated measurements are available for both measurement methods, the user
may start in the two-step procedure by fitting a regression model for either y2ij or y1ij .
The estimates of the differential and proportional biases will be similar (but not the
same). Our experience, along with limited simulations, suggests that it is advantageous
to use the method having on average more repeated measurements as the reference
(confidence intervals [CIs] are slightly narrower).

The (total) bias E(y1ij − y2ij |xi) is consistently estimated by

biasi = α̂∗
1 + x̂i

(
β̂∗
1 − 1

)
(3)

where α̂∗
1 and β̂∗

1 are estimates from the linear regression model of the new measurement
method y1ij on the BLUP x̂i; that is, y1ij = α∗

1 + β∗
1 x̂i + ε∗1ij .

2.2 Inference

Taffé (2020) developed a new methodology to allow the computation of simultaneous
CBs around the bias (3) and each of the two SD (2) lines. The simultaneous CB approach
guarantees a proper coverage rate for the simultaneous inference, whatever the number
of points from the support considered. It therefore allows proper inference for the whole
curve, whereas a pointwise CI guarantees that on average, only 95% of the computed
intervals for each individual point from the support will cover the true value. The latter
is appropriate only when the focus is on a single point (that is, value) from the latent
trait but not for the whole curve.

Note that in the presence of a proportional bias, the new measurement method needs
to be recalibrated, using y∗1ij = (y1ij − α̂1)/β̂1, before proceeding to the comparison of
the precisions of the two methods (Taffé 2018). Indeed, in the presence of a proportional
bias, there is a scale issue without recalibration, because the latter acts multiplicatively
on the true trait. This means that y1 and y2 are not on the same scale. This is akin
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to the situation where one instrument measures a distance in meters and the other in
feet; like is not compared with like without recalibration (Taffé 2021).

2.3 The mean squared error

As mentioned above, in the presence of a proportional bias, method 1 is not on the
same scale as method 2; therefore, the variances of the measurement errors of the
two instruments may not be compared without recalibration. However, if the user
does not want to recalibrate method 1, then the mean squared errors (MSEs) may be
compared instead of the SDs. As method 2 is the reference, its MSE equals its variance,
MSE2 = (θ̂

(0)
2 + θ̂

(1)
2 x̂i)

2π/2, whereas for method 1, the user has to compute

MSE1 =
(
θ̂
(0)
1 + θ̂

(1)
1 x̂i

)2
π/2 +

{
α̂∗
1 + x̂i

(
β̂∗
1 − 1

)}2

The user can compute 95% simultaneous CBs for MSE1 and MSE2 exactly in the
same way as for the bias and the SD (Taffé 2020). Alternatively, the user may similarly
compute the square root MSE to produce a figure in the same units as the reference
standard.

2.4 The agreement

To assess the agreement between the two measurement methods, following a similar
path as Bland and Altman, Taffé (2020) defines the α-level upper and lower limits of
agreement LoAup

α and LoAlo
α as

LoAα = E(y1ij − y2ij |xi)± Z1−α/2

√
V (y1ij − y2ij |xi)

where the conditional distribution of the differences, dij = y1ij − y2ij |xi, is assumed to
be normally distributed. The main difference between the Bland and Altman approach
and the Taffé approach is that the Taffé methodology conditions on xi to resolve the
issue of endogeneity and allow the variances to be heteroskedastic and depend on the
level xi of the true latent trait.

The LoA are estimated by

est. LoAα = biasi ± Z1−α/2

√
σ̂2
d

where the estimate of the variance σ2
d of the differences is given by

σ̂2
d ≡ V̂ (y1ij − y2ij |xi) = σ̂2

ε1

(
x̂i; θ̂1

)
+ σ̂2

ε2

(
x̂i; θ̂2

)
Simultaneous 95% CBs for LoAup

α and LoAlo
α are computed in the same way as above

for the bias and two SDs.
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2.5 The percentage of agreement

To assess the level of agreement between the two measurement methods, Taffé (2020)
has developed a new index, the “percentage of agreement”, defined by (in terms of a
proportion)

%A = 1−
Z1−α/2SD(y1ij − y2ij |xi) + |E(y1ij − y2ij |xi)|

xi
(4)

where Z1−α/2 is the 1−α/2 percentile point of the standard normal distribution. Note
that for (4), the percentage of agreement is defined by the percentage of disagreement,
captured by the fraction portion of the above equation. In the numerator, the 1− α/2
percentile point Z1−α/2SD(y1ij−y2ij |xi) of the conditional distribution of the differences
y1ij − y2ij (which is assumed to be normally distributed) is penalized by the absolute
value of the bias and then divided by the value of the latent trait. Finally, one minus
the fraction represents the percentage of agreement. Notice that the percentage of
agreement may turn out to be negative whenever the numerator is larger than the
denominator, in which case the agreement is extremely poor.

The original intention of Bland and Altman (1983, 1986), when they developed the
LoA plot, was that it was up to the investigator to appraise the level of agreement
between the two measurement methods, which is deliberately subjective. However, as
an aid to interpreting results and because the agreement may not be constant over the
whole support, we have developed the “percentage of agreement”, which is based on a
formula.

The percentage of agreement is computed as

%Â = 1−
Z1−α/2σ̂d + |biasi|

x̂i

When method 1 has been recalibrated (to remove the bias), the user uses the “cor-
rected percentage of agreement” instead:

%A∗ = 1−
Z1−α/2SD(y∗1ij − y2ij |xi)

xi

which is estimated by

%Â
∗
= 1−

Z1−α/2σ̂d∗

x̂i

Again, simultaneous 95% CBs for %A, respectively %A∗, can be computed as above
for the bias and two SDs.
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3 The extended biasplot command
The extended biasplot command extends the previous biasplot command by inte-
grating the computation of the newly proposed parameters, that is, MSE, LoAup

α and
LoAlo

α , percentage of agreement %A, and corrected percentage of agreement %A∗. In
addition, simultaneous CBs are computed around each parameter and a series of new
graphs can be drawn (the total bias, agreement without recalibration, agreement after
recalibration, percentage agreement without recalibration, percentage agreement after
recalibration, MSE, and squared root MSE plots) to help the investigator to assess bias,
precision, and agreement between the two measurement methods.

3.1 Syntax

The syntax for biasplot is the same as in the previous version of the command (Taffé
et al. 2017), except that there are additional options.

biasplot
[

if
] [

in
]
, idvar(varname) ynew(varname) yref(varname)

[
loa

bias totbias precision comp agreement0 agreement1 pctagreement0

pctagreement1 mse sqrtmse results pdfs nbsimul(#)
]

3.2 Options

idvar(varname) defines the variable identifying the individual. idvar() is required.

ynew(varname) defines the new measurement method. ynew() is required.

yref(varname) defines the reference standard method. yref() is required.

loa graphs the extended LoA plot. Note that you have to choose at least one of the
options loa, bias, totbias, precision, etc., for the command to run and save the
corresponding graphs to the current directory.

bias graphs the bias plot.

totbias graphs the total bias plot.

precision graphs the precision plot.

comp graphs the comparison plot.

agreement0 graphs the agreement plot without recalibration.

agreement1 graphs the comparison plot after recalibration.

pctagreement0 graphs the percentage agreement plot without recalibration.

pctagreement1 graphs the percentage agreement plot after recalibration.

mse graphs the MSE plot.
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sqrtmse graphs the square root MSE plot.

results generates a file called biasplot_results.dta containing the original data
plus the estimates computed by the command (all the variables are prefixed by
my_varname).

pdfs saves the graphs in .pdf format (instead of Stata’s .gph format).

nbsimul(#) allows the user to change the default value (that is, nbsimul(1000)) of
the number of simulations carried out to compute the CBs. For example, to set the
number of simulations to 2,000, use the option nbsimul(2000).

3.3 Stored results

biasplot stores the following in r():

Scalars
r(prop_bias_up) upper limit of the estimated proportional bias
r(prop_bias_lo) lower limit of the estimated proportional bias
r(prop_bias) estimated proportional bias
r(diff_bias_up) upper limit of the estimated differential bias
r(diff_bias_lo) lower limit of the estimated differential bias
r(diff_bias) estimated differential bias

4 Numerical examples
To illustrate the use of the extended biasplot command, we will consider three simu-
lated datasets.

4.1 Simulation model 1

y1i = 4 + 0.8xi + ε1i, ε1i|xi ∼ N{0, (0.2xi)2} (5)
y2ij = xi + ε2ij , ε2ij |xi ∼ N{0, (1.75 + 0.08xi)

2}
xi ∼ Uniform[25−45]

where i = 1, . . . , 100, and the number of repeated measurements of individual i from
the reference standard was n2i ∼ Uniform[10−20] and n1i ∼ Uniform[1−3] for the new
measurement method.

There are between 10 and 20 repeated measurements by the reference standard
and between 1 and 3 by the new measurement method for each individual. The new
method (method 1) has a differential bias of 4 and a proportional bias of 0.8. In
addition, the variance of the measurement errors from method 1 is larger than that of
the reference method 2. Notice that as the individuals do not have the same number
of observations, the precision of the prediction (BLUP of x) of the latent trait will vary
across individuals, and a smoothing of the CBs has been implemented using fractional
polynomials of degree 2.
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The data have been saved in the file named biasplot_example_data_set1.dta.

We load the example dataset 1:

. use biasplot_example_data_set1

We call the biasplot command with the options loa and bias:1

. concord y1 y2, summary loa(regline)
(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) loa bias

Bias and Precision Plots
************************

id Variable: id
New Method Y Variable: y1
Reference Method Y Variable: y2
Running ...

Generating Bland and Altman extended LoA Plot
Bland and Altman LoA Plot saved to current working directory

Computing differential & proportional biases:

Number of simulations set to 1000

diff_bias=3.4644937, 95%CI=[-1.8665491;8.7955365]
prop_bias=.81608672, 95%CI=[.65786342;.97431001]

Generating Bias Plot ...
Bias Plot saved to current working directory

End of Commands
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Figure 1. (a) Standard Bland and Altman LoA plot and (b) bias plot

1. The loa option will generate the extended LoA plot. To obtain the standard LoA plot, users must
also install the concord command (see Steichen and Cox [2002]) by typing ssc install concord.
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Based on Taffé’s (2018) methodology, a differential bias of 3.5 (true value 4), 95% CI
= [−1.87; 8.80], and a proportional bias of 0.82 (true value 0.8), 95% CI = [0.66; 0.97],
are identified, whereas with the standard Bland and Altman methodology, a differential
bias of −9.0 (true value 4), 95% CI = [−17.7; −0.4], and a proportional bias of 1.16
(true value 0.8), 95% CI = [0.96; 1.36], are found.

The bias plot may seem complicated to read at first sight because it has two y axes,
but it is, in fact, a standard scatterplot. The left y axis represents the values (y1 and
y2) of the measurements made by the two instruments, whereas the x axis represents
the true value of the latent trait after measurement errors have been removed (more
precisely, it is the best possible estimation of the latent trait, that is, BLUP). Therefore,
the bias plot is simply a scatterplot of the measurements, y1 and y2, with the x axis
representing the true latent trait. In Bland and Altman’s LoA plot, the true value of the
trait is estimated by the mean of the two measurements, that is, (y1 + y2)/2, whereas
in the bias plot, it is estimated using all the measurements of the individuals.

By inspecting the bias plot (shown here in grayscale), we see that the regression line
of the new method y1 (green in the actual plot) lies below the one of the reference y2
(black) for all the values of the true latent trait. Clearly, the method y1 has a negative
bias over the whole support from 25 to 45. The bias of the method y1 is equal to the
vertical distance between the green line and the black one. Because it is difficult to read
this distance directly on the plot, the bias plot has a second y axis on the right. This
right y axis works like a magnifying glass and shows the distance between the two lines.
For example, when the true trait is 45, the distance between the green and black lines
is about −5, as can be read on the right y axis using the red bias line. Likewise, when
the true trait is 25, the distance between the green and black regression lines is about
−1 (here the magnifying glass is really useful because it is difficult to read the distance
between the two lines directly on the scatterplot).

This example clearly illustrates a setting where Bland and Altman’s methodology
provides biased and misleading results, whereas the “bias plot” methodology shows that
the bias of the new method is larger the higher the latent trait.

We will present below the newly proposed graphs to help the investigator to assess
bias, precision, and agreement between the two measurement methods. These may be
obtained by running the biasplot command four separate times to get each of the total
bias, precision, agreement0, and agreement1 plots,

biasplot, idvar(id) ynew(y1) yref(y2) totbias
biasplot, idvar(id) ynew(y1) yref(y2) precision
biasplot, idvar(id) ynew(y1) yref(y2) agreement0
biasplot, idvar(id) ynew(y1) yref(y2) agreement1
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or, more compactly, by using a single command:

biasplot, idvar(id) ynew(y1) yref(y2) totbias precision agreement0 agreement1

In both situations, the four graphs are saved in the current directory, but in the
latter situation, only the last figure will be open:
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Figure 2. (a) Total bias plot with simultaneous CBs; (b) precision plot with simultaneous
CBs; (c) agreement plot without recalibration; and (d) agreement plot after recalibration

The total bias plot focuses on the (total) bias, which results from the two components
of bias: the differential and proportional biases. It works as a magnifying glass of the
bias line from the bias plot. The simultaneous CBs around the total bias line allow the
user to formally assess whether bias is statistically significant and on which portion of
the support.

The precision plot with its simultaneous CBs around the two SD lines allows the user
to formally compare the precision of the two instruments under consideration (there is
a statistically significant difference between 30 and 45), after recalibration of the new
measurement method to resolve the scaling issue.
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The agreement plot is similar to the classical Bland and Altman LoA plot, except
that the x axis is the predicted true latent trait (that is, BLUP of x) instead of the mean
of the two measurements. It allows the user, by inspecting the lower and upper limits,
while accounting for the CBs, to visually and quantitatively (by reading the percentage
of agreement on the right y axis) appraise the degree of agreement between the two
measurement methods. Without recalibration, the LoA are centered on the bias line,
whereas they are centered on the zero value after recalibration. After method 1 has
been recalibrated, and the differential and proportional biases removed, the line of bias
is confounded with the x axis, and the agreement plot shows that agreement is better
for higher values of the latent trait.

The reading of the percentage of agreement is not always easy on the agreement plot,
and no CB appears around the percentage of agreement index. To inspect thoroughly
the percentage of agreement, the user may compute the “percentage of agreement” plots,
using the commands

biasplot, idvar(id) ynew(y1) yref(y2) pctagreement0
biasplot, idvar(id) ynew(y1) yref(y2) pctagreement1
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Figure 3. (a) Percentage of agreement plot without recalibration and (b) percentage of
agreement plot after recalibration

The percentage of agreement plot allows for a formal assessment of the level of
agreement. When there are three or more measurement methods to be compared, the
percentage of agreement plot may turn out to be useful for formally comparing the
levels of the agreement by superimposing the curves along with their simultaneous CBs
on the same plot (illustrated below).

Because of the scale issue, in the presence of a proportional bias, the new mea-
surement method was recalibrated before computing the SD of the measurement errors.
However, if the user is reluctant to perform a recalibration and prefers to conserve the
measurements by method 1 as is (despite a bias), then he or she may compare the
precision of the two measurement methods using the MSE (to account for the bias) or
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the square root MSE (to produce a figure in the same units as the reference standard)
instead of the SD:

biasplot, idvar(id) ynew(y1) yref(y2) mse
biasplot, idvar(id) ynew(y1) yref(y2) sqrtmse
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Figure 4. (a) The MSE plot illustrates that the MSE of method 1 tends to be larger
than that of method 2, although not statistically significant as the CBs’ overlap over the
whole support; and (b) the MSE plot produces a figure in the same units as the reference
standard.

Comparison of the MSE plot with the precision plot (compare with figure 2) reveals
that, after we removed the bias from method 1, the precision of method 2 turned out
to be clearly superior to that of method 1 almost over the whole support, whereas this
was not as apparent on the MSE plot or its square root counterpart.

4.2 Illustration of the results option

Another feature we have added to this extended version of the biasplot command is
the results option, which allows the user to retrieve the estimates. For example, to
retrieve the estimate of the total bias, we type

biasplot, idvar(id) ynew(y1) yref(y2) totbias results

which will generate a file called biasplot_results.dta containing the original data plus
the estimates computed by the command (all the variables are prefixed by my_varname).

To illustrate, we have generated two additional datasets.
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4.3 Simulation model 2

This dataset is based on the same simulation model (5), except we have increased the
number of repeated measurements by the new method y1, that is, n1i Uniform[10−20],
and widened the support xi ∼ Uniform[20−100] to allow easier reading of the plots.

The data have been saved in the file named biasplot_example_data_set2.dta.

4.4 Simulation model 3

y1i = 1 + 0.9xi + ε1i, ε1i|xi ∼ N{0, (1 + 0.04xi)
2} (6)

y2ij = xi + ε2ij , ε2ij |xi ∼ N{0, (1.75 + 0.08xi)
2}

xi ∼ Uniform[20−100]

with n2i ∼ Uniform[10−20] and n1i ∼ Uniform[10−20]. The simulated data have been
saved in the file named biasplot_example_data_set3.dta.

Notice that, in this dataset, we did not use the same values of the reference method
as in the first simulation dataset. Rather, new values were simulated using the same
model because we wanted to mimic the setting where the reference method had been
used twice in two separate experiments but on the same population, with two different
new measurement methods to be compared.

Consider, first, the comparison of the two total bias plots:

use biasplot_example_data_set2, clear
biasplot, idvar(id) ynew(y1) yref(y2) totbias results
capture erase biasplot_results1
shell mv biasplot_results.dta biasplot_results1.dta

use biasplot_example_data_set3, clear
biasplot, idvar(id) ynew(y1) yref(y2) totbias results
capture erase biasplot_results2
shell mv biasplot_results.dta biasplot_results2.dta
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Figure 5. (a) The total bias plot from simulation model (5) and (b) total bias plot from
simulation model (6)

These two total bias plots may be combined using the following code:

use biasplot_results1, clear
rename my_id my_id1
rename my_t my_t1
rename my_bias my_bias1
rename my_bias_lo my_bias_lo1
rename my_bias_up my_bias_up1
rename my_BLUP_x my_BLUP_x1

append using biasplot_results2
rename my_id my_id2
rename my_t my_t2
rename my_bias my_bias2
rename my_bias_lo my_bias_lo2
rename my_bias_up my_bias_up2
rename my_BLUP_x my_BLUP_x2

sort my_BLUP_x1 my_BLUP_x2
line my_bias1 my_bias_lo1 my_bias_up1 my_BLUP_x1, ///

lpattern(solid dash dash) lcolor(black black black) ///
|| line my_bias2 my_bias_lo2 my_bias_up2 my_BLUP_x2, ///

lpattern(solid dash dash) lcolor(gs12 gs12 gs12) ///
legend(row(2) order(1 "my_bias1" 2 "95%CB" 4 "my_bias2" 5 "95%CB") ///

size(small)) ///
xtitle(BLUP of {it:x}) ytitle("bias", size(small)) ///
yline(0, axis(1) lwidth(thin) lpattern(solid) lcolor(gs5)) ///
title(Total bias plot)
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Figure 6. Total bias plot combining bias estimates from simulation models (5) and (6)

From 70, measurement method 2 has a lower bias than method 1.

Now we will consider the comparison of the two precision plots:

use biasplot_example_data_set2, clear
biasplot, idvar(id) ynew(y1) yref(y2) precision results
capture erase biasplot_results1
shell mv biasplot_results.dta biasplot_results1.dta

use biasplot_example_data_set3, clear
biasplot, idvar(id) ynew(y1) yref(y2) precision results
capture erase biasplot_results2
shell mv biasplot_results.dta biasplot_results2.dta
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Figure 7. (a) The precision plot from simulation model (5) and (b) precision plot from
simulation model (6)

These two precision plots may be combined using the following code:

use biasplot_results1, clear
rename my_id my_id_1
rename my_t my_t_1
rename my_BLUP_x my_BLUP_x_1
rename my_sig_res_y2 my_sig_res_y2_1
rename my_sig_res_y2_up my_sig_res_y2_up_1
rename my_sig_res_y2_lo my_sig_res_y2_lo_1
rename my_sig_res_y1_corr my_sig_res_y1_corr_1
rename my_sig_res_y1_corr_up my_sig_res_y1_corr_up_1
rename my_sig_res_y1_corr_lo my_sig_res_y1_corr_lo_1

append using biasplot_results2
rename my_id my_id_2
rename my_t my_t_2
rename my_BLUP_x my_BLUP_x_2
rename my_sig_res_y2 my_sig_res_y2_2
rename my_sig_res_y2_up my_sig_res_y2_up_2
rename my_sig_res_y2_lo my_sig_res_y2_lo_2
rename my_sig_res_y1_corr my_sig_res_y1_corr_2
rename my_sig_res_y1_corr_up my_sig_res_y1_corr_up_2
rename my_sig_res_y1_corr_lo my_sig_res_y1_corr_lo_2
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sort my_BLUP_x_1 my_BLUP_x_2
line my_sig_res_y2_1 my_sig_res_y2_up_1 my_sig_res_y2_lo_1 ///

my_sig_res_y1_corr_1 my_sig_res_y1_corr_up_1 ///
my_sig_res_y1_corr_lo_1 my_BLUP_x_1, ///
lpattern(solid dash dash solid dash dash) ///
lcolor(black black black black black black) ///

|| line my_sig_res_y2_2 my_sig_res_y2_up_2 my_sig_res_y2_lo_2 ///
my_sig_res_y1_corr_2 my_sig_res_y1_corr_up_2 ///
my_sig_res_y1_corr_lo_2 my_BLUP_x_2, ///

lpattern(solid dash dash solid dash dash) ///
lcolor(gray gray gray gs12 gs12 gs12) ///
legend(row(4) order(1 "my_sig_res_y2_1" 2 "95%CB" ///

4 "my_sig_res_y1_corr_1" 5 "95%CB" 7 "my_sig_res_y2_2" ///
8 "95%CB" 10 "my_sig_res_y1_corr_2" 11 "95%CB") size(small)) ///

xtitle(BLUP of {it:x}) ///
ytitle(Standard deviation of the measurement errors, size(small)) ///
title(Precision plot) ///
subtitle("with 95% confidence bands {it:(after recalibration)}", ///

size(small)) ///
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Figure 8. Total bias plot combining bias estimates from simulation models (5) and (6)
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Clearly, after recalibration, measurement method 1 (my_sig_res_y1_corr_1) from
the simulation model (5) is less precise than reference method 2 (my_sig_res_y2_1),
and measurement method 2 (my_sig_res_y1_corr_2) from the simulation model (6) is
more precise than reference method 2 (my_sig_res_y2_2). Additionally, the user may
observe that the two reference SD lines, along with their 95% CBs, that is, reference
method 2 (my_sig_res_y2_1) from the simulation model (5) and reference method 2
(my_sig_res_y2_2) from the simulation model (6), are similar (but not exactly the
same), which was expected given that the two samples have been simulated by the
same model.

5 Discussion
Based on simulated data, we have illustrated the use of the extended biasplot com-
mand to assess bias, precision, and agreement between two measurement methods. The
current version of the command implements simultaneous CBs around each parameter
computed to allow formal inferences. This is particularly relevant from a clinical per-
spective. For example, thanks to the simultaneous CB around the total bias line, one
can assess the amount of bias of the new measurement method for any value or over any
interval of values of the predicted latent trait (that is, BLUP of x), which is not the case
with pointwise CBs. This is useful because it may turn out that the bias is statistically
significant only for large values of the latent trait, in which case without recalibration,
the instrument may be safely used for low values but not for large ones.

Also, by superimposing the bias lines and simultaneous CBs obtained from several
new measurement methods on the same plot, the user may assess which method performs
best in terms of bias according to the level of the latent trait (note that this is not
implemented in the current biasplot command, but users may generate the figure by
using the saved estimates in biasplot_results.dta). Similarly, by superimposing the
estimated SD curves and simultaneous CBs obtained from several new measurement
methods on the same plot, the user may determine which method (after recalibration)
is more precise in which range of the latent trait. If the investigator is reluctant to
recalibrate the new measurement method, he or she may use the MSE plot or, better,
the square root MSE plot instead.

The agreement plot is similar to the standard Bland and Altman LoA plot (Bland
and Altman 1986), except that its x axis is the BLUP of the true latent trait and not the
average of the two measurements (as in the Bland and Altman LoA plot). It is as simple
to read and interpret as the traditional LoA plot but has the additional advantage of
including on the right y axis a quantitative summary index of the degree of agreement.
Having a quantitative index in addition to the plot may greatly help the interpretation
of the results. As for the bias and precision plots, the user may draw on the same
plot the percentage agreement and CB computed for different measurement methods.
This provides a convenient way to compare the level of agreement between different
competitive measurement methods.
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In our experience, to get a reasonable estimate of the precision (that is, the SD of the
measurement errors), at least 8 to 10 repeated measurements by one of the two mea-
surement methods are needed. Note that the repeated measurements need not be from
the reference standard. This is a great asset of our methodology because sometimes
it may turn out to be easier to perform many measurements by the new measurement
method. Requiring repeated measurements by one of the two methods might discourage
the applied researcher to use our methodology. However, this is necessary for statistical
identification. Indeed, when the variance of the measurement errors of each measure-
ment method is not constant or their ratio is unknown, which is usually the case in the
biomedical field (the variance of measurement errors often increases as the latent trait
increases), having only one measurement by each of the two measurement methods does
not allow the user to identify the bias (Dunn 2004).

When the focus is mainly on estimation of the differential and proportional biases,
as few as three to five repeated measurements from the reference standard and only one
measurement by the new method, or vice versa, is required to get good estimates (Taffé
2020).

Note that our modeling technique rests on the assumption that the individual latent
trait is constant within individuals; that is, xij ≡ xi. This means that the repeated
measurements should ideally be taken in sequence within a time interval where this
assumption is sensible. For example, in our application to systolic blood pressure data,
the measurements were taken in sequence with 30 seconds between each measurement,
and the assumption of an average constant latent blood pressure was sensible (Taffé,
Halfon, and Halfon 2020). It is theoretically possible to extend the methodology to
other settings where the latent trait has a time trend (Taffé 2018). However, in that
case, the simple and convenient decomposition of the bias into (constant) differential
and proportional components is probably not sensible, and more sophisticated models
should be developed.

6 Conclusions
In conclusion, the extension of the biasplot command provides investigators with a
whole array of new figures to assess bias, precision, and agreement between two measure-
ment methods. Thanks to the simultaneous CBs, it allows the user to formally compare
several competing measurement methods. The methodology rests on the assumption
that the individual latent trait is constant within individuals, which is an assumption
that must be carefully considered. In particular, the repeated measurements should,
when possible, be taken at reasonably not too long time intervals for the assumption
to be sensible. To get reasonable estimates of the precision, one must use at least 8 to
10 repeated measurements by one of the two measurement methods, whereas when the
focus is mainly on the differential and proportional biases, as few as 3 to 5 repeated
measurements from the reference standard and only one by the new method, or vice
versa, will do.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1

. net install gr0068_1 (to install program files, if available)

. net get gr0068_1 (to install ancillary files, if available)
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