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Abstract. In this article, we introduce a command, xtnpsreg, that implements a
uniform nonparametric inference procedure for possibly unbalanced panel datasets
with general forms of spatiotemporal dependence. We demonstrate how to apply
this command via several examples, including 1) the nonparametric estimation of
the conditional mean function and its marginal response, 2) the construction of
uniform confidence bands for these nonparametric functional parameters, 3) speci-
fication tests for parametric model restrictions, and 4) the estimation and uniform
inference for functional coefficients in semi-nonparametric models.
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1 Introduction

Nonparametric regression methods provide a flexible way to study the relationship be-
tween variables. A popular approach is the series regression, which allows the user
to approximate the unknown function with a “large” set of basis functions such as
polynomials, splines, wavelets, etc. Conventional econometric theory (see, for example,
Andrews [1991] and Newey [1997]) allows one to conduct pointwise inference that is
specific to the function’s value at a given point. This may be unsatisfactory in practice
because applied researchers are often interested in making inferential statements on the
conditional mean function as a whole. This more demanding task requires uniform in-
ference methods such as those developed by Belloni et al. (2015) and Li and Liao (2020),
respectively, for independent and identically distributed (i.i.d.) and serially dependent
time-series data.

Meanwhile, panel datasets are widely used in various areas of empirical research. It
is clearly of applied interest to conduct the aforementioned functional inference in the
panel-data setting. An immediate benefit is that, by harnessing the richer information
from both cross-sectional and time-series dimensions, one may obtain more accurate
nonparametric estimates and draw sharper inference. This is a relevant consideration
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because the practical application of nonparametric methods is often hindered by a small
sample size.

Much care is needed for performing reliable inference for panels because these types
of data often exhibit spatiotemporal dependence; namely, the observations may be mu-
tually dependent on both cross-sectional and time-series dimensions, which has been
emphasized by Bertrand, Duflo, and Mullainathan (2004) and Petersen (2009), among
others. Not accounting for such dependence tends to result in an understatement of the
sampling variability, leading the empiricist to mistakenly interpret “noise” as “signal”.

A popular approach for dealing with spatiotemporal dependence is proposed by
Driscoll and Kraay (1998) in the context of generalized method of moments. Driscoll-
Kraay standard errors are robust to general forms of weak dependence in the time-series
dimension and arbitrarily strong spatial dependence in the cross-sectional dimension.
The underlying econometric theory requires “large T asymptotics but does not restrict
the dimensionality of the cross-section. In Stata, xtscc implements Driscoll-Kraay
standard errors for linear panel regressions (Hoechle 2007). Note that, in the degenerate
case where the “panel” contains only a single time series, the Driscoll-Kraay standard
error coincides with the classical Newey—West standard error (Newey and West 1987);
see [TS] newey.

In this article, we propose a new command, xtnpsreg, that implements a panel
(xt) nonparametric (np) series regression (sreg) and provides valid uniform functional
inference that is robust to general forms of spatiotemporal dependence as considered
in Driscoll and Kraay (1998). The theoretical validity of the implemented method can
be justified by directly invoking the general theory developed by Li and Liao (2020)
for growing-dimensional mixingale processes; see the companion article by Li, Liao, and
Zhou (2021) for further technical details. The xtnpsreg command may be regarded
as the nonparametric and functional version of xtscc. It is also related to the tssreg
command developed by Li, Liao, and Gao (2020), which performs a similar task under
the time-series setting. Roughly speaking, xtnpsreg extends tssreg in the same way
as xtscc extends newey.

As we shall demonstrate in detail below, xtnpsreg may be conveniently used to per-
form several types of nonparametric inferential tasks, including 1) the nonparametric
estimation of a conditional mean function and its marginal response (that is, the deriva-
tive function), 2) the construction of uniform confidence bands (CBs) for these functional
parameters, 3) nonparametric specification tests for parametric model restrictions, and
4) the estimation and uniform inference for functional coefficients in semi-nonparametric
models.

The remainder of this article is organized as follows. Section 2 provides some heuris-
tics on the econometric and statistical theory underlying the proposed procedure. Sec-
tion 3 documents the functionalities of the xtnpsreg command. Section 4 demonstrates
how to use xtnpsreg to accomplish various nonparametric inferential tasks in an em-
pirical example using data from the Federal Reserve Bank of Philadelphia Survey of
Professional Forecasters.
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2 Heuristics for the econometric procedure

In this section, we describe the econometric setting for the nonparametric regression
problem and provide some heuristics for the uniform functional inference procedure.
For simplicity, we focus on the case with balanced panels in this discussion while noting
that unbalanced panels are accommodated by xtnpsreg as well.

2.1 Uniform functional inference for the conditional mean function

The baseline setting for the xtnpsreg command is the nonparametric panel regression
model

Yir = g(xi) + €ir, E(eit|xi) =0 (1)

for1 <i< Nand1l <t <T,where x;; is a continuous variable. We assume that T — oo
but do not impose any restriction on IV; that is, N may be fixed or grow to infinity.
The object of interest is the conditional mean function g(-), which is implicitly defined
as g(x) = E(yi|zir = x). We focus on a single-equation setting, with the dependent
variable (depvar) y;; being scalar valued. In the current version of xtnpsreg, we also
require the conditioning variable (condvar) x;; to be univariate for two reasons. First,
although multivariate conditioning is permitted in theory, the resulting nonparametric
estimate tends to be imprecise because of the well-known “curse of dimensionality” in
nonparametric analysis. Thus, it is advisable to single out a key explanatory variable x;;
and allow it to enter the model nonparametrically. Second, the univariate conditioning
also greatly simplifies the graphical presentation of the functional estimate and its CB,
which is desirable for empirical discussions.

The main output of xtnpsreg consists of a nonparametric estimate for the condi-
tional mean function g(-) and an associated uniform CB at a user-specified confidence
level 1 — «. To be precise, the uniform CB is given by a pair of functional estimates
[L(-),U(+)] such that

P{L(z) < g(z)<U(z) forallz e X} - 1—-a, as T — o0

In other words, the uniform CB covers the true conditional mean function simultaneously
over the entire region & with approximately 1 — a probability in large samples. By
default, X is set to be the observed support of the conditioning variable. In certain
applications, the user may want to take X as a subset of the observed support (so
that the uniform nonparametric inference concentrates on a particular subregion of the
conditioning space), which is allowed as an option.

The implementation of the statistical procedure proceeds as follows:

o Step 1 (nonparametric estimation). The nonparametric estimator for g(-) is
constructed by running a series regression. Let p(xit) = (p1(wit), - -, pm (i) "
denote an m-dimensional vector of approximating functions of x;;. Regressing y;;
on p(z;;) yields the regression coefficient
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t=11 t=1 i=1

R
b= {Z > P(xit)P(xit)T} {Zzp(xit)yit}

and the resulting nonparametric estimator for g(-) is given by
~ T
g()=p()'b

The current version of xtnpsreg uses Legendre polynomials to form the approxi-
mating functions p(z;;). Recall that the kth-order Legendre polynomial is given
by
1 d*

TRk
An important property of the Legendre polynomials is that they are orthogonal
on the [—1,1] interval with respect to the uniform distribution. This orthogonal-
ity property helps mitigate the multicollinearity among series terms and hence
improves the numerical stability of the estimation procedure. Other types of or-
thogonal series basis may also be adopted to serve the same purpose, and it might
be interesting to incorporate them in a future version of xtnpsreg.

— 1)’€

To better exploit the orthogonality property of Legendre polynomials, one should
perform a preliminary transformation on the conditioning variable z;; to make it
approximately uniformly distributed on the [—1,1] interval. One way to achieve
this is to consider some cumulative distribution function (CDF), say, F(-), and
transform x;; via © — 2F(z) — 1. If F(.) is the CDF of z;;, the transformed
variable will be exactly uniformly distributed on [—1, 1]. In practice, setting F'(+)
as any reasonable approximation for the CDF of x;; can still achieve this goal to
some extent, which will generally improve the numerical stability. By default,
xtnpsreg uses the CDF of a normal distribution (calibrated to data) to carry out
the transformation, which is an adequate choice provided that the distribution
of the conditioning variable x;; roughly mimics a normal distribution. This de-
fault transformation may be disabled via the method (none) option, which allows
users to customize the transformation of the conditioning variable onto the [—1, 1]
interval on their own.

Step 2 (critical value). The second step is to compute a critical value for a
“functional ¢ statistic” that is defined as

TY2\5(2) —
7 = sup 9(x) — 9()
zeX O'(l’)

where o (z) is the estimated standard error for g(x). Note that 7 is simply the
supremum of the absolute value of the pointwise t statistics evaluated at different
points over the conditioning space X'. The (z) estimate is computed as

5(z) = \/p(x) Q1 AQ1p(x)
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where

N 1 X
Q=7 > p(@i)p(za)

i=1 t=1
and A is a “clustered” Newey—West estimator for the long-run variance—covariance
matrix for the score vector p(x;t)e; with the form [denoting € = y;r — G(zit)]

My,

~ M, +1—s|~
A= Siiz]\/[ WI‘S, where

min{7T—s,T}

1 1 1 o :
s= T Z {N ; p(mit)eit}{N Z} p(ﬂ«"it+s)€it+s}

t=max{1,1—s}

=)

The user may specify the bandwidth parameter M,, via the lag() option in
xtnpsreg as in newey (see [TS| newey). We also note that the A estimator
is constructed in the same spirit as Driscoll and Kraay (1998), and it is robust
with respect to general forms of spatiotemporal dependence.

The critical value of interest is an estimate for the 1 — o quantile of the sup-t
statistic 7. Applying the theory of Li and Liao (2020), Li, Liao, and Zhou (2021)
show that the distribution of 7 can be approximated in large samples by the
conditional (given data) distribution of

Sk

T(O-1A0-1 1/2
p@)" (Q'AQ) Ny,
T = sup

zeX 8(1’)

where N}, is a generic m-dimensional standard normal random vector [that has
the same dimensionality as p(z;+)]. To compute the critical value, we thus draw
N7, from the standard normal distribution many times, and for each draw we
compute 7* over a discretized mesh of X’; we then set the critical value cvi_, as
the 1 — a empirical quantile of the simulated 7*.

In empirical applications, researchers are often interested in testing whether the
conditioning variable may have any effect on the dependent variable, which in the
present nonparametric setting amounts to testing the null hypothesis

Hy : g(z) = E(yis|vse = ) = 0, forallz € X

We reject the null hypothesis at significance level « if the sup-t statistic 7 [evalu-
ated at g(-) = 0] exceeds the critical value cvi_,. The test statistic, critical value,
and corresponding p-value are the default output of xtnpsreg.

o Step 3 (uniform CB). Finally, the 1 — « level two-sided uniform CB for g(-) is
then given by

CB1a() = [E(-) —cor_aT™V%5(), G() + cviaTV%5()

The nonparametric functional estimate, together with this CB, can be displayed
by activating the plot option; also see the plotu option for an alternative.
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2.2 Marginal response

In linear regression models, the marginal effect of an explanatory variable on the depen-
dent variable is completely summarized by its regression coefficient. For nonparametric
regressions, the marginal response is captured by the derivative of the conditional mean
function, denoted dg(-). By calling the marginal option, xtnpsreg computes a nonpara-
metric functional estimate for dg(-) along with its 1—« uniform CB. The implementation
is carried out in the background as follows:

e Step 1. Compute B, Q, and A as in section 2.1. Set

93()=0p()b, 501 =/op()" (@ 1AQ ") p()

o Step 2. Draw N7, from the m-dimensional standard normal distribution many
times, and for each draw, compute

T(O-1A0-1 1/2
_ op(x)" (Q'AQ) TNy,
7 = sup —
reX O'(IL')

where the supremum can be computed on a discretized mesh of X'. Set the critical
value cvf_,, as the 1 — « empirical quantile of the simulated 7.

o Step 3. Report the 1 — « level two-sided uniform CB for dg(-) as [0g(:) —
i T725(:), 0g() + cvi o T/25()].

2.3 Functional coefficient model

The aforementioned nonparametric uniform inference method can also be adapted to
study linear regression models with functional coefficients. Specifically, consider the
specification

Vit = ¢+ B(xi)uir + €, Eei|ie, uie) =0 (2)

where ¢ is the intercept, u; is a scalar-valued “base” explanatory variable (basevar),
and ((-) is its functional coefficient modeled nonparametrically as a function of the
conditioning variable z;;. The inferential target is the function §(-).

Note that the baseline setting described in section 2.1 may be considered a special
case of (2) with u;; = 1 and g(z) = ¢+ f(z). The user may signify this more general
functional coefficient setting by specifying the funccoef option in xtnpsreg. In this
situation, the functional inference will concentrate on the functional coefficient §(-)
without adding the intercept term c.
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2.4 Semi-nonparametric model with linear control variables

For the settings discussed above, xtnpsreg also allows additional control variables to en-
ter the model linearly. The generalized versions of the baseline nonparametric regression
model (1) and the functional coefficient model (2) are given by, respectively,

yir = 9(Tat) + 2y + €q (3)
Yir = ¢+ B(xit)uwir + 23y + €ir (4)

where z;; is a vector of control variables (controlvar). Under these settings, the focal
point of the functional inference remains g(-) and S(-), respectively. As such, xtnpsreg
complements the existing Stata commands for semiparametric models that mainly focus
on pointwise inference; see Verardi (2013) for more details.

2.5 Semi-nonparametric model with individual fixed effects

In many empirical applications, it is often desirable to include individual fixed effects to
account for unobserved heterogeneity. A limited form of fixed effect can be implemented
by xtnpsreg, as we now explain. Consider the specifications

Vit = 9(xi) + i + €t
Yit = ¢+ B(@ir)uir +vi + €t

where ~; is the individual fixed effect. If N is “small” (for example, fixed), we may
treat these two specifications as special cases of the models (3) and (4), respectively, by
setting z;; as a vector of dummy variables for all i’s excluding a baseline group. The
inference procedure described in section 2.4 can then be used to handle fixed effects.
More generally, it is theoretically possible to allow N — oo “very slowly” as T — oc.
How to conduct uniform nonparametric inference for the current panel-data setting with
many fixed effects remains an open theoretical question. This is beyond the scope of
xtnpsreg but is an important direction for future development.

3 The xtnpsreg command

This section documents the syntax and functionalities of the xtnpsreg command. The
command requires the moremata package (Jann 2005), which may be installed in com-
mand line via ssc install moremata. The user must also declare the panel-data struc-
ture beforehand via xtset panelvar timevar.
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3.1 Syntax

The syntax of the xtnpsreg command is as follows,

xtnpsreg depvar condvar [basevar} [contmlvar] [zf] [m] [, lag(#) m(#)
method (transtype) confidencelevel(#) ngrid(#) mc(#) triml(#)
trimr(#) plot plotu scatter(#) funccoef marginal table excel]

where depvar corresponds to the dependent variable y;:, condvar denotes the nonpara-
metric conditioning variable x;;, basevar is the univariate “base” explanatory variable
u;¢ in the functional coefficient model described in section 2.3, and controlvar contains
a vector z;; of linear control variables described in section 2.4.

3.2 Options

lag(#) specifies the number of lags for computing the Newey—West estimator of the
long-run variance—covariance matrix. The default is given by the integer part of
0.75T"/3 where T is the number of time periods.

m(#) specifies the number of Legendre polynomial terms used in the nonparametric
series estimation. The default is m(6).

method (transtype) specifies the transformation implemented on the conditioning vari-
able. The main purpose of doing so is to make the regressors approximately or-
thogonal, which generally improves the numerical stability of the series regression,
especially when many series terms are included. The approximating functions are
Legendre polynomials of the transformed variable. The current version supports the
following transformation methods, with method (normal) set to be the default.

none: no transformation.

normal: normal transformation = — 2®{(x — T)/c} — 1, where T and o are the
sample mean and standard deviation of z, respectively, and ® is the CDF of the
standard normal distribution.

confidencelevel (#) specifies the confidence level (in percentage) of the uniform CB.
The default is confidencelevel (90).

ngrid(#) specifies the number of grid points used for discretizing the support of the
transformed conditioning variable. The default is ngrid (1000).

mc (#) specifies the number of Monte Carlo simulations used to compute the critical
value. The default is mc (5000).

triml (#) sets the left limit of the conditioning region X" to be the # empirical quantile
of condvar. The default is triml (0).
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trimr (#) sets the right limit of the conditioning region X to be the 1 — # empirical
quantile of condvar. The default is trimr (0).

plot produces a plot of the nonparametric functional estimate and its uniform CB, in
which the transformed conditioning variable is plotted on the horizontal axis.

plotu produces a plot of the nonparametric functional estimate and its uniform CB, in
which the original conditioning variable is plotted on the horizontal axis.

scatter (#) adds a scatterplot of the data points, where # is a number between [0, 100]
that specifies the fraction of randomly selected data points to be plotted.

funccoef signifies that the model of interest is a functional coefficient model with
basevar as the base explanatory variable.

marginal implements the estimation of the marginal response function.

table reports the estimated regression coefficients and standard errors in the series
estimation.

excel generates an Excel file that contains the requisite information for plotting the
functional estimate and the associated uniform CB.

3.3 Stored results

The xtnpsreg command stores the following results in e ():

Scalars
e(N) number of cross-sectional units
e(T) number of time periods
e(supt) sup-t statistic
e(cv) critical value for the sup-t test
e(df_r) residual degrees of freedom
Macros
e(cmd) xtnpsreg
e(depvar) name of the dependent variable
e(condvar) name of the conditioning variable
e(method) transformation method
Matrices
e(b) regression coefficients in series estimation
e (V) variance—covariance matrix of the regression coefficients
e(se) standard errors of regression coefficients in series estimation
e(ygrid) functional estimate
e(xgrid) grid points of the conditioning variable
e(sigma) estimate of standard error function

4 An empirical illustration

In this section, we demonstrate xtnpsreg’s main usage in an example built on the empir-
ical analysis of Coibion and Gorodnichenko (2015) and Li, Liao, and Zhou (2021). The
dataset and implementation code are provided in the online supplement accompanying
this article.
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4.1 Data description and empirical motivation

spf.dta is constructed from the Survey of Professional Forecasters. It contains quar-
terly time series of ex post forecast errors (fe) and ex ante forecast revisions (fr)
averaged among forecasters from 1969 to 2014 for five macroeconomic variables—gross
domestic product price deflator, real gross domestic product, industrial production,
housing starts, and unemployment rate—over four forecast horizons. We treat the data
for each variable-horizon pair as individual time series. Merging them yields a panel
dataset with N =20 and 7' = 173.

Because the time series of forecast errors and forecast revisions have quite different
scales across variables, we first normalize them separately so that each time series is av-
eraged at zero with unit standard deviation. The resulting normalized forecast error and
forecast revision are stored as fe_norm and fr_norm, respectively. The normalization
is implemented as follows:

. *xx Load data ***
. set seed 12345678

. use spf
. xtset id_N id_date

Panel variable: id_N (strongly balanced)
Time variable: id_date, 1 to 173
Delta: 1 unit

. *xx Data Normalization x***
. by id_N: egen fe_id_mean = mean(fe)

. by id_N: egen fe_id_sd = sd(fe)

. by id_N: generate fe_norm = (fe-fe_id_mean)/fe_id_sd
. by id_N: egen fr_id_mean = mean(fr)

. by id_N: egen fr_id_sd = sd(fr)

. by id_N: generate fr_norm = (fr-fr_id_mean)/fr_id_sd

The economic motivation for studying the relationship between ex post forecast er-
ror and ex ante forecast revision is to examine whether the professional forecasters are
collectively rational. Under the rational-expectation hypothesis, the forecast errors are
entirely unanticipated, so their conditional expectation given any a priori known infor-
mation (including the forecast revision) should be zero. Meanwhile, a large literature
in macroeconomics argues that the full rationality benchmark may break down because
of information stickiness, which in turn implies a positive relationship between forecast
error and forecast revision, as shown in Coibion and Gorodnichenko (2015). We may
assess the empirical plausibility of these alternative theoretical predictions by nonpara-
metrically regressing the forecast error on the forecast revision. Because macroeconomic
time series tend to comove, their associated forecast error and forecast revision series
are likely correlated on the cross-section, exhibiting spatial dependence. In addition,
because forecasts over multiple horizons are involved, one must account for serial de-
pendence as well. These considerations naturally motivate the adoption of an inference
procedure that is robust to spatiotemporal dependence. Below, we demonstrate how to
use the xtnpsreg command to implement the nonparametric estimation and the related
functional inference in this empirical setting.
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4.2 The basic function of xtnpsreg

The main and most basic use of xtnpsreg is to nonparametrically estimate the condi-
tional mean function and plot the functional estimate together with its uniform CB. As a
first illustration, we nonparametrically regress the (normalized) forecast error fe_norm
on the forecast revision fr_norm as follows:

. xtnpsreg fe_norm fr_norm, plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]|

Normal 4.2721 2.5230 0.000

Transformed fr_norm

Conditional Mean Function =~ ====-= 90% Confidence Band ‘

Figure 1. Default output of estimated conditional mean function and the 90% uniform
CB

The output table reports the sup-t statistic, critical value, and p-value for testing the
null hypothesis that the conditional mean function is identically zero uniformly. The
default significance level is & = 10%, which may be changed via the confidencelevel()
option (for example, confidencelevel(95) corresponds to a = 5%). The table above
shows that the sup-t statistic is notably greater than the critical value, indicating a
strong rejection of the null hypothesis. Indeed, the virtually zero p-value suggests that
the null hypothesis is also rejected at, say, the 1% significance level. This finding implies
that the forecasts are not fully rational.
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Figure 1 plots the estimated conditional mean function and the associated 90%
uniform CB. By default, xtnpsreg transforms the conditioning variable fr_norm onto
the [—1, 1] interval via the & — 2®(x) — 1 transformation, where ® denotes the normal
CDF calibrated using the sample mean and variance of the conditioning variable. The
fact that the CB does not always cover the zero horizontal line means that the conditional
mean function is statistically different from zero as a whole, which, needless to say,
is consistent with the aforementioned testing result. The plot also reveals that the
conditional mean of the forecast error is an increasing function in the forecast revision
and so provides support for theoretical predictions from information-rigidity models.
The requisite information for generating figure 1 may be exported to a spreadsheet by
calling the excel option.

4.3 Robustness checks with respect to tuning parameters

The proposed nonparametric econometric method mainly involves two tuning parame-
ters. Omne is the number of series terms m(). The default specification is m(6), which
corresponds to a fifth-order Legendre polynomial. The other is the bandwidth param-
eter lag() stemming from the computation of the Newey—West-type standard error,
which is set to be the integer part of 0.757"/% by default. In theory, one should use
more series terms for larger samples and use more lags if the data exhibit stronger serial
dependence on the ¢t dimension. But it is difficult in practice to pin down these choices
“optimally”. Tt is thus useful to check the robustness of empirical findings with respect
to these choices.

As a concrete demonstration, we repeat the nonparametric estimation with different
numbers of series terms (4, 6, 8, 10) by modifying the m() option as follows:

. xtnpsreg fe_norm fr_norm, m(4) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.9230 2.3686 0.000

. xtnpsreg fe_norm fr_norm, m(6) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|tl|

Normal 4.2721 2.5508 0.000

. xtnpsreg fe_norm fr_norm, m(8) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|tl|

Normal 5.2039 2.6139 0.000
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xtnpsreg fe_norm fr_norm, m(10) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 5.4878 2.6763 0.000

1 5 0 5 1 -1 -5 5 1
Transformed fr_norm Transformed fr_norm
Conditional Mean Function =~ —===- 90% Confidence Band Conditional Mean Function =~ —==—=- 90% Confidence Band
(a) m(4) (b) m(6)

o ad
T T T T T T T T T T
-1 -5 0 5 1 -1 -5 0 5 1
Transformed fr_norm Transformed fr_norm
Conditional Mean Function =~ ————- 90% Confidence Band Conditional Mean Function ~ = ===~ 90% Confidence Band
(c) m(8) (d) m(10)

Figure 2. Nonparametric estimates with different numbers of series terms
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We may also check the effect of the Newey—West lag parameter by modifying the
lag() option as follows:

. xtnpsreg fe_norm fr_norm, lag(2) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.5055 2.5081 0.000

. xtnpsreg fe_norm fr_norm, lag(4) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.2721 2.5428 0.000

. xtnpsreg fe_norm fr_norm, lag(6) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.1318 2.56351 0.001

. xtnpsreg fe_norm fr_norm, lag(8) plot
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.0872 2.5121 0.001
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fe_norm

1 S} 0 Sl 1 -1 -5 0 5 1
Transformed fr_norm Transformed fr_norm
Conditional Mean Function =~ ===== 90% Confidence Band Conditional Mean Function =~ ===="= 90% Confidence Band
(a) lag(2) (b) lag(4)

1 S} & 1 -1 -5 8 1
Transformed fr_norm Transformed fr_norm
Conditional Mean Function ~ ===="= 90% Confidence Band Conditional Mean Function =~ ===== 90% Confidence Band
(c) lag(6) (d) 1ag(8)

Figure 3. Nonparametric estimates with different numbers of Newey—West lags

From these tables and the plots in figures 2 and 3, we see that the empirical results
are fairly robust with respect to different choices of the number of series terms or the
number of Newey—West lags.

4.4 Nonparametric inference for marginal response

Besides the conditional mean function g(-) itself, applied researchers may be interested
in estimating the marginal response, defined as the derivative function 9g(-). The
nonparametric estimate and the associated uniform CB can be computed via xtnpsreg
by calling the marginal option as follows:
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. xtnpsreg fe_norm fr_norm, plot marginal
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 4.3819 2.5652 0.000

10

fe_norm

T T T T T

Transformed fr_norm

Conditional Mean Function =~ ====-= 90% Confidence Band ‘

Figure 4. Nonparametric estimate and uniform CB of the derivative function

In this table, the sup-t statistic, critical value, and p-value pertain to testing the null
hypothesis that the derivative function dg(-) is identically zero. The results suggest that
the marginal response function, as a whole, is statistically different from zero. Figure 4
plots the nonparametric estimate of the marginal response and its 90% uniform CB.
From the figure, we see that the estimated marginal response is nonnegative over the
conditioning space, which is consistent with the previous observation that the condi-
tional mean function of forecast error is increasing in the amount of forecast revision as
predicted by information-rigidity models.

4.5 Specification tests

The uniform nonparametric inference method may also be used to conduct nonparamet-
ric specification tests against parametric model restrictions. For instance, we may for-
mally test whether a linear specification is sufficient to describe the relationship between
forecast error and forecast revision. To do so, we first run an ordinary least-squares re-
gression of forecast error on forecast revision and obtain the residual as follows:
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. regress fe_norm fr_norm

Source SS df MS Number of obs = 3,460
F(1, 3458) = 207.14

Model 194.412734 1 194.412734 Prob > F = 0.0000
Residual 3245.58726 3,458 .938573529 R-squared = 0.0565
Adj R-squared = 0.0562

Total 3440 3,459 .994507082 Root MSE = .9688
fe_norm | Coefficient Std. err. t P>t [95% conf. intervall]
fr_norm .2377295 .0165179 14.39 0.000 .2053437 .2701154
_cons 4.32e-10 .0164701 0.00 1.000 -.0322921 .0322921

. predict fresidual, residuals

If the linear specification for the conditional mean function is correct, the conditional
expectation of the residual given the conditioning variable should be zero. To test this
formally, we use xtnpsreg to implement the nonparametric regression as follows:

. Xtnpsreg fresidual fr_norm
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|tl|

Normal 2.1216 2.5181 0.244

From the table, we see that the null hypothesis of correct specification cannot be re-
jected at the 10% level, which suggests that the linear specification is in fact compatible
with the observed data.

Note that the residuals obtained from the linear regression are “generated variables”
in that they are noisy approximations for the unobserved disturbance terms. That
noted, it can be shown theoretically (see Li and Liao [2020]) that this approximation
error is asymptotically negligible for the nonparametric specification test. The intuition
is that, in large samples, estimation errors in the linear regression coefficients shrink to
zero at a faster rate than the statistical error in the nonparametric test. This theoretical
intuition works better when the number of series terms is relatively large. It is thus
advisable to check the robustness of the empirical finding by increasing m() as shown
in the following implementation:

. xtnpsreg fresidual fr_norm, m(10)
Notice: fr_norm must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 2.4977 2.6846 0.165
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4.6 Semi-nonparametric setting with linear control variables

We next describe how to use xtnpsreg in the partial linear model (3) where a vector z;;
of control variables enters the specification linearly. For this illustration, we randomly
generate two control variables, Z1 and Z2, and feed them to xtnpsreg as controlvar. We
also turn on the table option to display the estimated coefficients for all series terms
and control variables.

. generate Z1 = rnormal()
. generate Z2 = rnormal()

. xtnpsreg fe_norm fr_norm Z1 Z2, table
Notice: fr_norm must be a continous variable.

Number of obs = 3460
Newey-West maximum lag = 4
Coefficient Std. err. t P>t [95% conf. intervall
p_1(fr_norm) -.0099727 .0330602 -0.30 0.763 -.0752483 .055303
p_2(fr_norm) .278855 .0642563 4.34 0.000 .1519845 .4057255
p_3(fr_norm) .0168277 .027064 0.62 0.535 -.0366086 .0702641
p_4(fr_norm) .0053773 .0354446 0.15 0.880 -.0646061 .0753606
p_5(fr_norm) .039957 .0233346 1.71 0.089 -.0061158 .0860299
p_6(fr_norm) .0159266 .0301342 0.53 0.598 -.0435717 .0754249
z1 -.0185829 .0175373 -1.06 0.291 -.0532095 .0160436
z1 -.0105368 .0157291 -0.67 0.504 -.041593 .0205195
Transformation: sup-t 10% critical value P>|t]|
Normal 4.2384 2.4951 0.000

As expected, the coefficients of Z1 and Z2 are both close to zero and statistically
insignificant because they are simply irrelevant for the data-generating process. Mean-
while, the sup-t statistic and its critical value remain very similar to those seen in
section 4.2.

4.7 Uniform inference for functional coefficients

We now demonstrate how to use xtnpsreg to conduct inference in the functional co-
efficient model (2) and its generalized version (4). In this illustration, the dependent
variable y;; remains the forecast error. But we now set the forecast revision as the base
explanatory variable w;;, and its marginal effect is given by the function 5(-) of a new
conditioning variable x;;. We take x;; as the log volatility of the U.S. stock market
portfolio computed as the logarithm of the standard deviation of daily returns (in per-
centage) over the preceding month. In this example, z;; happens to be a univariate
time series not depending on 7; this is permitted, but not required, by the estimation
procedure.
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The time series of log market volatility is stored as log_mktvol in volatility.dta,
provided in the online supplemental material. As a preliminary preparation, we need
to convert the univariate volatility series into a panel by merging the original panel
dataset, spf.dta, with the new one as follows:

. x%*k Merge data **x*
. merge m:1 id_date using volatility

Result Number of obs
Not matched 0
Matched 3,460 (_merge==3)

The functional coefficient model (2) is fit by turning on the funccoef option in
xtnpsreg as follows:

. xtnpsreg fe log_mktvol fr, plot funccoef
Notice: fr must be a continous variable.

Transformation: sup-t 10% critical value P>|t]

Normal 3.6591 2.5632 0.003

T T T T T

0
Transformed log_mktvol

Conditional Mean Function =~ ====-= 90% Confidence Band ‘

Figure 5. Nonparametric estimate and uniform CB of the functional coefficient 5(-)
plotted on the transformed scale using the plot option

It is instructive to clarify the syntax of this command. Here fe and log_mktvol
are parsed as depvar and condvar, respectively. With the funccoef option specified,
the variable that immediately follows condvar (that is, fr) is parsed as basevar, and
the remaining variables, if there are any, are parsed as controlvar. Without turning on
funccoef, xtnpsreg would instead parse all variables following condvar as controlvar,
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as described in section 4.6 above. The command above also generates a plot for the
nonparametric estimate of the functional coefficient 8(-) and its uniform CB, as shown
in figure 5 above.

As in the baseline setting, xtnpsreg transforms the conditioning variable using the
normal CDF to the [—1,1] interval because the method(normal) option is active by
default. The functional estimates in figure 5 are plotted under the transformed scale,
which explains the [—1,1] domain on the horizontal axis. The user may also obtain
plots on the original untransformed scale of condvar by replacing plot with plotu, as
shown in figure 6.

0 5
log_mktvol

Conditional Mean Function =~ ====-= 90% Confidence Band ‘

Figure 6. Nonparametric estimate and uniform CB of the functional coefficient §(-)
plotted on the original scale using the plotu option

4.8 Implementation for “large N small T” panels via index swapping

As discussed in section 2, the proposed method relies on a “large T setting but does not
restrict the cross-sectional dimension, which may be fixed or divergent. Correspondingly,
the underlying theory also requires that the dependence along the time-series dimension
be weak, whereas the cross-sectional dependence is allowed to be arbitrarily strong.

Note that whether one labels ¢ or ¢t as “individual” or “time” is completely incon-
sequential. For all econometric purposes, what matters is that ¢« indexes the dimension
with possibly strong dependence and arbitrary sample size and ¢ indexes the dimension
with weak dependence (with independence being a special case) and large sample size.

Therefore, by swapping the roles of ¢ and ¢ (so that ¢ and ¢ become the time and
cross-sectional indexes, respectively), we may also apply xtnpsreg in short panels with
many independent cross-sectional units. Because of the lack of dependence in the new
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t dimension, the Newey—West lag should be manually set to 1ag(0). Arbitrarily strong
serial dependence is accommodated because time is now indexed by <.

5 Conclusions

Nonparametric panel regression models have wide applications in empirical research.
In this article, we introduced the command xtnpsreg, which implements valid uniform
inference for semi-nonparametric panel models with general forms of spatiotemporal
dependence. We illustrated the usefulness of the command via a detailed example
concerning forecast rationality. A potential limitation is that the current version of
xtnpsreg cannot handle time-fixed effects because of the lack of supporting econometric
theory, which we leave as a promising extension for future research.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 23-1
. net install st0707 (to install program files, if available)
. net get st0707 (to install ancillary files, if available)
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