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Abstract. Researchers use finite mixture models to analyze linked survey and
administrative data on labor earnings, while also accounting for various types of
measurement error in each data source. Different combinations of error-ridden
and error-free observations characterize latent classes. Latent class probabilities
depend on the probabilities of the different types of error. We introduce a suite of
commands to fit finite mixture models to linked survey-administrative data: there
is a general model and seven simpler variants. We also provide postestimation
commands for assessment of reliability, marginal effects, data simulation, and pre-
diction of hybrid variables that combine information from both data sources about
the outcome of interest. Our commands can also be used to study measurement
errors in other variables besides labor earnings.
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1 Introduction
Linked datasets are datasets in which reports by respondents to a household survey
on a variable such as labor earnings are linked to reports on the same variable in
an administrative dataset (for example, income tax or Social Security Administration
data) for the same respondents. Researchers have long used linked datasets to examine
measurement errors in the variables of interest—to investigate whether they impart bias
in the observed measures, how much spurious variation they account for, and whether
errors are correlated with the “true” measure (a negative correlation means that low-
earners overreport and high earners underreport). In the first generation of studies,
analysts assumed that the linked administrative data provided error-free measures; all
measurement errors arose in the survey reports. A selective list of examples of first-
generation studies is Bound and Krueger (1991; about the United States), Bollinger
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(1998; United States), Kristensen and Westergaard-Nielsen (2007; Denmark), and Angel
et al. (2019; Austria). A small and more recent second generation of studies (cited later
in this section) has allowed for errors in the administrative data as well. This article
is a methodological contribution to second-generation studies: we provide commands
to fit a wide range of models. The models can also be applied to variables other than
earnings.

The statistical models underpinning virtually all second-generation studies are finite
mixture models (FMMs), also known as latent class models. The key idea is that true
earnings for an individual is unobserved but there are two observed earnings measures
available, one from the household survey data and one from the linked administrative
data. Both measures are subject to errors of various types (as explained in section 2),
though not all individuals experience all types of error. We can classify individuals into
a finite number of groups (latent classes) according to which types of error their earnings
measures contain. Observed earnings are a combination (“mixture”) of the distributions
for the latent classes. In sum, the FMMs used in second-generation studies succinctly
describe both the distribution of the “true” (error-free) substantive variable of interest
and the distributions of each of the latent classes and associated class membership
probabilities.

These FMMs cannot be fit using readily available software such as Stata’s fmm suite of
commands because of their specialist nature, and we are unaware of suitable community-
contributed programs for Stata or other software. In this article, we provide and illus-
trate commands for fitting a general class of FMMs to linked data.1 We also provide
postestimation commands for assessment of reliability, marginal effects, data simulation,
and prediction of hybrid variables that combine information from both data sources
about the outcome of interest. The outcome of interest may be a variable other than
labor earnings, as we discuss in section 5.

The FMMs we propose are generalizations of the second-generation models developed
by Kapteyn and Ypma (2007; KY hereafter). KY’s model was the first to incorporate
administrative data error in addition to survey measurement error. However, the char-
acterization of administrative data error was restricted to linkage “mismatch”; that is,
the situation in which an individual’s survey response is incorrectly linked to the re-
sponse for some other person in the administrative data. KY’s findings, based on linked
earnings data for Swedish individuals aged 50-plus, showed that even a small amount
of mismatch error was consequential (their linked administrative data were less reli-
able than their survey data), and they found no evidence that low earners overreported
and high earners underreported their earnings (a striking contrast with the findings
of first-generation studies). However, KY did not consider measurement error per se

1. More generally, FMMs can take many forms: see, for example, the semiparametric heterogeneity
model of Heckman and Singer (1984) or the latent class models as discussed by Aitkin and Rubin
(1985). For a textbook overview of conventional FMMs, see Cameron and Trivedi (2005, sec. 18.5).
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in the administrative data, that is, error arising in its compilation (typically involving
reporting by employers to tax or Social Security authorities).2

In our companion article (Jenkins and Rios-Avila Forthcoming), we extend KY’s
model to more general FMMs that include administrative measurement error in addition
to linkage mismatch and survey measurement error. This is our first innovation. Our
second is to allow the parameters describing the distributions in our FMMs to vary
with individual characteristics. This introduces greater flexibility and hence potentially
better fits to data. It also provides a succinct way to address substantive questions
such as the following: Does survey earnings measurement error differ between older
and younger workers? How does administrative data error differ between private- and
public-sector employees? Our third contribution is to extend the methods for earnings
prediction proposed by Meijer, Rohwedder, and Wansbeek (2012; MRW hereafter) to our
more general models. MRW derived formulas for a number of hybrid earnings predictors
that combined information from both survey and administrative data, and showed that
they were more reliable than either the survey or the administrative data measure.
However, MRW’s illustrations focused entirely on KY’s model and their estimates based
on Swedish data.3

By comparison with Jenkins and Rios-Avila (Forthcoming), the current article fo-
cuses on the software development side of our work. As we explain in sections 2 and 3,
our general approach encompasses eight model specifications, ranging from model 1
(basic) through the most general model 8. The empirical examples in this article re-
late to models 1–4 (model 4 is KY’s most general model). Jenkins and Rios-Avila’s
(Forthcoming) substantive application uses U.K. linked data on employment earnings
for individuals of all ages and focuses discussion on estimates from fitting models 4, 5,
7, and 8.

In section 2, we describe our FMMs and explain how to fit them using maximum like-
lihood. In section 3, we present our new commands for estimation and postestimation
analysis. In section 4, we illustrate the commands, drawing on KY’s and MRW’s em-
pirical analyses, and confirm that our commands reproduce their estimates. Section 5
contains conclusions. The appendix contains additional results that we draw on in the
main text.

2. A small number of second-generation studies allow for administrative data error in earnings: see
Abowd and Stinson (2013; using data for the United States), Bingley and Martinello (2017; Den-
mark), Hyslop and Townsend (2020; New Zealand), and Bollinger et al. (2018; United States), who
also allow for linkage mismatch. Jenkins and Rios-Avila (2020) fit KY models to linked data for
the United Kingdom. Jenkins and Rios-Avila (Forthcoming) review first- and second-generation
studies in more detail.

3. Our replication of MRW’s analysis using U.K. linked data (Jenkins and Rios-Avila 2021) was also
restricted to KY models.
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2 FMMs for linked survey and administrative data
We set out our FMMs in this section and assume that the variable of interest is the
logarithm of the labor earnings of employees (“earnings”). For each of many individuals
in a linked dataset, we have an observation pair referring to the worker’s earnings derived
from the survey data and from the administrative data.

We assume, following KY, that there is a latent variable ξi that represents the true
variable of interest (log earnings) for each individual i = 1, . . . , N . This variable is not
observed directly, but there are two measures of it, each potentially error ridden: one
from administrative data, ri, and one from survey data, si.

2.1 Administrative data: Three types of observations

We assume the administrative data are a mixture of three types of observations. First,
we distinguish between observations for whom the record linkage between administrative
and survey data is correct, which occurs with probability πr, and observations who are
mismatched, with probability 1− πr. The administrative data measure for mismatched
observations is ζi, the earnings of some other person in the administrative data. Second,
among the correctly matched observations, we assume that the administrative data
earnings measure is error free with probability πυ or contains measurement error υi
with probability 1 − πυ. (KY assumed πυ = 1.) In the case with measurement error,
errors may be correlated with true earnings with the correlation denoted by ρr. If ρr < 0,
we have mean-reverting errors: high earners underreport and low earners overreport; if
ρr > 0, the reverse occurs. The three types of observations, labeled R1, R2, and R3,
are summarized in (1).

ri =

 ξi with probability πrπυ (R1)
ξi + ρr(ξi − µξ) + υi with probability πr(1− πυ) (R2)
ζi with probability 1− πr (R3)

(1)

2.2 Survey data: Three types of observations

We assume the survey data are a mixture of three types of observations (following KY).
Type S1 respondents are those who report their true earnings: si equals true latent
earnings ξi with probability πs. The survey earnings of type S2 respondents differ from
true earnings by a measurement error component representing noise (ηi), plus a mean-
reversion component allowing for a correlation (ρs) between true earnings and error. A
third type, S3, contains observations with error-ridden survey earnings (as for type S2),
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except that there is additional “contamination” (ωi).4 The probability of contamination
is πω. Type S2 occurs with probability (1−πs)(1−πω); type S3 occurs with probability
(1− πs)πω. The three types of observation are summarized in (2).

si =

 ξi with probability πs (S1)
ξi + ρs(ξi − µξ) + ηi with probability (1− πs)(1− πω) (S2)
ξi + ρs(ξi − µξ) + ηi + ωi with probability (1− πs)πω (S3)

(2)

In sum, observations in the linked dataset are a mixture of nine types (latent classes
j = 1, . . . , 9) depending on the combination of administrative and survey observation
types. The latent class probabilities are πj , j = 1, . . . , 9. For example, group 1 contains
observations with the combination (R1, S1) with probability π1 = πrπυπs, group 2
contains observations with the combination (R1, S2) with probability π2 = πrπυ(1 −
πs)(1− πω), etc. The FMM specification is completed by assumptions about the latent
class earnings densities, fj(ri, si) for each j = 1, . . . , 9.

We assume that true earnings (ξi), mismatched earnings (ζi), and errors (υi, ηi, ωi)
are each normally distributed with the exception that true earnings and reference period
errors (ωi) are bivariate normal. We assume normality (as other researchers do) to fit
models by maximum likelihood (see below) and because it facilitates postestimation
derivations.

The distributions are identically distributed and mutually independent (assumptions
we relax shortly). Thus, the distributions of the factors may be written as(
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where µ and σ denote mean and standard deviation (SD), respectively, and ρω is the
correlation between true earnings and contamination. Jenkins and Rios-Avila (Forth-
coming) argue there are grounds for expecting ρω < 0. (KY assumed ρω = 0.) We do
not restrict error means to equal zero, because errors may introduce systematic bias.

Table 1 summarizes the nine latent classes, their probabilities, and densities.

4. Kapteyn and Ypma (2007) state that contamination error “can be the result of erroneously reporting
income as annual, whereas the amount is a monthly amount, or vice versa, omitting a second
job or working only part of the year” (2007, 528). Jenkins and Rios-Avila (Forthcoming) relabel
contamination error as reference period error because, in their U.K. application, a particularly
important reason for potential differences between survey and administrative data observations is
that the reference period for earnings used by the survey differs from the reference period in the
administrative data.
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We allow distributions to vary with observed characteristics by writing transforma-
tions of model parameters as linear indices of characteristics; that is,

G(γi) = β′
γxi (3)

For each model parameter with generic label γ, where xi is a vector of observed char-
acteristics for individual i, including a constant. Transformation function G(·) is the
identity function for means (µ), the logarithmic function for SDs (σ), the logistic func-
tion for probabilities (π), and Fisher’s z transformation for correlations (ρ).5 See the
next section for further details. Some previous research has allowed the mean of true
earnings (µξ) to vary with characteristics but not other model parameters. Allowing
measurement error distributions to differ across individuals has two advantages. The
increased flexibility can improve model fit to data, and researchers can answer substan-
tive questions by examining whether there are differences in parameters (and thence
error distributions) across different groups, as stated in the Introduction.

The discussion so far refers to our most general model, which we label model 8.
Simpler versions of our general model (models 1–7) can be fit using our estimation
commands, as we explain below, including several of KY’s models.

2.3 Estimation

We fit the FMM by maximum likelihood. The general expression for the log-likelihood
function of our finite mixture is

logL(θ,Π) =

N∑
i=1

log
9∑

j=1

πjfj(ri, si|θ)

where we now write each latent class density as conditional on the set of parameters, θ,
that describe the bivariate distributions and Π = {πr, πs, πυ, πω} are the error proba-
bilities that characterize the class probabilities πj .

The FMM is identified by the assumptions about the relationships between the two
observed measures and true earnings and the nonnormal error structure arising from
the mixture of distributions: see Kapteyn and Ypma (2007, 532). See also Yakowitz
and Spragins (1968), who prove that finite mixtures are identifiable if the mixture is of
multivariate Gaussian distributions, which is the case here. Observe too that, although
there are nine latent class probabilities, these depend on only four parameters (see
table 1).

The definition of the first latent class (group 1) also plays an important role. Iden-
tification uses the assumption that the members of class 1 are “completely labeled” (as
KY term it). These individuals correctly report their earnings in the survey data, are
correctly matched to their administrative data records, and there is no error in their
administrative earnings. Hence, both observed earnings measures equal true earnings;

5. Reversion to the mean in the models with a heterogeneous mean earnings function refers to reversion
to the mean among individuals with the same observed characteristics.
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that is, ri = si = ξi if i ∈ class 1. This assumption has two consequences for the
log-likelihood function (Redner and Walker 1984).

First, because ri = si, the class 1 distribution degenerates to a univariate normal
distribution with mean µξ and variance σ2

ξ . Second, because class membership is known
for observations in this group, the log-likelihood function becomes

logLi(θ,Π) =
∑

i∈class 1

π1log{f1(ξi|θ)}+
∑

i/∈class 1

log

 9∑
j=2

πjfj(ri, si|θ)


In principle, µξ and σ2

ξ are fully identified using the sample of class 1 observations.
In practice, the sample of completely labeled observations may be too small for reliable
identification of these moments. KY’s strategy was to broaden the definition of equality
to include observations for which survey and administrative earnings were sufficiently
“close”. This is an empirical judgment call.6

3 The ky suite of commands for estimation and postes-
timation

This section describes the commands for fitting our general FMM and special cases of
it and commands for postestimation analysis and prediction. We assume the linked
dataset is in wide format, that is, with one row per individual. There are variables
corresponding to ri and si and also (optionally) variables used to define explanatory
variables in models with covariates.

3.1 Model estimation: ky_fit

Command ky_fit fits the general FMM and special cases of it. The syntax for the
command is as follows,

ky_fit r_var s_var
[

cl_var
] [

if
] [

in
] [

weight
] [

, delta(#d) model(#)

options
]

where r_var and s_var are required variables. They correspond to the administra-
tive log earnings measure ri (r_var) and the survey log earnings measure si (s_var).
aweights, fweights, iweights, and pweights are allowed.

6. In their application, KY defined an observation as completely labeled if earnings in the two data
sources differed by less than 1,000 Swedish Kronor (14.8% of their sample). Jenkins and Rios-Avila
(2020), using U.K. data, assess the sensitivity of parameter estimates to different assumptions,
varying the fraction of completely labeled observations from 0.25% to 16.93%, finding small dif-
ferences for estimates the latent variable distributions, but some larger effects on estimates of the
probability of correctly reporting earnings in the survey (πs).
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Optionally, you can refer to a binary variable cl_var that identifies observations that
belong to the completely labeled class. If cl_var is not declared, ky_fit creates a binary
indicator variable named __ll__ equal to one for observations for which abs(r_var -
s_var) <= delta(#d). The default is delta(0), but other values can be declared
using delta(#d).

model(#) specifies which version of the FMM is fit. Table 2 lists the model vari-
ants available, showing for each model the parameter restrictions imposed relative to
the most general model and the combinations of types of observations present in the
administrative and survey data. The default is model(1), which assumes error-free
administrative data plus mean-reverting errors in the survey data (but without contam-
ination). The classical measurement error model is model 1 with µη = 0 and without
mean-reverting errors. The most general model, described in section 2, corresponds to
model 8. KY’s “full” model is model 4. Jenkins and Rios-Avila (Forthcoming) focus on
models 4, 5, 7, and 8; model 5 is the best-fitting model in their application.

Table 2. FMM variants and parameter restrictions

Model Parameter restrictions Types of observation
# Administrative data Survey data

1 µω = 0; σω = 0; πω = 0; R1 S1, S2
µυ = 0; συ = 0; πυ = 1;
µζ = 0; σζ = 0; πr = 1;

ρr = 0; ρω = 0
2 µυ = 0; συ = 0; πυ = 1; R1 S1, S2, S3

µζ = 0; σζ = 0; πr = 1;
ρr = 0; ρω = 0

3 µυ = 0;συ = 0;πυ = 1; ρr = 0; R1, R2 S1, S2
µω = 0; σω = 0; πω = 0; ρω = 0

4 µυ = 0; σv = 0; πv = 1; ρr = 0; R1, R3 S1, S2, S3
ρω = 0

5 ρω = 0 R1, R2, R3 S1, S2, S3
6 µω = 0; σω = 0; πω = 0; ρω = 0 R1, R2, R3 S1, S2
7 µυ = 0; συ = 0; πυ = 1; ρr = 0 R1, R3 S1, S2, S3
8 No restrictions R1, R2, R3 S1, S2, S3

Optionally, you can specify the parameters of any of the models listed in table 2
as functions of covariates, as described by (3). Table 3 provides a walk-through of the
estimated parameters, the parameter-specific options in ky_fit for declaring covariates,
and the internal transformation used for maximization. If a model-specific parameter is
constrained (as described by table 2), a declaration of covariates for that parameter is
ignored. Because parameters (apart from means) are fit in a transformed metric, they
need to be back-transformed to see them in their “natural” metric, and margins does
this: see section 3.3.
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Table 3. Options to allow parameters to be functions of covariates

Parameter ky_fit option Transformation

µξ mu_e(varlist) Identity
σξ ln_sig_e(varlist) σξ = exp(ln_sig_e())
µω mu_w(varlist) Identity
σω ln_sig_w(varlist) σω = exp(ln_sig_w())
µη mu_n(varlist) Identity
ση ln_sig_n(varlist) ση = exp(ln_sig_n())
µυ mu_v(varlist) Identity
συ ln_sig_v(varlist) συ = exp(ln_sig_v())
µζ mu_t(varlist) Identity
σζ ln_sig_t(varlist) σζ = exp(ln_sig_t())
ρr arho_r(varlist) ρr = tanh(arho_r())
ρs arho_s(varlist) ρs = tanh(arho_s())
ρω arho_w(varlist) ρω = tanh(arho_w())
πr lpi_r(varlist) πr = logistic(lpi_r())
πs lpi_s(varlist) πs = logistic(lpi_s())
πω lpi_w(varlist) πω = logistic(lpi_w())
πυ lpi_v(varlist) πυ = logistic(lpi_v())

Our code fits models sequentially using ml: we use the parameter estimates of sim-
pler (more restricted) models as starting values for more flexible models. Additional
restrictions on model specifications can be applied using constraint(). If you want to
use other initial values, ml options search() and repeat() are available. You can also
provide specific initial values for model parameters using option from().

We recommend that you experiment with multiple sets of initial values to check
that the more complex models converge to a global maximum rather than some local
maximum. This is a well-known issue for FMM models and occasionally arose in our
own work (Jenkins and Rios-Avila Forthcoming) when fitting models 4–8 with many
covariates. Our sequential fitting approach reduces the risk of convergence to local
maximums but cannot remove it altogether (that is impossible).

ky_fit also allows the maximization options technique(), trace, and difficult.

ky_fit reports standard errors derived from asymptotic theory by default. Option-
ally, you may use robust and cluster(cluster_var).

3.2 Postestimation tools: ky_estat

ky_estat is a postestimation command that provides summary statistics for a fitted
model. It is integrated with Stata’s built-in postestimation command estat and has
the following syntax:
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estat
[
pr_t pr_j pr_sr pr_all reliability xirel

] [
, sim reps(#)

seed(#)
]

pr_t reports error probabilities πr, πs, πυ, and πω.

pr_j reports latent class probabilities π1 through π9.

pr_sr reports the probabilities of each observation type S1–S3 and R1–R3.

pr_all reports all probabilities.

For models without covariates, estat reports error probabilities in their original
metric (rather than the metric used for estimation). If you specify error probabilities
as functions of covariates, estat reports average predicted probabilities.

If the error probabilities are modeled without covariates, reliability produces a
full report of all unconditional probabilities. It also reports two reliability summary
statistics for each of the survey and administrative data, based on the analytically
predicted variances of the observed earnings data (ri, si), and their covariances with
(model-specific) estimated true latent earnings (ξi). The two reliability statistics are

Rr
1 =

Cov(ξi, ri)
Var(ri)

; Rs
1 =

Cov(ξi, si)
Var(si)

Rr
2 =

Cov(ξi, ri)2

Var(ξi)Var(ri)
; Rs

2 =
Cov(ξi, si)2

Var(ξi)Var(si)

R1 is analogous to the reliability statistic reported for the classical measurement error
model with mean reversion and is equal to the slope coefficient from a (hypothetical)
regression of true earnings on the observed earnings measure (Bound and Krueger 1991,
9). Its values may be greater than one. R2, a more conventional psychometric measure
of reliability (and used by MRW), is the squared correlation between true earnings and
an observed earnings measure. We present analytical expressions for unconditional
variance and covariances for model 8 in the appendix. Expressions for simpler model
variants are special cases of these.

If you model error probabilities as functions of covariates, reliability produces
simulation-based reliability estimates. Use option reps(#) to specify the number of
replications (the default is reps(50)). For reproducibility, set the seed using seed(#).

You can also request simulation-based reliability statistics using option sim even if
error probabilities have not been declared as functions of covariates.

The final postestimation subcommand is xirel. This uses simulated data to estimate
the reliability statistics, mean squared error (MSE), bias, and variance of bias of the seven
latent earnings predictors proposed by MRW (see the next section). This option also
produces corresponding statistics for the observed administrative and survey measures.
Use reps(#) and seed(#) to set the number of replications and seed.
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3.3 Postestimation predictions and marginal effects: ky_p

ky_p is a postestimation program for obtaining predictions for all relevant parameters of
FMMs and is integrated with Stata’s postestimation commands predict and margins.
Table 4 lists the options available. The analytical formulas for the constructed moments
correspond to those listed in table 1.

Table 4. ky_p options compatible with predict and margins

Option Description

Structural parameters
mean_e, mean_n, mean_w, mean_t Conditional means of latent variables

ξ, η, ω, and ζ, respectively
sig_e, sig_n, sig_w, sig_t Conditional SDs of latent variables

ξ, η, ω, and ζ, respectively
pi_s, pi_r, pi_w, pi_v Error probabilities
rho_s, rho_r Mean-reversion parameters for survey data (ρs)

and administrative data (ρr)
rho_w Conditional correlation between latent

true earnings (ξ) and contamination (ω)

Constructed moments
mean_r1, mean_r2, mean_r3 Mean of administrative earnings: R1, R2, R3,

respectively
sig_r1, sig_r2, sig_r3 SD of administrative earnings: R1, R2, R3,

respectively
pi_r1, pi_r2, pi_r3 Probability of belonging to type R1, R2, R3,

respectively
mean_s1, mean_s2, mean_s3 Mean of survey earnings: S1, S2, S3,

respectively
sig_s1, sig_s2, sig_s3 SD of survey earnings: S1, S2, S3, respectively
pi_s1, pi_s2, pi_s3 Probability of belonging to type S1, S2, S3,

respectively
pj_1, . . . , pj_9 Probability of belonging to latent class

j = 1, . . . , 9

notes: When models 3, 4, and 6 are chosen, mean_r2, sig_r2, and pi_r2 produce estimates for R3
because type R2 observations are absent.
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Table 5 lists the options that are compatible with predict alone (because they are
functions of the variables ri and si), providing a description and definition. They cannot
be used with margins. The options include predictions of posterior class probabilities
and Bayesian classifications based on the posterior probabilities.

Table 5. ky_p options compatible with predict only

Option Description Definition

pip_r1, pip_r2, Posterior probability of
πRj

(ri) = πRj
× fRj

(ri|θ)∑3
k=1 fRk

(ri|θ)pip_r3 belonging to
R1, R2, or R3,
respectively

pip_s1, pip_s2, Posterior probability of
πSj (si) = πSj ×

fSj
(si|θ)∑3

k=1 fSk
(si|θ)pip_s3 belonging to

S1, S2, or S3,
respectively

pip_1, pip_2, . . . , Posterior probability of
πj(ri, si) = πj × fj(ri,si|θ)∑9

k=2 fk(ri,si|θ)pip_9 belonging to class
j = 1, . . . , 9

bclass_r, Bayesian classification bcXi = j if πXj (xi) > πXh
(xi)

bclass_s of observation i to ∀h 6= j and X ∈ {R,S}
type R1, R2, or R3 and x ∈ {r, s}
and to type S1, S2,
or S3, respectively

bclass Bayesian classification of bci = j if πj(ri, si) > πh(ri, si)
observation i to class ∀h 6= j
j = 1, . . . , 9

The posterior or conditional probability of observation i belonging to a given class,
say, class 2, is defined as the product of the unconditional probability of belonging to
class 2 and the ratio of the likelihood of observation i belonging to class 2, divided
by the sum of the likelihoods of observation i belonging to all classes (2 through 9).
Given the posterior probabilities, the Bayesian classifier assigns each observation to the
class for which the posterior probability is greatest. For all variants of our FMMs, the
conditional probability of belonging to class 1 is equal to 1 if the observation belongs to
the completely labeled group and 0 otherwise.

Finally, you can use predict to obtain seven different predictors of each individ-
ual’s latent true earnings (ξi) using option star. The methods, proposed by MRW and
extended by us to our general FMM, combine information from both administrative and
survey data. The syntax of the option is as follows:

predict prefix, star
[
replace surv_only

]
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The new variables are named using prefix and consecutive integers from 1 to 7 and are
created as data type double. To replace existing variable values, use option replace;
surv_only requests the same predictors for the situation in which you have access to
survey data only (as well as model estimates).

We describe the predictors (“hybrid” earnings variables) in table 6, with derivations
of the formulas presented in the appendix. Predictors 1 to 6 use two within-class pre-
dictions for ξ. The first set, ξ̂ji , used for predictors 1, 3, and 5, minimizes the MSE,
E{(ξi − ξ̂ji )

2|ξi, i ∈ J}. The second set of predictors, ξ̂jUi, used for cases 2, 4, and 6,
minimizes the MSE conditional on E(ξi − ξ̂jUi|i ∈ J) = 0. Predictors 1 and 2 provide
weighted predictors using the unconditional within-class probabilities πj . Predictors
3 and 4 provide weighted predictors using conditional or posterior within-class proba-
bilities πj(ri, si). Finally, predictors 5 and 6 use the two-step Bayesian classification.
The seventh predictor (ξ̂7i) is a system-wide predictor that minimizes MSE under the
assumption of linearity and imposing the condition of unbiasedness.

Table 6. Seven predictors of latent true earnings

Variable name Predictor description Definition

prefix 1 Weighted unconditional ξ̂1i =
9∑

j=1

πj ξ̂
j
i

prefix 2 Weighted unconditional ξ̂2i =
9∑

j=1

πj ξ̂
j
Ui

and unbiased

prefix 3 Weighted conditional ξ̂3i =
9∑

j=1

πj(ri, si)ξ̂
j
i

prefix 4 Weighted conditional ξ̂4i =
9∑

j=1

πj(ri, si)ξ̂
j
Ui

and unbiased

prefix 5 Two-step ξ̂5i =
9∑

j=1

(bci = j)ξ̂ji

prefix 6 Two-step unbiased ξ̂6i =
9∑

j=1

(bci = j)ξ̂jUi

prefix 7 System-wide, linear ξ̂7i = µ̂ξ +ΣξyΣ
−1
y (yi − µ̂y|x),

yi = (ri, si)

note: ξ̂ji is the within-class predictor that minimizes E{(ξi − ξ̂ji )
2|ξi, i ∈ J}. ξ̂jUi is the

within-class predictor that minimizes MSE under the condition E(ξi − ξ̂jUi|i ∈ J) = 0. Σξy

is the covariance matrix between ξi and (ri, si). Σ−1
y corresponds to the inverse of the

variance–covariance matrix of (ri, si). µ̂y|x is the system-wide expected value for (ri, si).
See MRW and the appendix for further details.
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3.4 Data simulation: ky_sim

ky_sim is a utility command for simulating data based on the data-generating process
characterized by the fitted FMM, as described in section 2 and table 2. The new dataset
contains simulated values of si and ri for each individual.

ky_sim simulates the joint distribution of administrative and survey log earnings in
two ways. The first way allows you to simulate data by selecting the FMM that charac-
terizes the data-generating function, setting the number of observations to be contained
in the simulated dataset, and providing values for each of the parameters that character-
ize the given model variant. Model parameters are constant across observations—this
corresponds to the specification of models without covariates. The syntax for this option
is as follows:

ky_sim, model(#) nobs(#)
[

options
]

model(#) specifies the model that characterizes the data-generating function, where #
identifies one of the 8 models listed in table 2. model() is required.

nobs(#) sets the number of observations in the dataset to be created. nobs() is
required.

seed(#) sets the random-number seed to be used for the simulation of the data.

If there is an unsaved dataset in memory, ky_sim will not generate the new simulated
data unless option clear is specified.

You must specify values for the following parameters, with the specification depend-
ing on model selected:

Means: mean_e(#) mean_n(#) mean_t(#) mean_w(#) mean_v(#)

SDs: sig_e(#) sig_n(#) sig_t(#) sig_w(#) sig_v(#)

Correlations: rho_r(#) rho_s(#) rho_w(#)

Error probabilities: pi_s(#) pi_w(#) pi_r(#) pi_v(#)

If you specify a parameter value that is not required for the model selected, it is
ignored. For example, a value for rho_w(#) is ignored if data are simulated using any
model other than models 7 or 8.

When the program is used in this way, it also stores information in e(), so you can
use the other postestimation commands described earlier.

The second way to use ky_sim is as a postestimation command. In this case, ky_sim
generates simulated data using parameter estimates from a previously fitted model as
well as the data currently in memory. Command syntax in this case is

ky_sim
[
, options

]
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If ky_sim is specified without any options directly after fitting a model with ky_fit,
simulated data are created using the parameters from this previously fitted model.

Alternatively, you can use parameters from a previously fitted model that have been
stored in memory using estimates store or saved to disk using estimates save, using
the option est_sto() or est_sav(). If you retrieve the stored or saved estimates to
use with ky_sim and a model with covariates had been fit, all the relevant covariates
must be available in the dataset currently in memory.

The option prefix(prefix) allows specification of the prefix for the names of the
newly created variables. By default, the program uses the variable name prefix “_”.
Option replace enables the program to overwrite variables if they already exist in the
dataset, and option seed(#) allows you to set the seed for replication purposes.

Depending on the model chosen, ky_sim creates the variables shown in table 7.

Table 7. Variables created using ky_sim

Variable name Description

prefix e_var Latent true log(earnings)
prefix n_var Factor ηi (survey data measurement error)
prefix w_var Factor ωi (survey data contamination)
prefix v_var Factor υi (administrative data measurement error)
prefix t_var Mismatched log earnings ζi
prefix pi_ri 1 if data are linked correctly
prefix pi_vi 1 if administrative data have no mean-reverting error
prefix pi_si 1 if survey data are reported correctly
prefix pi_wi 1 if survey data contain contamination
prefix r_var Administrative log(earnings)
prefix s_var Survey log(earnings)
prefix l_var 1 if ri and si are error free

notes: prefix is empty if ky_sim is used as a postestimation command. By default,
prefix = _ when using the second way to simulate data.

4 Illustrations: Estimation and postestimation
This section shows how to use the commands described in the previous section by revis-
iting the pioneering second-generation study by KY and MRW’s companion article and
showing how to reproduce their estimates. We do not have access to KY’s confidential
linked dataset, so we simulate their data using the parameter estimates they report and
then analyze the data using the commands described earlier.

We start by setting the parameter estimates for KY’s “full” (most general) model,
reported in KY’s table C2, based on a sample of size 400. We use globals; you could
also use locals or scalars.
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global mean_e 12.283
global mean_t 9.187
global mean_w (-0.304)
global mean_n (-0.048)
global sig_e 0.717
global sig_t 1.807
global sig_w 1.239
global sig_n 0.099
global pi_r 0.959
global pi_s 0.152
global pi_w 0.156
global rho_s (-0.013)

KY’s full model corresponds to model 4 of our FMM variants (see table 2). We use
option model(4) and set the sample size with nobs(400). Because ky_sim stores all
the information in e(), we can also store that information in memory with estimates
store and use it as a benchmark later.

ky_sim, seed(101) nobs(400) model(4) ///
mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) ///
mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///
sig_w($sig_w) sig_n($sig_n) ///
pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear

estimates store model0

Using the simulated dataset, we can fit all the (simpler) models that are reported
in KY’s table C2 in addition to their full model (our model 4). KY’s “basic” model
corresponds to our model 1 with the additional restriction that µη = 0. Their “no-
mismatch” and “no-contamination” models correspond to our models 2 and 3.

constraint 1 [mu_n]_cons = 0
ky_fit r_var s_var l_var, model(1) constraint(1)
estimates store model1
ky_fit r_var s_var l_var, model(2)
estimates store model2
ky_fit r_var s_var l_var, model(3)
estimates store model3
ky_fit r_var s_var l_var, model(4)
estimates store model4
estimates table model0 model4 model3 model2 model1

Table 8 shows that parameter estimates derived from the simulated data are close
to those reported by KY; so, too, are standard errors and log-likelihood values. The
transformation of the mean-reversion correlation (arho_s) is large and statistically sig-
nificant in the basic model but is much smaller for other models. The largest difference
across models is in the estimate of ln_sig_w. We attribute this to the random nature
of the simulated dataset.
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Table 8. Estimates of KY models based on simulated data

KY full Simulated data
model Full model No contamination No mismatch Basic model

mu_e 12.283 12.349 (0.034) 12.306 (0.038) 12.240 (0.048) 12.246 (0.037)
mu_n −0.048 −0.061 (0.006) −0.062 (0.006) −0.059 (0.006) 0.000 (.)
mu_w −0.304 −0.344 (0.148) 0.479 (0.284)
mu_t 9.187 8.586 (0.678) 11.622 (0.256)
ln_sig_e −0.333 −0.406 (0.036) −0.285 (0.036) −0.047 (0.035) −0.047 (0.035)
ln_sig_n −2.313 −2.295 (0.048) −2.270 (0.047) −2.268 (0.046) −0.449 (0.038)
ln_sig_w 0.592 −0.026 (0.112) 0.731 (0.100)
ln_sig_t 0.214 0.501 (0.315) 0.622 (0.098)
arho_s −0.013 −0.022 (0.010) −0.015 (0.010) −0.026 (0.010) −0.680 (0.054)
lpi_r 3.152 3.520 (0.335) 1.838 (0.159)
lpi_s −1.719 −1.844 (0.148) −1.708 (0.150) −1.879 (0.147) −1.879 (0.147)
lpi_w −1.688 −1.784 (0.189) −1.683 (0.161)
logL −543.0 −595.5 −695.5 −1041.8

notes: Standard errors in parentheses. Sample size = 400.

Table 8 reports estimated parameters (other than means) in a transformed metric.
We use margins to obtain estimates of the parameters in their natural metric. To
illustrate this, we focus on the estimates from the full model derived from simulated
data.

. margins, predict(mean_e) predict(sig_e)
> predict(mean_t) predict(sig_t)
> predict(mean_w) predict(sig_w)
> predict(mean_n) predict(sig_n)
> predict(pi_r) predict(pi_s) predict(pi_w)
> predict(rho_s)

(output omitted )

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_predict
1 12.34936 .0335341 368.26 0.000 12.28364 12.41509
2 .6659948 .023718 28.08 0.000 .6195083 .7124813
3 8.586231 .6782989 12.66 0.000 7.256789 9.915672
4 1.650615 .5192749 3.18 0.001 .6328545 2.668375
5 -.3435237 .1479331 -2.32 0.020 -.6334672 -.0535802
6 .974735 .1089581 8.95 0.000 .761181 1.188289
7 -.0608566 .0063531 -9.58 0.000 -.0733084 -.0484048
8 .1007999 .0048806 20.65 0.000 .091234 .1103657
9 .9712426 .0093542 103.83 0.000 .9529088 .9895765
10 .1365808 .0174403 7.83 0.000 .1023985 .1707632
11 .1437948 .0233102 6.17 0.000 .0981077 .1894819
12 -.0220813 .0097204 -2.27 0.023 -.041133 -.0030297

If you specify a model in which parameters depend on explanatory variables, margins
can also be used to obtain average predictive margins (APMs) of those parameters and to
test contrasts. For example, suppose your ky_fit command specifies that the log of the
survey measurement error SD depends on a binary indicator variable for the respondent’s
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sex using the option ln_sig_v(i.female) and that women are coded with female = 1
and men with female = 0. The following margins commands provide APM estimates
of σν , first for the sample as a whole and then separately by sex. The third command
provides a test of the difference between the APMs for sex.

margins, predict(sig_v)
margins female, predict(sig_v)
margins female, predict(sig_v) pwcompare(effect)

The first command derives the value of σν for every observation from the fitted
model, with values of explanatory variables (female in this case) set at their sample
values, and then reports the average over the sample of the derived σν values, as well
as the associated standard error. The second command provides separate estimates for
men and women. It calculates the APM of σν for female = 0 by first setting all sample
values of female to 0 and then averaging over the whole sample. (If other explanatory
variables had been included in the equation—not the case here—they would have been
left at their sample values.) The command calculates the APM of σν for female = 1
analogously.7 The third command provides the test of the binary contrast in APMs.
You can also use other pairwise and contrast options (help margins).

Let us now return to KY’s full-model estimates and consider the reliability of the
survey and administrative data. MRW showed how to investigate reliability by using a
simulation-based method as well as by using analytical solutions (implied by the fitted
model). MRW illustrated their methods using KY’s estimates, showing that their survey
data were more reliable than their administrative data, attributing this to the small but
consequential prevalence of linkage mismatch.

The reliability statistics reported in MRW’s table 6 can be obtained using our postes-
timation commands and the estimates reported by KY. For this illustration, we com-
pare simulation-based and analytical reliability statistics using estat reliability and
estat reliability, sim. We also use Jann’s (2007) esttab utility, part of his estout
package, for reporting results. We first show the code. Table 9 summarizes the results.

7. margins, predict(sig_v) over(female) provides an alternative calculation. This derives esti-
mates in the same way as the first command, except that the averaging is done separately for men
and for women. In our experience, the estimates derived using this approach are very similar to
those derived using the second command’s approach.
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ky_sim, seed(101) nobs(400) model(4) ///
mean_e($mean_e) mean_t($mean_t) mean_w($mean_w) ///
mean_n($mean_n) sig_e($sig_e) sig_t($sig_t) ///
sig_w($sig_w) sig_n($sig_n) ///
pi_r($pi_r) pi_s($pi_s) pi_w($pi_w) rho_s($rho_s) clear

quietly: estat reliability
matrix rel_analytical = r(rel)
quietly: estat reliability, sim reps(100) seed(10)
matrix rel_simulation = r(rel)
esttab matrix(rel_analytical, fmt(4)) using table9, ///

mtitle("Analytical statistics") rtf replace b(4)
esttab matrix(rel_simulation, fmt(4)) using table9, ///

mtitle("Simulation statistics") rtf append b(4)

Table 9. Reliability statistics: Replication of MRW’s table 6

Derivation method Var Cov Rel1 Rel2

Analytical
Administrative data 1.0038 0.4930 0.4912 0.4710
Survey data 0.7257 0.5084 0.7006 0.6929

Simulation
Administrative data 0.9947 0.4866 0.4892 0.4662
Survey data 0.7169 0.5055 0.7051 0.6981

Table 9 shows that corresponding analytical and simulation-based statistics are sim-
ilar. According to both derivation methods, we conclude that the survey data are more
reliable than the administrative data, even though the mismatch probability is only
4.1%. The “analytical” statistics are the same as those reported in MRW’s table 6.

MRW’s main contribution was derivation of expressions for multiple predictors of
latent true log earnings that combine information from survey and administrative mea-
sures with FMM estimates. To obtain observation-specific values for MRW’s seven pre-
dictors, we use the star option to predict. To evaluate the statistical performance
of the various predictors (assuming the data-generating process represented by model
estimates is correct), we use postestimation command estat xirel. Internally, this
calls on ky_sim to simulate data and predict, star to obtain the predictions.

. estat xirel, seed(10) reps(100)
Rel Statistics for 'e' predictions

Rel1 Rel2 MSE E(Bias) Var(Bias)
r_var 0.5005 0.4786 0.5480 -0.1267 0.5321
s_var 0.7097 0.7021 0.2227 -0.0783 0.2165

e_1 0.5605 0.5353 0.4344 -0.1189 0.4204
e_2 0.5600 0.5375 0.4342 -0.1178 0.4204
e_3 1.0020 0.9795 0.0105 0.0009 0.0105
e_4 0.9879 0.9738 0.0137 0.0013 0.0136
e_5 0.9892 0.9758 0.0125 -0.0002 0.0125
e_6 0.9805 0.9714 0.0150 -0.0003 0.0150
e_7 1.0068 0.7627 0.1216 0.0018 0.1217
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The outputs for e_1 to e_7 correspond closely to what is shown in MRW’s table 6.
Observe the extremely good statistical performance of these predictors, especially e_3
through e_6 (see our table 6 for details of their definitions).

5 Conclusions
This article introduced a new set of commands for estimation and postestimation anal-
ysis of measurement error models for linked survey and administrative data. Our FMM
specifications are those proposed by Jenkins and Rios-Avila (Forthcoming), which ex-
tend those proposed by KY. In particular, we allow for measurement error in the ad-
ministrative data, as well as linkage mismatch and measurement error in the survey
data. We also provide a suite of postestimation commands for simulation, assessing re-
liability, and deriving highly reliable hybrid earnings predictors of latent true earnings,
building on the work of MRW. As Abowd and Stinson have pointed out, such predictors
‘could be used by statistical agencies to produce a measure of “true earnings” [. . .], a
valuable measure for researchers that would allow agencies to release information from
administrative data while limiting confidentiality concerns’ (2013, 1467).

Although our discussion has referred to labor earnings, our programs could also be
used to examine measurement errors in other income variables. For example, Kapteyn
and Ypma (2007) fitted their models to linked data on pensions and tax payments
as well as employment earnings. Our approach could potentially be applied to other
continuous variables such as height and body weight. (For example, a researcher may
have, for each of many study participants, a self-reported measure of height or weight
and a measure taken by a specialist interviewer: compare Cawley [2004].) A researcher
has to decide before using our commands whether it is appropriate to assume that the
unobserved true distribution of the concept of interest is normally distributed.

We hope that our commands will help researchers compare measurement error pro-
cesses over time and across countries using a common approach that is based on a
relatively general model. Linked datasets are becoming more commonly available. One
limitation of our models is that they refer to cross-sectional data. We do not exploit
the additional information provided by longitudinal linked datasets, as done in different
ways by, for example, Abowd and Stinson (2013), Bollinger et al. (2018), and Hyslop
and Townsend (2020). Adding longitudinal features to our FMM models is a task for
future research.
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7 Programs and supplemental materials
Our software suite works with Stata 14 or later. To install a snapshot of the corre-
sponding software files as they existed at the time of publication of this article, type

. net sj 23-1

. net install st0701 (to install program files, if available)

. net get st0701 (to install ancillary files, if available)
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A Appendix
This appendix contains three sections. Appendix A.1 discusses the relationship between
conditional and unconditional correlations for a pair of random variables. Appendix A.2
provides expressions for expected values (means), variances, and covariances for the
components in our general FMM. Appendix A.3 provides expressions for hybrid earnings
predictors of latent true earnings for our general model, building on MRW’s work.

A.1 Unconditional and conditional covariances between variables

Consider two random variables ei and ui defined as follows

ei = µe|x + εi,e; ui = µu|x + εi,u(
εi,e
εi,u

)
∼ N

([
0
0

]
,

[
σ2
e ρσeσu

ρσeσu σ2
u

])
where µk|x = E(ki|x) for ki ∈ {ei, ui} and x is a vector of observed characteristics for
individual i = 1, . . . , N . Based on the law of total variance, and assuming (εi,e, εi,u) are
independently distributed from x, we have

Var(ki) = E{Var(ki|x)}+ Var{E(ki|x)}
Var(ki) = σ2

k + Var(µk|x) for ki ∈ {ei, ui}

Similarly, using the law of total covariance, we have

Cov(ei, ui) = E{Cov(ei, ui|x)}+ Cov{E(ei|x), E(ui|x)}
Cov(ei, ui) = ρσeσu + Cov(µe|x, µu|x)

Thus, even if ei and ui are conditionally uncorrelated, their unconditional covariance
may be nonzero.

A.2 Expected values, variances, and covariances for the general
FMM

We provide expressions for the moments of the administrative data and the survey data,
in turn.

A.2.1 Administrative data

The data structure for administrative data is

ri =

 r1,i = ξi with probability πr1 = πrπν
r2,i = ξi + ρr(ξi − µξ|x) + νi with probability πr2 = πr(1− πν)
r3,i = ζi with probability πr3 = 1− πr


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The data-generating process for the latent variables isξiνi
ζi

 = N

µξ|x
µν|x
µζ|x

 ,
σ2

ξ 0 0

0 σ2
ν 0

0 0 σ2
ζ


where µγ|x can be expressed as a linear function of x for each γ ∈ {ξ, ν, ζ}.

Unconditional moments by data type (class)

Class 1: r1,i = ξi

Expected value:
E(r1,i) = µξ

Variance:
Var(r1,i) = Var(ξi) = σ2

ξ + Var(µξ|x)
Covariance with ξi:

Cov(ξi, r1,i) = Var(ξi) = σ2
ξ + Var(µξ|x)

Class 2: r2,i = ξi + ρr(ξi − µξ|x) + νi

Expected value:

E(r2,i) = E(ξi + ρr(ξi − µξ|x) + νi)

= µξ + µν

Variance:

Var(r2,i) = Var{ξi + ρr(ξi − µξ|x) + νi}
= Var(µξ|x + (1 + ρr)(ξi − µξ|x) + νi)

= σ2
µξ|x

+ (1 + ρr)
2σ2

ξ + Var(νi) + 2Cov(µξ|x, µν|x)

Covariance with ξi:

Cov(ξi, r2,i) = Cov{ξi, ξi + ρr(ξi − µξ|x) + νi}
= Var(ξi) + ρrσ

2
ξ + Cov(µξ|x, µν|x)

= Var(µξ|x) + (1 + ρr)σ
2
ξ + Cov(µξ|x, µν|x)

Class 3: r3,i = ζi

Expected value:
E(r3,i) = E(ζi) = µζ

Variance:
Var(r3,i) = Var(ζi) = Var(µζ|x) + σ2

ζ

Covariance with ξi:

Cov(ξi, r3,i) = Cov(ξi, ζi) = Cov(µξ|x, µζ|x)
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Moments for administrative data, overall

Expected value:

E(ri) = πr1E(r1,i) + πr2E(r2,i) + πr3E(r3,i)

= πr1µξ + πr2(µξ + µν) + πr3µζ

= (πr1 + πr2)µξ + πr2µν + πr3µζ

Variance:

Var(ri) =
3∑

j=1

πrjVar(rj,i) + Var{E(rj,i)}

where

Var{E(rj,i)} =

3∑
j=1

πrj{E(rj,i)− E(ri)}2

Covariance with ξi:

Cov(ξi, ri) =
3∑
j

πrjCov(ξi, rj,i)

A.2.2 Survey data

The data structure for survey data is

si =

 s1,i = ξi with probability πs1 = πs
s2,i = ξi + ρs(ξi − µξ|x) + ηi with probability πs2 = (1− πs)(1− πω)
s3,i = ξi + ρs(ξi − µξ|x) + ηi + ωi with probability πs3 = (1− πs)πω


The data-generating process for the latent variables isξiηi

ωi

 = N

µξ|x
µη|x
µω|x

 ,
 σ2

ξ 0 ρωσξσω
0 σ2

η 0
ρωσξσω 0 σ2

ω


where µγ|x can be expressed as a linear function of x for each γ = {ξ, η, ω}.

Unconditional moments by data class

Class 1: s1,i = ξi

Expected value:
E(s1,i) = µξ

Variance:
Var(s1,i) = Var(ξi) = σ2

ξ + Var(µξ|x)

Covariance with ξi:

Cov(ξi, s1,i) = Var(ξi) = σ2
ξ + Var(µξ|x)
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Class 2: s2,i = ξi + ρs(ξi − µξ|x) + ηi

Expected value:

E(s2,i) = E{ξi + ρs(ξi − µξ|x) + ηi}
= µξ + µη

Variance:

Var(s2,i) = Var{ξi + ρs(ξi − µξ|x) + ηi}
= Var{µξ|x + (1 + ρs)(ξi − µξ|x) + ηi}
= σ2

µξ|x
+ (1 + ρs)

2σ2
ξ + Var(ηi) + 2Cov(µξ|x, µη|x)

Covariance with ξi:

Cov(ξi, s2,i) = Cov{ξi, ξi + ρs(ξi − µξ|x) + ηi}
= Var(ξi) + ρsσ

2
ξ + Cov(µξ|x, µη|x)

= Var(µξ|x) + (1 + ρs)σ
2
ξ + Cov(µξ|x, µη|x)

Class 3: s3,i = ξi + ρs(ξi − µξ|x) + ηi + ωi

Expected value:

E(s3,i) = E{ξi + ρs(ξi − µξ|x) + ηi + ωi}
= µξ + µη + µω

Variance:

Var(s3,i) = Var{ξi + ρs(ξi − µξ|x) + ηi + ωi}
= Var{µξ|x + (1 + ρs)(ξi − µξ|x) + ηi + ωi}
= σ2

µξ|x
+ (1 + ρs)

2σ2
ξ + Var(ηi) + Var(ωi) + 2Cov(µξ|x, µη|x)

+ 2Cov(µξ|x, µω|x) + 2(1 + ρs)ρωσξσω + 2Cov(µω|x, µη|x)

Covariance with ξi:

Cov(ξi, s3,i) = Cov{ξi, ξi + ρs(ξi − µξ|x) + ηi + ωi}
= Var(ξi) + ρsσ

2
ξ + Cov(µξ|x, µη|x) + Cov(µξ|x, µω|x) + ρωσξσω

= Var(µξ|x) + (1 + ρs)σ
2
ξ + Cov(µξ|x, µη|x) + Cov(µξ|x, µω|x)

+ ρωσξσω
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Moments for survey data, overall

Expected value:

E(si) = πs1E(s1,i) + πs2E(s2,i) + πs3E(s3,i)

= πs1µξ + πs2(µξ + µη) + πs3(µξ + µη + µω)

= µξ + (πs2 + πs3)µη + πs3µω

Variance:

Var(si) =
3∑

j=1

πsjVar(sj,i) + Var{E(sj,i)}

where

Var{E(sj,i)} =

3∑
j=1

πsj{E(sj,i)− E(si)}2

Covariance with ξi

Cov(ξi, si) =
3∑
j

πsjCov(ξi, sj,i)

A.2.3 Conditional moments by data class

Table A1. Mean and variance of ri and si, conditional on x, by class

Data type E(·|x) or µ·|x Var(·|x) Cov(ξi,·|x)

r1,i µξ|x σ2
ξ σ2

ξ

r2,i µξ|x + µυ|x (1 + ρr)
2σ2

ξ + σ2
υ (1 + ρr)σ

2
ξ

r3,i µξ|x σ2
ζ 0

s1,i µξ|x σ2
ξ σ2

ξ

s2,i µξ|x + µη|x (1 + ρs)
2σ2

ξ + σ2
η (1 + ρs)σ

2
ξ

s3,i µξ|x + µη|x + µω|x (1 + ρs)
2σ2

ξ + σ2
η + σ2

ω (1 + ρs)σ
2
ξ + ρωσξσω

+2(1 + ρs)ρωσξσω
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Table A2. Covariance between ri and si, conditional on x, by class

Cov(·|x) s1,i s2,i s3,i

r1,i σ2
ξ (1 + ρs)σ

2
ξ (1 + ρs)σ

2
ξ + ρωσξσω

r2,i (1 + ρr)σ
2
ξ (1 + ρr)(1 + ρs)σ

2
ξ (1 + ρr)(1 + ρs)σ

2
ε + (1 + ρr)ρωσξσω

r3,i 0 0 0

Overall covariance conditional on x

Cov(ri, si|x) =
3∑

h=1

3∑
k=1

πrhπskCov(rh,i, sk,i|x)

= πr1 [πs1σ
2
ξ + πs2(1 + ρs)σ

2
ξ + πs3{(1 + ρs)σ

2
ξ + ρωσξσω}]

+ πr2 [πs1(1 + ρr)σ
2
ξ + πs2(1 + ρr)(1 + ρs)σ

2
ξ

+ πs3{(1 + ρr)(1 + ρs)σ
2
ε + (1 + ρr)ρωσξσω}] + πr3(0)

= πr1 [{1 + (πs2 + πs3)ρs}σ2
ξ + πs3ρωσξσω]

+ πr2 [{1 + (πs2 + πs3)ρs}(1 + ρr)σ
2
ξ + πs3(1 + ρr)ρωσξσω]

Overall unconditional covariance

Cov(ri, si) = Cov(ri, si|x) + Cov(µr|x, µs|x)

where

µr|x = E(ri|x) = (πr1 + πr2)µξ|x + πr2µν|x + πr3µζ|x

µs|x = µξ|x + (πs2 + πs3)µη|x + πs3µω|x

A.3 Predictors of latent true earnings

Following MRW, we differentiate between within-class predictors and a system-wide pre-
dictor. For the second case, we consider the simplest scenario of prediction under
linearity.
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A.3.1 System-wide predictor under linearity

Consider two measures ri and si, which are manifest measures of latent true earnings,
ξi, but are measured with error. Without loss of generality, assume that µk = µk|x = 0.
A predictor for the latent variable, ξ̂i, can be derived as a linear combination as follows:

ξ̂i = θ1ri + θ2si (A1)

The system-wide predictor will be characterized given a set of weights θ1 and θ2 that
minimize the MSE between the predictor and the true latent variable ξi.

min
θ1,θ2

MSE = E

{(
ξi − ξ̂i

)2}
= E {ξi − (θ1ri + θ2si)}2) (A2)

The first-order conditions are

∂MSE
∂θ1

= E {(ξi − θ1ri − θ2si) ri}

= E
(
ξiri − θ1r

2
i − θ2risi

)
= Cov(ξi, ri)− θ1Var(ri)− θ2Cov(ri, si) = 0 (A3)

∂MSE
∂θ2

= E {(ξi − θ1ri − θ2si) si}

= E(ξisi − θ1risi − θ2s
2
i )

= Cov(ξi, si)− θ1Cov(ri, si)− θ2Var(si) = 0 (A4)

Solving the system of equations given by (A3) and (A4), we have[
Cov(ξi, ri)
Cov(ξi, si)

]
=

[
Var(ri) Cov(ri, si)

Cov(ri, si) Var(si)

] [
θ1
θ2

]
[
θ1
θ2

]
=

[
Var(ri) Cov(ri, si)

Cov(ri, si) Var(si)

]−1 [Cov(ξi, ri)
Cov(ξi, si)

]

Given solutions for θ1 and θ2, we can substitute them into (A1), which provides the
system-wide predictor for ξ̂i.

ξ̂i =
[
θ1 θ2

] [ri
si

]
ξ̂i =

[
(Cov(ξi, ri) Cov(ξi, si)

] [ Var(ri) Cov(ri, si)
Cov(ri, si) Var(si)

]−1 [
ri
si

]

This is the same predictor as given by MRW’s (11), page 96. We label this predictor 7
in the main text.
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A.3.2 Within-class predictors

For the estimates that rely on within-class predictors (predictors 1–6 in the main text),
MRW discuss two estimators: linear estimators that minimize the within-class MSE ξ̂ji
and the estimator that minimizes the MSE conditional on the estimator being unbiased
ξ̂jUi.

The general form for the within-class predictor ξ̂ji follows the same structure as (A2),
but for each subclass 2–9, and so is not discussed further here. However, the unbiased
estimator depends on the specific class.

The solutions for classes 1, 2, 3, 4, and 7 are straightforward to derive because they
assume that either ri or si is an error-free measure of ξi. Thus, we concentrate on the
predictors corresponding to classes 5, 6, 8, and 9.

Classes 8 and 9

These two classes assume that only si contains information that can be used to construct
the predictor for ξ. We refer here to the predictor for class 9 as the more general case.
Without loss of generality, we assume that the unconditional and conditional (on x)
means of all variables in the model are equal to zero.

Under these assumptions, the predictor ξ̂ for class 9 is a linear transformation of si
given by

ξ̂9Ui = θs3,i

where θ is selected so it minimizes the within-class MSE, conditional on the predictor
being unbiased estimate for ξ. We start with the second condition:

E(ξi − θs3,i|ξi) = 0

= E {ξi − θ(ξi + ρsξi + ηi + ωi)|ξi}
= E(ξi|ξi)− θ(1 + ps)E(ξi|ξi)− θE(ηi|ξi)

= ξi − θ(1 + ps)ξi − 0− θρω
σω
σξ
ξi

⇒ 1− θ(1 + ps)− θρω
σω
σξ

= 0

⇒ θ =
1

1 + ps + ρω
σω

σξ

Thus, the ξ unbiased predictor for class 9 is

ξ̂9Ui = θs3,i =
s3,i

1 + ps + ρω
σω

σξ

(A5)

and the unbiased predictor for class 8 is

ξ̂8Ui = θs2,i =
s2,i

1 + ps
(A6)
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Equations (A5) and (A6) imply that the unbiased predictors for classes 8 and 9 are
defined uniquely by imposing the unbiasedness assumption.

Classes 5 and 6

For classes 5 and 6, two measures can be used as proxies for ξ, each with its own sources
of errors. We refer here to the solution for class 6 as the more general case.

Consider first the unbiased predictors that could be derived using data from r2i or
s3i, which follow the same structure as (A3) and (A4):

ξ̂6r2Ui =
r2,i

1 + pr
= θr2r2,i

ξ̂6s3Ui =
s3,i

1 + ps + ρω
σω

σξ

= θs3s3,i (A7)

An unbiased ξ predictor for class 6 that combines the information from both sources
can be obtained using a weighted average between both predictors:

ξ̂6Ui = δξ̂6rUi + (1− δ)ξ̂6sUi

ξ̂6Ui = δθr2r2,i + (1− δ)θs3s3,i

To determine the optimal weight, we need to find the value δ that minimizes the MSE,
which is given by

min
δ
E
[
{ξi − δθr2r2,i − (1− δ)θs3s3,i}2

]
The first-order condition is

∂MSE
∂δ

= E [{ξi − δθr2r2,i − (1− δ)θs3s3,i} (θr2r2,i − θs3s3,i)] = 0

θr2Cov(ξi, r2,i)− θs3Cov(ξi, s3,i)− δθ2r2Var(r2,i)
+ δθr2θs3Cov(r2,i, s3,i)− (1− δ)θr2θs3Cov(r2,i, s3,i)
+ (1− δ)θ2s3Var(s3,i) = 0

Finally, solving for δ, we have

δ =
θr2Cov(ξi, r2,i)− θs3Cov(ξi, s3,i)− θr2θs3Cov(r2,i, s3,i) + θ2s3Var(s3,i)

θ2r2Var(r2,i)− 2θr2θs3Cov(r2,i, s3,i) + θ2s3Var(s3,i)
(A8)

Substituting (A8) into (A7) provides the unbiased predictor for class 6.



S. P. Jenkins and F. Rios-Avila 85

To summarize, table A3 presents the expressions for the within-class predictions for
all 9 classes, assuming that our general model (model 8) describes the data-generating
process. The expressions for the other models are simplified versions of the expressions
in the table.

Table A3. Expressions for the within-class predictors as functions of the parameters
(general FMM)

Class
(j) r s ξ̂j ξ̂jU

1 r1,i s1,i
1
2
(r + s) 1

2
(r + s)

2 r1,i s2,i r r

3 r1,i s3,i r r

4 r2,i s1,i s s

5 r2,i s2,i µξ|x +Σ′
ξ,5Σ

−1
5

[
ri − µr2|x
si − µs2|x

]
µξ|x +

[
δr2,s2θr2

(1− δr2,s2 )θs2)

]′ [ri − µr2|x
si − µs2|x

]
6 r2,i s3,i µξ|x +Σ′

ξ,6Σ
−1
6

[
ri − µr2|x
si − µs3|x

]
µξ|x +

[
δr2,s3θr2

(1− δr2,s3 )θs3

]′ [ri − µr2|x
si − µs3|x

]
7 r3,i s1,i s s

8 r3,i s2,i µξ|x +
Cov(ξi,s2,i|x)
Var(s2,i|x)

(si − µs2|x) µξ|x + 1
θs2

(si − µs2|x)

9 r3,i s3,i µξ|x +
Cov(ξi,s3,i|x)
Var(s3,i|x)

(si − µs3|x) µξ|x + 1
θs3

(si − µs3|x)

notes: Σξ,j represents the covariances between ξi and (ri, si), conditional on characteristics x and
class j. Σj represents the variance–covariance matrix between ri and si, conditional on character-
istics x and class j. Also, δrj ,sk = {θrjCov(ξi, rj,i) − θskCov(ξi, sk,i) − θrj θskCov(rj,i, sk,i) +

θ2skVar(sk,i)}/{θ
2
rj
Var(rj,i) − 2θrj θskCov(rj,i, sk,i) + θ2skVar(sk,i)}; θr2 = 1/(1 + ρr); θs2 =

1/(1 + ρs); and θs3 = 1/{1 + ρs + ρω(σω/σξ)}.




