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Abstract. The regression control method, also known as the panel-data approach
for program evaluation (Hsiao, Ching, and Wan, 2012, Journal of Applied Econo-
metrics 27: 705–740; Hsiao and Zhou, 2019, Journal of Applied Econometrics
34: 463–481), is a convenient method for causal inference in panel data that ex-
ploits cross-sectional correlation to construct counterfactual outcomes for a single
treated unit by linear regression. In this article, we present the rcm command,
which efficiently implements the regression control method with or without co-
variates. Available methods for model selection include best subset, lasso, and
forward stepwise and backward stepwise regression, while available selection cri-
teria include the corrected Akaike information criterion, the Akaike information
criterion, the Bayesian information criterion, the modified Bayesian information
criterion, and cross-validation. Estimation and counterfactual predictions can be
made by ordinary least squares, lasso, or postlasso ordinary least squares. For
statistical inference, both the in-space placebo test using fake treatment units and
the in-time placebo test using a fake treatment time can be implemented. The rcm
command produces a series of graphs for visualization along the way. We demon-
strate the use of the rcm command by revisiting classic examples of political and
economic integration between Hong Kong and mainland China (Hsiao, Ching, and
Wan 2012) and German reunification (Abadie, Diamond, and Hainmueller, 2015,
American Journal of Political Science 59: 495–510).
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1 Introduction
The regression control method (RCM), also known as the panel-data approach (PDA) for
program evaluation (Hsiao, Ching, and Wan 2012), is a convenient method for causal
inference that exploits cross-sectional correlation to construct counterfactual outcomes
for a single treated unit by linear regression. Essentially, the RCM uses control units
to predict the counterfactual outcomes of the treated unit via linear regression. Its
basic panel-data setting is similar to the synthetic control method (SCM) (Abadie and
Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2010), which constructs coun-
terfactual outcomes for the treated unit by a linear combination of control units with
optimal weights obtained by solving two nested optimization problems. Because Hsiao,
Ching, and Wan (2012) use regression to construct the counterfactual control unit, we
coin the term “regression control method” in the same spirit as the SCM.
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Since its introduction, the RCM has seen widespread and growing applications in
applied work (for example, Ouyang and Peng [2015], Du and Zhang [2015], Ke et al.
[2017]). An advantage of the RCM over the SCM is its ease of computation via ordinary
least squares (OLS) or lasso, whereas the SCM relies on numerical methods to solve
for optimal weights constrained to be nonnegative and summed to one. Moreover, no
covariates are necessary for the RCM, which reduces the cost of data collection and
widens its scope of potential application. On the other hand, covariates are critical for
the SCM to construct optimal weights, and applied researchers with no clear guidance
as to what covariates to include must often resort to robustness checks with different
sets of covariates. Nevertheless, Hsiao and Zhou (2019) introduce covariates to the RCM
to further improve its counterfactual prediction.

To our knowledge, while the RCM can be implemented in R by the pampe package
(Vega-Bayo 2015), there is no Stata command for the RCM yet. Therefore, in this arti-
cle, we present the command rcm, which efficiently implements the RCM with or without
covariates and offers significantly more functionalities than the R package pampe. First,
rcm deals with cases with or without covariates, whereas no covariates are allowed in
pampe. Second, while pampe relies solely on best subset regression with the Akaike
information criterion (AIC) or corrected Akaike information criterion (AICc) for model
selection, rcm offers best subset, lasso, and forward and backward stepwise regressions
with the AIC, the AICc, the Bayesian information criterion (BIC), the modified Bayesian
information criterion (MBIC) and cross-validation when appropriate. Third, while pampe
uses only OLS for estimation and prediction, rcm provides OLS, lasso, and postlasso OLS.
For statistical inference, both the in-space placebo test using fake treatment units and
the in-time placebo test using a fake treatment time can be implemented. The rcm
command produces a series of graphs for visualization along the way. We demonstrate
the use of rcm by revisiting classic examples of political and economic integration be-
tween Hong Kong and mainland China (Hsiao, Ching, and Wan 2012) and German
reunification (Abadie, Diamond, and Hainmueller 2015).

The rest of the article is organized as follows. Section 2 presents the model for
the RCM with or without covariates. Section 3 introduces methods for model selection,
estimation, and prediction. Section 4 discusses statistical inference via placebo tests.
Section 5 presents the command rcm. Section 6 illustrates rcm by revisiting classic
examples in Hsiao, Ching, and Wan (2012) and Abadie, Diamond, and Hainmueller
(2015). Section 7 concludes.

2 The model
Suppose there are N cross-sectional units for i = 1, . . . , N , observed over periods t =
1, . . . , T0, T0+1, . . . , T . Without loss of generality, assume the first unit with i = 1 is the
treated unit, whereas all other units with i = 2, . . . , N are control units that form the
so-called “donor pool”. The policy intervention occurs at time t = T0+1 and thereafter,
which partitions the time series into two sections, that is, the pretreatment periods for
t = 1, . . . , T0 and the posttreatment periods for t = T0 + 1, . . . , T .
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Following Rubin’s counterfactual framework (Rubin 1974), let y1it and y0it be the
potential outcomes of unit i in period t with and without intervention, respectively.
The fundamental problem of causal inference is that y1it and y0it cannot be observed at
the same time. Instead, the outcome variable yit is observed and takes the form

yit = dity
1
it + (1− dit) y

0
it

where the treatment variable dit = 1 if unit i is treated in period t and dit = 0 otherwise.
The treatment effect can be expressed as

∆it = y1it − y0it

The goal of the RCM is to obtain estimates of counterfactual outcomes ŷ0it during
the posttreatment periods and predict the treatment effects for the first unit by ∆̂1t =
y11t − ŷ01t.

2.1 The basic model

Suppose the cross-sectional correlation across units is driven by some unobserved com-
mon factors (that is, common shocks such as technology shocks, trade shocks, financial
shocks, pandemic shocks), while their impacts on each unit are allowed to be heteroge-
neous. Specifically, assume the potential outcome of unit i at time t without treatment
y0it is determined by a pure linear factor model of the form

y0it = αi + b′
ift + εit (1)

where αi is an individual fixed effect, ft is a (r×1) vector of unobserved common factors,
b′
i is a (1 × r) vector of unobserved factor loadings, and εit is an idiosyncratic shock.

The strategy of Hsiao, Ching, and Wan (2012) is to eliminate the common factors ft
and express y01t for the treated unit as a function of

(
y02t, . . . , y

0
Nt

)
for the control units.

To this end, for units with i = 2, . . . , N , stacking (1) into a vector yields

ỹt = α̃+ B̃ft + ε̃t (2)

Here ỹt =
(
y02t, . . . , y

0
Nt

)′, α̃ = (α2, . . . , αN )
′, ε̃t = (ε2t, . . . , εNt)

′, and B̃ = (b2, . . . , bN )
′

is an {(N − 1)× r} factor loading matrix. We can back out the information contained
in ft by multiplying (2) by B̃′ and solving for ft:

ft =
(
B̃′B̃

)−1

B̃′ (ỹt − α̃− ε̃t) (3)

Substituting (3) into (1) for i = 1, we get

y01t = γ1 + γ′ỹt + ε∗1t (4)

where γ′ = b′
1

(
B̃′B̃

)−1

B̃′, γ1 = α1 − γ′α̃, and ε∗1t = ε1t − γ′ε̃t. This solution was
first obtained by Li and Bell (2017). However, because ỹt is correlated with ε∗1t, (4)
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cannot be estimated consistently. Nevertheless, a linear projection solves the problem.
Specifically, we can decompose ε∗1t into ε∗1t = c1 + c′ỹt + v1t, where ỹt is orthogonal to
v1t by design. Plugging this decomposition into (4), we end up with

y01t = δ1 + δ′ỹt + υ1t

where δ1 = γ1 + c1 and δ = γ + c. Hsiao, Ching, and Wan (2012) advocates estimating
δ̂1 and δ̂′ by OLS for t = 1, . . . , T0 and predicting the counterfactual outcomes by
ŷ01t = δ̂1+ δ̂′ỹt for t = T0+1, . . . , T . Clearly, a reasonably large number of pretreatment
periods (for example, T0 ≥ 20 or more) are usually needed for trustworthy estimation
and subsequent counterfactual prediction. However, a complication is that when the
number of potential controls (that is, the number of regressors) is large relative to
the number of pretreatment periods (that is, the sample size), OLS estimation of the
above equation may be overfitting and thus compromise its ability for out-of-sample
prediction during the posttreatment periods. As a solution, Hsiao, Ching, and Wan
(2012) propose the best subset approach for model selection and use information criteria
for regularization, such as the AIC or the AICc. See more details in section 3.

However, when the number of control units is large, the best subset approach is
often too time consuming and may not be feasible in the high-dimensional setting,
where the number of control units is larger than the number of pretreatment periods.
To overcome this issue, Li and Bell (2017) and Carvalho, Masini, and Medeiros (2018)
suggest using lasso for model selection, while Hsiao and Zhou (2019) and Shi and Huang
(Forthcoming) propose using forward stepwise regression for model selection. All of
these approaches for model selection are implemented in the rcm command, in addition
to backward stepwise regression, which is provided as another convenient method for
model selection.

2.2 The model with covariates

Hsiao and Zhou (2019) introduce covariates into the RCM to further improve the per-
formance of counterfactual prediction. The above pure linear factor model (1) can be
augmented by including K observable variables xit = (xit,1, . . . , xit,K)

′ into the data-
generating process of y0it:

y0it = x′
itβ + b′

ift + εit

β is a (K × 1) vector of unknown parameters. Using a similar approach to eliminate
the common factors ft as above, we end up with

y01t = δ1 + δ′zt + υ1t

where zt = (y2t, . . . , yNt,x
′
1t, . . . ,x

′
Nt)

′ is a {(KN + N − 1) × 1} vector that is used
to predict y01t. The counterfactual outcomes during the posttreatment periods are pre-
dicted by ŷ01t = δ̂1 + δ̂′zt, where δ̂1 and δ̂′ are obtained by OLS or lasso. It is clear
that the RCM model without covariates is a special case of the model with covariates,
where zt = ỹt for the case without covariates. Therefore, in the following discussion,
we always use zt to denote predictors (regressors) in the RCM model.
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3 Model selection and estimation
A crucial step of the RCM is the selection of predictors (regressors) to be included in the
model. Suppose there are a total of P predictors available (not including the constant
term). For the case without covariates, P = N − 1 (the number of control units in the
donor pool). On the other hand, for the case with covariates, P = KN +N − 1, where
K is the number of covariates.

Model selection is a process to choose the optimal number of predictors p∗, where
0 ≤ p∗ ≤ P . Conceptually, this proceeds in two stages. In the first stage, given a
specific p with 0 ≤ p ≤ P , a best model is chosen by maximizing the R2 or minimizing
the sum of squared residuals among all models with p predictors. The resulting best
model conditioning on having p predictors is called the “suboptimal model”. In the
second stage, the optimal model with p∗ predictors is chosen among all suboptimal
models using an information criterion. However, if lasso is used for model selection, the
role of p is replaced by the tuning parameter λ, also known as the penalty parameter,
while the general process of model selection is still similar. See details below.

3.1 Select the suboptimal models

3.1.1 The best subset regression

Given a specific p with 0 ≤ p ≤ P , the best subset regression fits OLS regressions for all
possible models containing p predictors and finds the suboptimal model with the largest
R2 or the smallest sum of squared residuals. Because there are 2P possible combinations
of predictors to be considered, it is often very time consuming when P is large. A
better approach is the leaps and bounds algorithm by Furnival and Wilson (1974) and
later improved by Narendra and Fukunaga (1977) and Ni and Huo (2006), which is
implemented in the rcm command. The leaps and bounds algorithm not only reduces
the amount of computation in examining a subset but also finds the best subset without
examining all possible subsets, which greatly speeds up the best subset approach.

However, if the number of available predictors P is large, the best subset approach
with the leaps and bounds algorithm may still be slow. In that case, one may try
forward stepwise regression, backward stepwise regression, or lasso for model selection.

3.1.2 Forward stepwise regression

Forward stepwise regression, advocated by Hsiao and Zhou (2019) and Shi and Huang
(Forthcoming), is a computationally efficient alternative to best subset regression. It
starts with the smallest model containing no predictors and includes an additional pre-
dictor at a time, where the additional predictor to be included is chosen such that it
yields the highest R2 or the smallest sum of squared residuals. In this way, a series of
suboptimal models is obtained after P iterations.
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Forward stepwise regression computes a total of 1+
∑P−1

p=0 (P −p) = 1+
(
P 2 + P

)
/2

models, which is much smaller than the total of 2P models for the best subset regression.
Moreover, in the high-dimensional setting, where the number of predictors exceeds the
number of pretreatment periods, forward stepwise regression has a clear advantage over
the best subset regression because the latter does not have a unique solution for the
suboptimal model when p > T0 − 1, where T0 is the number of pretreatment periods.

3.1.3 Backward stepwise regression

Backward stepwise regression provides another efficient alternative to the best subset
regression but applies only in the case of P ≤ T0 − 1. It starts with the largest possible
model containing all P predictors and considers dropping one predictor at a time, where
the predictor to be dropped is chosen such that it yields the highest R2 or the smallest
sum of squared residuals. In this way, a series of suboptimal models is obtained after P
iterations.

Backward stepwise regression computes a total of 1 +
(
P 2 + P

)
/2 models, which

is the same as forward stepwise regression. However, backward stepwise regression is
only applicable in the case of P ≤ T0 − 1 so that the full model can be fit. In contrast,
forward stepwise regression may still be used even in the high-dimensional case with
P > T0 − 1.

3.1.4 Lasso regression

In the high-dimensional case with P > T0 − 1, one could use lasso (Tibshirani 1996)
for model selection, which is a popular method of high-dimensional regression. Lasso
includes all P predictors in a single regression while imposing an L1 penalty on the
absolute values of regression coefficients, which shrinks these coefficients toward zero,
resulting in a sparse model. Specifically, lasso regression minimizes the mean squared
error with penalty as follows:

min
δ1,δ

{
T0∑
t=1

(y1t − δ1 − δ′zt)
2
+ λ‖δ‖1

}

λ ≥ 0 is a tuning (penalty) parameter in the scope of [λgmin, λgmax] (the subscripts
“gmin” and “gmax” stand for “grid min” and “grid max”, respectively), and ‖δ‖1 is
the L1 norm of the coefficient vector δ (that is, the sum of the absolute values of all
its components). There are two extreme cases where λ = 0 yields the OLS regression
and λ → ∞ yields a null model with δ = 0. Moreover, a coefficient path can be com-
puted as λ changes. Specifically, suppose the scope [λgmin, λgmax] is divided into a grid
{λgmax, λgmax−1, . . . , λgmin}. For each λl in the grid, we compute the lasso coefficients
and consider it as the suboptimal model given λ = λl. In this way, a series of suboptimal
models is obtained for each λl in the grid.
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3.2 Select the optimal model

In the second stage of model selection, we choose an optimal model from all suboptimal
models by an information criterion or cross-validation, the latter of which is available
only for lasso.

3.2.1 Information criterion

The rcm command provides four information criteria for model selection, that is, AIC,
AICc, BIC, and MBIC (Wang, Li, and Leng 2009; Shi and Huang Forthcoming), that are
computed as follows:

AIC(p) = T0 ln

(
e′0e0
T0

)
+ 2(p+ 2)

AICc(p) = AIC(p) +
2(p+ 2)(p+ 3)

T0 − (p+ 1)− 2

BIC(p) = T0 ln

(
e′0e0
T0

)
+ (p+ 2) ln (T0)

MBIC(p) = T0 ln

(
e′0e0
T0

)
+ (p+ 2) ln (T0) [ln{ln(p+ 1)}]

p is the number of predictors in the suboptimal model, T0 is the number of pretreatment
periods, and e0 is the OLS or lasso residuals in pretreatment periods (hence, e′0e0 is the
sum of squared residuals). Basically, the model with the minimized AIC, AICc, BIC,
or MBIC is chosen as the optimal model among all suboptimal models. Hsiao, Ching,
and Wan (2012) recommend AICc, which performs better in small samples and is set
as the default in the rcm command. Also, note that in the high-dimensional case with
P > T0 − 1, these information criteria may run into difficulty without a lasso-type
penalty. In particular, the sum of squared residuals may be reduced to zero in the
high-dimensional case, which makes the above information criteria undefined.

3.2.2 Cross-validation

For lasso regression, it is customary to choose the optimal penalty parameter λ by
cross-validation, although information criteria are also available in the rcm command.
For K-fold cross-validation (for example, K = 5 or 10),1 the data in the pretreatment
periods are randomly split into K folds (parts) of approximately equal sizes. The basic
idea is to leave out data in fold k, use the rest of the data to predict the outcomes in fold
k, and repeat this for all folds k = 1, . . . ,K. Specifically, for a given penalty parameter
λ, the cross-validation coefficients δ1,k and δk for fold k = 1, . . . ,K are estimated using
all pretreatment data except those data in fold k:

1. Here K is a positive integer such as 5 or 10 chosen by the researcher, not to be confused with the
number of covariates K above.
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min
δ1,k,δk


T0∑

t=1,t/∈Fk

(y1t − δ1,k − δ′kzt)
2
+ λ ‖δk‖1


Fk denotes the time periods in fold k. After obtaining δ̂1,k and δ̂k for all k = 1, . . . ,K,
we choose the optimal penalty parameter λ by minimizing the cross-validation mean
squared error (CVMSE) (λ), defined as

min
λ

CVMSE(λ) =
1

K

K∑
k=1

{
1

nk

∑
t∈Fk

(
y1t − δ̂1,k − δ̂′kzt

)2}

where nk is the number of time periods in fold k. Essentially, the model with minimized
CVMSE(λ) is selected as the optimal model among all suboptimal models with λ in the
grid {λgmax, λgmax−1, . . . , λgmin}. Because the RCM is typically applied to small samples
in practice, the default value of K in the rcm command is set to be the number of the
pretreatment period T0, which is also known as leave-one-out cross-validation (LOOCV).

3.3 Estimation and prediction

After the step of model selection described above, there are two options for the steps of
estimation and prediction. The first option is OLS, which is available after all methods
of model selection, including best subset, forward stepwise, backward stepwise, and
lasso regression. In particular, if OLS is used for estimation following lasso for model
selection, this is known as “postlasso OLS”. The second option for estimation is lasso,
which is available only after using lasso for model selection.

After one fits the model using the pretreatment data with OLS or lasso, the fitted
model is then used to predict the counterfactual outcomes for the posttreatment periods.
The treatment effects are simply the differences between the observed outcomes and
counterfactual outcomes for the treated unit during the posttreatment periods.

4 Statistical inference via placebo tests
4.1 In-space placebo test

Statistical inference for the RCM is still an unsettled business. Li and Bell (2017) and
Shi and Huang (Forthcoming) consider statistical inference for the average treatment
effect over the entire posttreatment period, which requires many posttreatment periods.
For pointwise inference, Chen, Xiao, and Yao (2022) propose using the quantile random
forest (that is, quantile regression via random forest) to construct robust nonparametric
confidence intervals for treatment effects and demonstrate their excellent properties even
in small samples. In the rcm command, we focus on the popular method of inference via
placebo tests, which have been proposed by Abadie, Diamond, and Hainmueller (2010,
2015) for the SCM but are equally applicable to the RCM.
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The placebo tests for the RCM come in two forms: in-space and in-time placebo tests.
The in-space placebo test uses “fake treatment units”, while the in-time placebo test
uses a “fake treatment time” (see details below for the latter). Specifically, the in-space
placebo test compares the estimated treatment effects with a distribution of placebo
effects obtained by iteratively assigning the treatment to control units in the donor
pool (that is, fake treatment units) and estimating placebo effects in each iteration.
As a technical detail, we may require the fake treatment units to have a pretreatment
mean squared prediction error (MSPE, which is the same as mean squared error) not
too much larger (say, 5 or 20 times more) than that of the treated unit because there
is not much information contained in fake treatment units with poor pretreatment fits
(Abadie, Diamond, and Hainmueller 2010).

If the treatment effects are “unusually extreme” (unusually large, small, or large
in absolute value) relative to the distribution of placebo effects, then the treatment
effects are considered significant. Otherwise, if the treatment effects are not extreme
relative to the distribution of placebo effects, then we accept the null hypothesis of
no treatment effects. Depending on how one measures unusual extremeness, the rcm
command computes right-sided p-values (for “unusually large”), left-sided p-values (for
“unusually small”, for example, negative numbers with large absolute values), and two-
sided p-values (for “unusually large in absolute values”) for each posttreatment period.
Conducting hypothesis tests using one-sided p-values (including right-sided and left-
sided p-values) generally has more power than using two-sided p-values. If the treatment
effects are mostly positive, then one should use right-sided p-values, whereas left-sided
p-values are recommended for mostly negative treatment effects.

Specifically, the two-sided p-value for a particular posttreatment period t is defined
as the frequency that the absolute values of the placebo effects are greater than or equal
to the absolute value of the estimated treatment effect:

two-sided p-value(t) = 1

N

N∑
i=1

1
(∣∣∣∆̂it

∣∣∣ ≥ ∣∣∣∆̂1t

∣∣∣) , t = T0 + 1, . . . , T

∆̂it is the estimated treatment (placebo) effect for unit i in period t (that is, ∆̂1t

is the treatment effect, whereas ∆̂it is the placebo effect for unit i 6= 1); and 1(·) is
the indicator function, which equals 1 if the expression inside is true and 0 otherwise.
Similarly, the right-sided and left-sided p-values are defined as follows:

right-sided p-value(t) = 1

N

N∑
i=1

1
(
∆̂it ≥ ∆̂1t

)
t = T0 + 1, . . . , T

left-sided p-value(t) = 1

N

N∑
i=1

1
(
∆̂it ≤ ∆̂1t

)
t = T0 + 1, . . . , T

The above p-values measure pointwise significance of the treatment effects. As an
overall measure of the significance of treatment effects over the entire posttreatment
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periods, we can compare the ratio of posttreatment MSPEs to pretreatment MSPEs (de-
noted as “post/pre MSPE ratio” for short) for the treated unit with a placebo distribution
of this ratio obtained by the above in-space placebo test. Intuitively, if the post/pre
MSPE ratio for the treated unit is unusually large relative to the placebo distribution of
this ratio, then we are more confident that the overall treatment effects are significant.
Specifically, the rcm command computes the probability (that is, p-value) of obtaining
a post/pre MSPE ratio as large as that of the treated unit as follows:

1

N

N∑
i=1

1

(
MSPEi,post

MSPEi,pre
≥ MSPE1,post

MSPE1,pre

)
MSPEi,post and MSPEi,pre are the posttreatment MSPE and the pretreatment MSPE for
unit i, respectively. For example, if the post/pre MSPE ratio for the treated unit is
larger than all other units, then the corresponding p-value is 1/N .

4.2 In-time placebo test

In contrast to the in-space placebo test using fake treatment units, the in-time placebo
test uses a fake treatment time before the treatment actually starts. Specifically, a fake
treatment time in the pretreatment periods is chosen, say, T̃0 < T0 + 1 (the actual
treatment starts in T0 + 1). We then assign the treatment to periods from T̃0 on, where
no treatment actually occurred during the periods

[
T̃0, T0

]
.

The intuition is that, if the estimated placebo effects during the periods
[
T̃0, T0

]
turn

out to be “significant” or “large” in some sense, then our confidence in the significance
of the actual treatment effects, if any, will be eroded. Note that no p-value is computed
for the in-time placebo test and one typically uses a graph to present the results from
an in-time placebo test. In addition, a researcher can choose multiple fake treatment
times and conduct in-time placebo tests for each fake treatment time separately.

5 The rcm command
5.1 Syntax

The syntax for rcm is

rcm depvar
[

indepvars
]
, trunit(#) trperiod(#)

[
ctrlunit(numlist)

preperiod(numlist) postperiod(numlist) scope(p_min p_max)
method(sel_method) criterion(sel_criterion) estimate(est_method)
grid(#g

[
, ratio(#) min(#)

]
) fold(#k) seed(int) fill(fill_method)

placebo(
[ [

unit | unit(numlist)
]
period(numlist) cutoff(#c)

]
)

frame(framename) nofigure
]
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xtset panelvar timevar must be used to declare a panel dataset in the usual long
form; see [XT] xtset. rcm automatically reshapes the panel dataset from long to wide
form, suitable for implementing RCM.

depvar and indepvars must be numeric variables, and abbreviations are not allowed.

5.2 Options

rcm automatically reshapes the panel dataset from long to wide form before implemen-
tation, where the depvar of the treated unit is transformed to be the response and the
depvar of the control units are transformed to be predictors. If indepvars are specified,
the indepvars of all units are transformed to be predictors during this process.

trunit(#) specifies the unit number of the treated unit (that is, the unit affected by
the intervention) as given in the panel variable specified in xtset panelvar. Note
that only a single unit number can be specified. trunit() is required.

trperiod(#) specifies the time period when the intervention occurred. The time period
refers to the time variable specified in xtset timevar and must be an integer (see
examples below). Note that only a single time period can be specified. trperiod()
is required.

The model selection consists of two steps that rcm performs automatically. Understand-
ing the steps is helpful for specifying options.

• Step 1: Select the suboptimal models
rcm selects a series of suboptimal models; each contains a unique subset of pre-
dictors. The exact procedure for selecting the suboptimal model depends on the
selection method specified by method(). Available selection methods include best
subset, lasso, and forward stepwise and backward stepwise regression; see below
for details.

• Step 2: Select the optimal model from all suboptimal models
rcm selects the optimal model from all suboptimal models by an information cri-
terion or cross-validation as specified by criterion(). The allowable criteria
include aicc, aic, bic, mbic, and cv (only available for method(lasso)). By
default, there is no restriction on the number of predictors in selecting the opti-
mal model, but the allowable number of predictors can be specified by scope()
to limit its range.
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After model selection, rcm uses the optimal model for counterfactual prediction and
estimation of treatment effects. estimate() specifies the method used to fit the optimal
model, and the allowable criteria include ols (such as OLS or postlasso OLS) and lasso
(directly uses lasso for prediction); see details below.

ctrlunit(numlist) specifies a list of unit numbers for the control units as numlist
given in the panel variable specified in xtset panelvar . The list of specified control
units constitutes what is known as the “donor pool”. The donor pool defaults to all
available units other than the treated unit.

preperiod(numlist) specifies a list of pretreatment periods as numlist given in the time
variable specified in xtset timevar. preperiod() defaults to the entire preinterven-
tion period, which ranges from the earliest time period available in the time variable
to the period immediately prior to the intervention.

postperiod(numlist) specifies a list of posttreatment periods (when and after the in-
tervention occurred) as numlist given in the time variable specified in xtset timevar.
postperiod() defaults to the entire postintervention period, which ranges from the
time period when the intervention occurred to the last time period available in the
time variable.

scope(p_min p_max) specifies the allowable range for the number of predictors in
the optimal model. rcm selects the optimal model from the suboptimal models
containing p_min to p_max predictors. p_min and p_max are two numbers that
specify the lower and upper bounds of the number of predictors, and the defaults
are 1 and the number of all predictors, respectively. If there is no model with the
number of predictors in the specified range, p_min and p_max are automatically
changed to the default to expand the selection.

method(sel_method) specifies the method used for selecting the suboptimal model.
sel_method may be best (the default), lasso, forward, or backward.

best (best subset regression) is the default, which considers different numbers of
predictors in each iteration of OLS estimation, and selects the suboptimal model
with the highest R2 for each specified number of predictors. We use the “leaps
and bounds” algorithm (Furnival and Wilson 1974) to speed up the process of
best subset regression. Nevertheless, it may still be too time consuming when
there are many predictors or more predictors than the number of pretreatment
periods. In that case, you may wish to try method(lasso) (recommended),
method(forward), or method(backward). Alternatively, you may restrict inde-
pvars or the donor pool by the option ctrlunit().

lasso (lasso regression) sets a grid for λ (known as the tuning or penalty parameter)
and fits the corresponding lasso regressions on that grid as the suboptimal models.
Specifically, λ iterates from λgmax to λgmin; see [LASSO] lasso.
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forward (forward stepwise regression) starts with the smallest model, adds a pre-
dictor in each iteration of OLS estimation, and selects the model with the highest
R2 as the suboptimal model for each iteration. If method(best) is feasible, then
method(forward) is not recommended.

backward (backward stepwise regression) starts with the largest possible model,
drops a predictor in each iteration of OLS estimation, and selects the model with
the highest R2 as the suboptimal model for each iteration. If method(best) is
feasible, method(backward) is not recommended. Note that method(backward)
is not applicable in the high-dimensional case where the number of predictors
exceeds the number of pretreatment periods.

criterion(sel_criterion) specifies the criterion for selecting the optimal model from
all suboptimal models, which may be aicc (the default), aic, bic, mbic, or cv.

aicc, the default, specifies the AICc as the criterion for selecting the optimal model;
see Hsiao, Ching, and Wan (2012) for details.

aic specifies AIC as the selection criterion.

bic specifies BIC as the selection criterion.

mbic specifies MBIC as the selection criterion; see Wang, Li, and Leng (2009) and
Shi and Huang (Forthcoming) for details.

cv specifies CVMSE as the selection criterion. Note that criterion(cv) applies only
to method(lasso), and the option fold() determines the number of folds for
cross-validation (see details below).

estimate(est_method) specifies the method used to fit the optimal model for counter-
factual prediction, which may be ols (the default) or lasso.

ols, the default, fits the optimal model by either OLS or postlasso OLS, whichever
is applicable. The latter corresponds to the combination of method(lasso) and
estimate(ols).

lasso directly uses lasso to fit the optimal model for counterfactual prediction. Note
that estimate(lasso) applies only to method(lasso).

grid(#g

[
, ratio(#) min(#)

]
) is a rarely used option specifying the set of possi-

ble lambdas with #g grid points, where ratio() specifies λgmin/λgmax and min()
specifies λgmin. These parameters are transmitted to the Stata command lasso; see
[LASSO] lasso for details. Note that this option applies only to method(lasso).

fold(#k) specifies cross-validation with #k folds, where #k must be an integer ≥
3 and ≤ T0 (the number of pretreatment periods). This option applies only to
the combination of method(lasso) and criterion(cv). The default is fold(T0),
which corresponds to LOOCV.

seed(int) specifies the seed used by the random-number generator for reproducible
results. The default is seed(1). This option is useful only for criterion(cv).



G. Yan and Q. Chen 855

fill(fill_method) is a rarely used option that specifies the method to fill in missing
values. If fill(mean) is specified, missing values are replaced by sample means for
each unit. If fill(linear) is specified, then missing values are replaced by linear
interpolation for each unit. Beware that these two methods for filling in missing
values are rough and provided only for convenience. By default, missing values are
left unchanged.

Note that rcm generally allows for missing values in the pretreatment periods, al-
though it may be difficult to perform cross-validation for lasso. However, if the
selected predictors include missing values in the posttreatment periods, then there
will be missing values in the counterfactual predictions and treatment effects as well.

placebo(
[ [

unit | unit(numlist)
]
period(numlist) cutoff(#c)

]
) specifies the pla-

cebo tests to be performed; otherwise, no placebo test will be implemented.

unit and unit(numlist) specify placebo tests using fake treatment units in the
donor pool, where unit uses all fake treatment units and unit(numlist) uses a
list of fake treatment units specified by numlist. These two options iteratively
assign the treatment to control units where no intervention actually occurred
and calculate the p-value of the treatment effect. Note that only one of unit and
unit() can be specified.

period(numlist) specifies placebo tests using fake treatment times. This option
assigns the treatment to time periods previous to the intervention, when no
treatment actually occurred.

cutoff(#c) specifies a cutoff threshold that discards fake treatment units with
pretreatment MSPE #c times larger than that of the treated unit, where #c

must be a real number greater than or equal to 1. This option applies only when
unit or unit() is specified. By default, no fake treatment units are discarded.

frame(framename) creates a frame storing generated variables in wide form, including
counterfactual predictions, treatment effects, and results from placebo tests if im-
plemented. The frame named framename is replaced if it already exists or is created
if not.

nofigure specifies to not display figures. The default is to display all figures for esti-
mation results and placebo tests if available.
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5.3 Stored results

rcm stores the following in e():

Scalars
e(T) number of observations in the dataset in wide form
e(T0) number of observations in the pretreatment periods with the dataset

in wide form
e(T1) number of observations in the posttreatment periods with the dataset

in wide form
e(K_preds_all) number of all predictors
e(K_preds_sel) number of predictors selected for the optimal model
e(aicc) AICc of the optimal model fit in the pretreatment periods
e(aic) AIC of the optimal model fit in the pretreatment periods
e(bic) BIC of the optimal model fit in the pretreatment periods
e(mbic) MBIC of the optimal model fit in the pretreatment periods
e(cvmse) CVMSE of the optimal model fit in the pretreatment periods
e(mae) mean absolute error of the model fit in the pretreatment periods
e(mse) mean squared error of the model fit in the pretreatment periods
e(rmse) root mean squared error of the model fit in the pretreatment periods
e(r2) R2 of the model fit in the pretreatment periods

Macros
e(panelvar) name of the panel variable
e(timevar) name of the time variable
e(varlist) names of the dependent variable and independent variables
e(respo) name of the response
e(preds_all) names of all predictors
e(preds_sel) names of the predictors selected for the optimal model
e(unit_all) all units
e(unit_tr) treatment unit
e(unit_ctrl) control units
e(time_all) entire periods
e(time_tr) treatment period
e(time_pre) pretreatment periods
e(time_post) posttreatment periods
e(regcmd) regress
e(regcmdline) regression command of the optimal model
e(scope) allowable range for the number of predictors to be selected
e(method) method for selecting the suboptimal models
e(criterion) criterion for selecting the optimal model from all suboptimal models
e(estimate) method for fitting the optimal model for counterfactual predictions
e(seed) seed used by the random-number generator for reproducible results
e(frame) name of frame storing generated variables in wide form
e(properties) b V

Matrices
e(b) coefficient vector of the optimal model fit in the pretreatment periods
e(V) variance–covariance matrix of the coefficient estimators of the optimal

model fit in the pretreatment periods
e(info) matrix containing information of the suboptimal models
e(mspe) matrix containing pretreatment MSPE, posttreatment MSPE, ratios

of posttreatment MSPE to pretreatment MSPE, and ratios of
pretreatment MSPE of control units to that of the treatment unit

e(pval) matrix containing estimated “treatment effects” and p-values from
placebo tests using fake treatment units
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6 Examples
6.1 Example 1: Political and economic integration between Hong

Kong and mainland China (Hsiao, Ching, and Wan 2012)

In this example, we replicate the results in Hsiao, Ching, and Wan (2012), who evaluate
the effects of political and economic integration between Hong Kong and mainland
China on the economy of Hong Kong. growth.dta is attached to the rcm command and
contains information on the quarterly real gross domestic product (GDP) growth rates
of Hong Kong and 24 other countries or regions from 1993q1 to 2008q1.

After loading growth.dta and declaring it a panel dataset by xtset region time,
we use the command label list to find the unit number for the treated unit Hong
Kong:

. use growth

. xtset region time
Panel variable: region (strongly balanced)
Time variable: time, 1993q1 to 2008q1

Delta: 1 quarter
. label list
region:

1 Australia
2 Austria
3 Canada
4 China
5 Denmark
6 Finland
7 France
8 Germany
9 HongKong
10 Indonesia
11 Italy
12 Japan
13 Korea
14 Malaysia
15 Mexico
16 Netherlands
17 NewZealand
18 Norway
19 Philippines
20 Singapore
21 Switzerland
22 Taiwan
23 Thailand
24 UnitedKingdom
25 UnitedStates

The results show that the unit number for Hong Kong is 9. Hence, we shall use the
option trunit(9) to specify Hong Kong as the treated unit.
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We first consider the case of political integration between Hong Kong and mainland
China, which happened on July 1, 1997 (that is, 1997q3), when the sovereignty of Hong
Kong was reverted from the United Kingdom to China. To find the treatment period,
we need to convert 1997q3 into a numeric value, which is accomplished by the following
command:

. display tq(1997q3)
150

tq() means “time in the quarterly format”. Basically, the result shows that 1997q3 is
the 150th quarter since 1960q1, according to the convention of Stata. Thus, we shall
use the option trperiod(150) to specify 1997q3 as the treatment period.

Following Hsiao, Ching, and Wan (2012), we restrict the donor pool to be the
following 10 countries or regions, that is, China, Indonesia, Japan, Korea, Malaysia,
Philippines, Singapore, Taiwan, Thailand, and the United States, which are either geo-
graphically or economically closely associated with Hong Kong. The unit numbers for
these 10 regions can be obtained from the above results following the command label
list. Therefore, we shall use the option ctrlunit(4 10 12 13 14 19 20 22 23 25)
to specify the donor pool.

Again following Hsiao, Ching, and Wan (2012), we restrict the posttreatment periods
to end in 2003q4 because the economic integration between Hong Kong and mainland
China happened in 2004q1, when the Closer Economic Partnership Arrangement be-
tween the two parties went into effect. To find the numeric value for 2003q4, we use
the following command:

. display tq(2003q4)
175
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Hence, we shall use the option postperiod(150/175) to specify the posttreatment
periods from 1997q3 to 2003q4. After collecting all the above information, we can use
the rcm command to replicate the results of Hsiao, Ching, and Wan (2012) for the case
of political integration with the default setting of model selection by best subset with
the AICc:2

. rcm gdp, trunit(9) trperiod(150) ctrlunit(4 10 12 13 14 19 20 22 23 25)
> postperiod(150/175)
Step 1: Select the suboptimal models
(method best specified)
Note: If this takes too long, you may wish to try method(lasso)(recommended),

method(forward) or method(backward). Alternatively, you may restrict
indepvars, and/or the donor pool by the option ctrlunit().

Selecting the suboptimal model with number of predictors 1-10...
Step 2: Select the optimal model from the suboptimal models
(criterion aicc specified)
Comparing the suboptimal models containing different set of predictors:

K AICc AIC BIC MBIC R-squared

1 -144.7514 -146.4657 -143.7946 -155.6437 0.4034
2 -160.5063 -163.5832 -160.0217 -170.4959 0.7937
3 -170.6492 -175.6492 -171.1973 -180.9287 0.9056
4 -171.7725 -179.4088 -174.0666 -183.1559 0.9314
5 -169.7878 -180.9878 -174.7552 -183.1882 0.9438
6 -164.2937 -180.2937 -173.1707 -180.9000 0.9477
7 -156.6834 -179.1834 -171.1701 -178.1391 0.9503
8 -146.2921 -177.7207 -168.8169 -174.9678 0.9517
9 -131.7464 -175.7464 -165.9523 -171.2291 0.9518
10 -111.3603 -173.7603 -163.0758 -167.4256 0.9518

Among models with 1-10 predictors, the optimal model contains 4 predictors
with AICc = -171.7725.
Fitting results in the pre-treatment periods using OLS:

Mean Absolute Error = 0.00611 Number of Observations = 18
Mean Squared Error = 0.00003 Number of Predictors = 4
Root Mean Squared Error = 0.00578 R-squared = 0.93144

gdp·HongKong Coefficient Std. err. t P>|t| [95% conf. interval]

gdp·Korea -0.4323 0.0634 -6.82 0.000 -0.5692 -0.2954
gdp·Japan -0.6760 0.1117 -6.05 0.000 -0.9172 -0.4347
gdp·Taiwan 0.7926 0.3099 2.56 0.024 0.1231 1.4621

gdp·UnitedS~s 0.4860 0.2195 2.21 0.045 0.0118 0.9603
_cons 0.0263 0.0170 1.54 0.147 -0.0105 0.0631

2. If there are many covariates, using the best subset approach (or even the forward and backward
stepwise regressions) for model selection can be computationally demanding. One possibility is to
use sure independence screening to speed up the process of selecting important variables (Fan and
Lv 2008). We leave this as a possible direction for future research.
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Prediction results in the post-treatment periods using OLS:

Time Actual Outcome Predicted Outcome Treatment Effect

1997q3 0.0610 0.0798 -0.0188
1997q4 0.0140 0.0810 -0.0670
1998q1 -0.0320 0.1294 -0.1614
1998q2 -0.0610 0.1433 -0.2043
1998q3 -0.0810 0.1319 -0.2129
1998q4 -0.0650 0.1390 -0.2040
1999q1 -0.0290 0.0876 -0.1166
1999q2 0.0050 0.0670 -0.0620
1999q3 0.0390 0.0400 -0.0010
1999q4 0.0830 0.0445 0.0385
2000q1 0.1070 0.0434 0.0636
2000q2 0.0750 0.0398 0.0352
2000q3 0.0760 0.0524 0.0236
2000q4 0.0630 0.0318 0.0312
2001q1 0.0270 0.0118 0.0152
2001q2 0.0150 -0.0177 0.0327
2001q3 -0.0010 -0.0177 0.0167
2001q4 -0.0170 0.0184 -0.0354
2002q1 -0.0100 0.0314 -0.0414
2002q2 0.0050 0.0500 -0.0450
2002q3 0.0280 0.0577 -0.0297
2002q4 0.0480 0.0346 0.0134
2003q1 0.0410 0.0538 -0.0128
2003q2 -0.0090 0.0251 -0.0341
2003q3 0.0380 0.0628 -0.0248
2003q4 0.0470 0.0761 -0.0291

Mean 0.0180 0.0576 -0.0396

Note: The average treatment effect over the post-treatment periods is -0.0396.
Finished.

The results show that the optimal model contains four predictors, which are the
GDPs for Korea, Japan, Taiwan, and the United States. The pretreatment R2 is 0.93144,
indicating a good pretreatment fit. The predicted outcomes and treatment effects are
also reported for each posttreatment period.
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In the meantime, the above rcm command produces the following two graphs. The
first graph [figure 1(a)] depicts the actual and counterfactual outcomes, also known as
the “gap graph”; the second graph [figure 1(b)] presents a visualization of the treatment
effects.
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Figure 1. Graphs for political integration in example 1

Notice that the dotted vertical lines in figure 1 are drawn at the last pretreatment
period (that is, at T0) instead of the first posttreatment period (that is, at T0+1) for bet-
ter visual appearance. Also note that if we were to replicate the results in Hsiao, Ching,
and Wan (2012) using the AIC, we could simply include the option criterion(aic)
instead of using the default option, criterion(aicc). The results are omitted to save
space.

Next we consider the case of economic integration between Hong Kong and main-
land China, that is, the implementation of Closer Economic Partnership Arrangement
starting from 2004q1. Following Hsiao, Ching, and Wan (2012), this time we place no
restriction on the donor pool or posttreatment periods, and the treatment period can
be obtained by

. display tq(2004q1)
176

We could replicate the results in Hsiao, Ching, and Wan (2012) using the best subset
regression and the AICc with the command

. rcm gdp, trunit(9) trperiod(176) nofigure frame(growth_wide)

where the option nofigure suppresses the default production of figures and the option
frame(growth_wide) creates a frame called growth_wide that stores generated vari-
ables (including counterfactual outcomes and treatment effects) in wide form such that
users may find them useful later on (for example, to draw their own figures).
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Step 1: Select the suboptimal models
(method best specified)
Note: If this takes too long, you may wish to try method(lasso)(recommended),

method(forward) or method(backward). Alternatively, you may restrict
indepvars, and/or the donor pool by the option ctrlunit().

Selecting the suboptimal model with number of predictors 1-24...
Step 2: Select the optimal model from the suboptimal models
(criterion aicc specified)
Comparing the suboptimal models containing different set of predictors:

K AICc AIC BIC MBIC R-squared

1 -313.8269 -314.4269 -309.0743 -324.5878 0.5877
2 -335.2386 -336.2642 -329.1275 -342.8407 0.7602
3 -348.2800 -349.8590 -340.9380 -353.6787 0.8318
4 -365.6420 -367.9122 -357.2071 -369.1072 0.8933
5 -377.4412 -380.5523 -368.0630 -379.1038 0.9235
6 -378.9426 -383.0569 -368.7833 -378.9029 0.9310
7 -378.9074 -384.2016 -368.1439 -377.2679 0.9357
8 -378.5854 -385.2521 -367.4102 -375.4631 0.9400
9 -377.5003 -385.7503 -366.1242 -373.0328 0.9433
10 -375.0098 -385.0744 -363.6641 -369.3589 0.9450
11 -372.4606 -384.5939 -361.3994 -365.8154 0.9469
12 -369.2578 -383.7405 -358.7619 -361.8379 0.9483
13 -365.9158 -383.0586 -356.2958 -357.9747 0.9498
14 -362.5660 -382.7142 -354.1671 -354.3955 0.9516
15 -358.3157 -381.8542 -351.5230 -350.2504 0.9529
16 -353.3736 -380.7336 -348.6182 -345.7974 0.9538
17 -348.1579 -379.8246 -345.9250 -341.5114 0.9549
18 -342.4931 -379.0149 -343.3311 -337.2826 0.9561
19 -335.8492 -377.8492 -340.3812 -332.6578 0.9570
20 -328.0881 -376.2785 -337.0264 -327.5902 0.9574
21 -319.2286 -374.4286 -333.3922 -322.2073 0.9575
22 -309.3373 -372.4952 -329.6747 -316.7067 0.9576
23 -298.3113 -370.5335 -325.9288 -311.1450 0.9576
24 -285.9617 -368.5499 -322.1610 -305.5301 0.9576

Among models with 1-24 predictors, the optimal model contains 6 predictors
with AICc = -378.9426.
Fitting results in the pre-treatment periods using OLS:

Mean Absolute Error = 0.01070 Number of Observations = 44
Mean Squared Error = 0.00014 Number of Predictors = 6
Root Mean Squared Error = 0.01170 R-squared = 0.93097

gdp·HongKong Coefficient Std. err. t P>|t| [95% conf. interval]

gdp·Norway 0.3222 0.0538 5.99 0.000 0.2132 0.4311
gdp·Austria -1.0115 0.1682 -6.01 0.000 -1.3524 -0.6707

gdp·Korea 0.3447 0.0469 7.35 0.000 0.2497 0.4398
gdp·Mexico 0.3129 0.0510 6.13 0.000 0.2095 0.4162
gdp·Italy -0.3177 0.1591 -2.00 0.053 -0.6400 0.0046

gdp·Singapore 0.1845 0.0546 3.38 0.002 0.0739 0.2951
_cons -0.0019 0.0037 -0.52 0.603 -0.0094 0.0056
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Prediction results in the post-treatment periods using OLS:

Time Actual Outcome Predicted Outcome Treatment Effect

2004q1 0.0770 0.0493 0.0277
2004q2 0.1200 0.0686 0.0514
2004q3 0.0660 0.0515 0.0145
2004q4 0.0790 0.0446 0.0344
2005q1 0.0620 0.0217 0.0403
2005q2 0.0710 0.0177 0.0533
2005q3 0.0810 0.0333 0.0477
2005q4 0.0690 0.0290 0.0400
2006q1 0.0900 0.0471 0.0429
2006q2 0.0620 0.0417 0.0203
2006q3 0.0640 0.0250 0.0390
2006q4 0.0660 0.0009 0.0651
2007q1 0.0550 -0.0101 0.0651
2007q2 0.0620 0.0092 0.0528
2007q3 0.0680 0.0143 0.0537
2007q4 0.0690 0.0508 0.0182
2008q1 0.0730 0.0538 0.0192

Mean 0.0726 0.0323 0.0403

Note: The average treatment effect over the post-treatment periods is 0.0403.
Finished.
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To access the generated frame growth_wide, we may use the following command:

. frame change growth_wide

. describe
Contains data
Observations: 61

Variables: 28

Variable Storage Display Value
name type format label Variable label

time float %tq time
gdp·Australia float %8.0g gdp in Australia
gdp·Austria float %8.0g gdp in Austria
gdp·Canada float %8.0g gdp in Canada
gdp·China float %8.0g gdp in China
gdp·Denmark float %8.0g gdp in Denmark
gdp·Finland float %8.0g gdp in Finland
gdp·France float %8.0g gdp in France
gdp·Germany float %8.0g gdp in Germany
gdp·HongKong float %8.0g gdp in HongKong
gdp·Indonesia float %8.0g gdp in Indonesia
gdp·Italy float %8.0g gdp in Italy
gdp·Japan float %8.0g gdp in Japan
gdp·Korea float %8.0g gdp in Korea
gdp·Malaysia float %8.0g gdp in Malaysia
gdp·Mexico float %8.0g gdp in Mexico
gdp·Netherlands float %8.0g gdp in Netherlands
gdp·NewZealand float %8.0g gdp in NewZealand
gdp·Norway float %8.0g gdp in Norway
gdp·Philippines float %8.0g gdp in Philippines
gdp·Singapore float %8.0g gdp in Singapore
gdp·Switzerland float %8.0g gdp in Switzerland
gdp·Taiwan float %8.0g gdp in Taiwan
gdp·Thailand float %8.0g gdp in Thailand
gdp·UnitedKin~m float %8.0g gdp in UnitedKingdom
gdp·UnitedSta~s float %8.0g gdp in UnitedStates
pred·gdp·Hong~g float %9.0g prediction of gdp in HongKong
tr·gdp·HongKong float %9.0g treatment effect of gdp in

HongKong

Sorted by: time
Note: Dataset has changed since last saved.

It is easy to switch back to the default frame containing growth.dta by the following
command:

. frame change default

As a further illustration, below we use lasso with LOOCV for model selection, followed
by postlasso OLS for estimation and prediction. In addition, we request both in-space
and in-time placebo tests. For the in-time place test, the fake treatment time is chosen
to be 2002q1, that is, two years before the actual treatment time in 2004q1:
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. display tq(2002q1)
168
. rcm gdp, trunit(9) trperiod(176) method(lasso) criterion(cv)
> placebo(unit cutoff(5) period(168))

method(lasso) specifies lasso for model selection, and criterion(cv) uses the cross-
validation criterion, which defaults to LOOCV. The option placebo(unit cutoff(5))
requests the in-space placebo test using all fake treatment units except those with a
pretreatment MSPE 5 times larger than that of the treated unit. placebo(period(168))
conducts the in-time placebo test using 168 (that is, 2002q1) as the fake treatment
time. This command returns a wealth of information, starting with model selection,
estimation, and prediction.

Step 1: Select the suboptimal models
(method lasso specified)
Selecting the suboptimal model...
Step 2: Select the optimal model from the suboptimal models
(criterion cv specified for leave-one-out cross-validation)
Comparing the suboptimal models containing different set of predictors:

K lambda CVMSE R-squared Operation

2 0.0285 0.0017 0.1145 add gdp·Malaysia gdp·Singapore
3 0.0216 0.0013 0.3576 add gdp·Norway
5 0.0197 0.0012 0.4252 add gdp·Korea gdp·Thailand
6 0.0179 0.0011 0.4940 add gdp·Indonesia
7 0.0123 0.0008 0.6725 add gdp·Philippines
8 0.0093 0.0006 0.7449 add gdp·Finland
9 0.0064 0.0005 0.8264 add gdp·Mexico
10 0.0044 0.0004 0.8731 add gdp·Austria
11 0.0037 0.0003 0.8919 add gdp·NewZealand
10 0.0034 0.0003 0.8993 drop gdp·Malaysia
11 0.0028 0.0003 0.9104 add gdp·France
12 0.0018 0.0003 0.9273 add gdp·Italy
11 0.0012 0.0002 0.9346 drop gdp·Finland
11 0.0009 0.0002 0.9367 .
12 0.0008 0.0002 0.9377 add gdp·Canada
14 0.0006 0.0002 0.9388 add gdp·Germany gdp·Switzerland
15 0.0005 0.0003 0.9420 add gdp·China
16 0.0004 0.0003 0.9431 add gdp·Australia
18 0.0003 0.0003 0.9456 add gdp·Japan gdp·UnitedKingdom
19 0.0002 0.0003 0.9485 add gdp·Finland
18 0.0002 0.0003 0.9519 drop gdp·Indonesia
20 0.0001 0.0003 0.9526 add gdp·Taiwan gdp·UnitedStates
21 0.0001 0.0003 0.9531 add gdp·Netherlands
23 0.0001 0.0003 0.9544 add gdp·Denmark gdp·Indonesia
24 0.0000 0.0004 0.9571 add gdp·Malaysia
23 0.0000 0.0004 0.9573 drop gdp·Philippines
24 0.0000 0.0004 0.9575 add gdp·Philippines
24 0.0000 0.0004 0.9576 .

Among models with 1-24 predictors, the optimal model contains 11 predictors
with CVMSE = 0.0002.
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Fitting results in the pre-treatment periods using post-lasso OLS:

Mean Absolute Error = 0.01163 Number of Observations = 44
Mean Squared Error = 0.00014 Number of Predictors = 11
Root Mean Squared Error = 0.01177 R-squared = 0.93955

gdp·HongKong Coefficient Std. err. t P>|t| [95% conf. interval]

gdp·Austria -0.8596 0.2734 -3.14 0.004 -1.4166 -0.3027
gdp·France 0.0054 0.3774 0.01 0.989 -0.7633 0.7741

gdp·Indonesia 0.0331 0.0414 0.80 0.430 -0.0512 0.1174
gdp·Italy -0.3447 0.3225 -1.07 0.293 -1.0016 0.3122
gdp·Korea 0.2501 0.0757 3.30 0.002 0.0958 0.4044
gdp·Mexico 0.2501 0.0746 3.35 0.002 0.0981 0.4021

gdp·NewZeal~d 0.1310 0.1157 1.13 0.266 -0.1047 0.3667
gdp·Norway 0.2535 0.0758 3.34 0.002 0.0991 0.4079

gdp·Philipp~s 0.1540 0.1240 1.24 0.223 -0.0987 0.4066
gdp·Singapore 0.2105 0.0649 3.24 0.003 0.0783 0.3427
gdp·Thailand 0.0232 0.0668 0.35 0.730 -0.1129 0.1594

_cons -0.0100 0.0064 -1.57 0.126 -0.0230 0.0030

Prediction results in the post-treatment periods using post-lasso OLS:

Time Actual Outcome Predicted Outcome Treatment Effect

2004q1 0.0770 0.0533 0.0237
2004q2 0.1200 0.0737 0.0463
2004q3 0.0660 0.0530 0.0130
2004q4 0.0790 0.0448 0.0342
2005q1 0.0620 0.0208 0.0412
2005q2 0.0710 0.0204 0.0506
2005q3 0.0810 0.0322 0.0488
2005q4 0.0690 0.0271 0.0419
2006q1 0.0900 0.0433 0.0467
2006q2 0.0620 0.0324 0.0296
2006q3 0.0640 0.0233 0.0407
2006q4 0.0660 0.0088 0.0572
2007q1 0.0550 0.0022 0.0528
2007q2 0.0620 0.0262 0.0358
2007q3 0.0680 0.0264 0.0416
2007q4 0.0690 0.0555 0.0135
2008q1 0.0730 0.0552 0.0178

Mean 0.0726 0.0352 0.0374

Note: The average treatment effect over the post-treatment periods is 0.0374.
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The above results show that the optimal model chosen by lasso with LOOCV contains
11 predictors with a pretreatment R2 of 0.93955 for postlasso OLS. The corresponding
graphs for counterfactual prediction and treatment effects are shown in figure 2. Appar-
ently, the pretreatment fit is great, while the estimated treatment effects are all positive
in the posttreatment periods.

-.1
-.0

5
0

.0
5

.1
gd

p

1993q1 1996q1 1999q1 2002q1 2005q1 2008q1
time

Actual Predicted

Actual and Predicted Outcomes

(a) Actual and predicted paths

-.0
2

0
.0

2
.0

4
.0

6
tre

at
m

en
t e

ff
ec

ts
 o

f g
dp

1993q1 1996q1 1999q1 2002q1 2005q1 2008q1
time

Treatment Effects

(b) Treatment effects

Figure 2. Graphs for economic integration in example 1
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Results are then reported from the in-space placebo test, including the overall mea-
sure based on the post/pre MSPE ratio and pointwise p-values for each posttreatment
period.

Implementing placebo test using fake treatment unit Australia...Austria...Canada
> ...China...Denmark...Finland...France...Germany...Indonesia...Italy...Japan...
> Korea...Malaysia...Mexico...Netherlands...NewZealand...Norway...Philippines...
> Singapore...Switzerland...Taiwan...Thailand...UnitedKingdom...UnitedStates...
Placebo test results using fake treatment units:

Unit Pre MSPE Post MSPE Post/Pre MSPE Pre MSPE of Fake Unit/
Pre MSPE of Treated Unit

HongKong 0.0001 0.0016 11.3444 1.0000
Australia 0.0000 0.0005 20.3885 0.1787

Austria 0.0000 0.0001 7.4453 0.1200
Canada 0.0000 0.0004 24.8804 0.1211
China 0.0001 0.0006 8.3822 0.4917

Denmark 0.0001 0.0009 12.2336 0.5599
Finland 0.0001 0.0004 5.1043 0.5812
France 0.0000 0.0002 13.9916 0.0882
Germany 0.0000 0.0004 17.2181 0.1558

Indonesia 0.0009 0.0074 8.0772 6.5869
Italy 0.0000 0.0001 1.8399 0.2103
Japan 0.0001 0.0009 10.2775 0.6274
Korea 0.0004 0.0035 9.2554 2.7445

Malaysia 0.0004 0.0024 6.4060 2.6866
Mexico 0.0001 0.0010 7.1496 0.9758

Netherlands 0.0000 0.0001 2.4530 0.2757
NewZealand 0.0001 0.0005 3.7067 1.0239

Norway 0.0003 0.0014 4.2723 2.3216
Philippines 0.0002 0.0004 1.6699 1.6748

Singapore 0.0002 0.0024 14.8665 1.1473
Switzerland 0.0000 0.0004 8.4799 0.3053

Taiwan 0.0001 0.0004 4.0779 0.6745
Thailand 0.0003 0.0011 3.6558 2.1797

UnitedKingdom 0.0000 0.0001 7.1206 0.1284
UnitedStates 0.0000 0.0002 16.5412 0.0860

Note: (1) The probability of obtaining a post/pre-treatment MSPE ratio as
large as HongKong's is 0.3200.
(2) Total 1 unit with pre-treatment MSPE 5 times larger than the treated
unit is excluded in computing pointwise p-values, including Indonesia.



G. Yan and Q. Chen 869

Placebo test results using fake treatment units (continued, cutoff = 5):

Time Treatment Effect p-value of Treatment Effect
Two-sided Right-sided Left-sided

2004q1 0.0237 0.2917 0.2500 0.7917
2004q2 0.0463 0.1250 0.0833 0.9583
2004q3 0.0130 0.7500 0.3750 0.6667
2004q4 0.0342 0.2083 0.0833 0.9583
2005q1 0.0412 0.1250 0.0417 1.0000
2005q2 0.0506 0.2083 0.0833 0.9583
2005q3 0.0488 0.2083 0.0833 0.9583
2005q4 0.0419 0.2500 0.1250 0.9167
2006q1 0.0467 0.1667 0.0833 0.9583
2006q2 0.0296 0.2917 0.2083 0.8333
2006q3 0.0407 0.1250 0.0833 0.9583
2006q4 0.0572 0.2083 0.1250 0.9167
2007q1 0.0528 0.1250 0.0833 0.9583
2007q2 0.0358 0.2083 0.1250 0.9167
2007q3 0.0416 0.1250 0.0417 1.0000
2007q4 0.0135 0.7500 0.4167 0.6250
2008q1 0.0178 0.1667 0.1250 0.9167

Note: (1) The two-sided p-value of the treatment effect for a particular
period is defined as the frequency that the absolute values of the
placebo effects are greater than or equal to the absolute value of
treatment effect.
(2) The right-sided (left-sided) p-value of the treatment effect for a
particular period is defined as the frequency that the placebo effects
are greater (smaller) than or equal to the treatment effect.
(3) If the treatment effects are mostly positive, then the right-sided
p-values are recommended; whereas the left-sided p-values are
recommended if the treatment effects are mostly negative.

The above results show that the overall p-value based on the post/pre MSPE ratio
is 0.3200, which is greater than any conventional significance level. However, if we
look at the pointwise right-sided p-values (because the estimated treatment effects are
all positive), the right-sided p-values for both 2005q1 and 2007q3 are 0.0417, which
are significant at the 5% level. Moreover, the right-sided p-values are 0.0833 for 7
posttreatment periods, which are significant at the 10% level. The above results from
the in-space placebo test are presented graphically in figure 3.
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Figure 3. Graphs for in-space placebo test in example 1
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Last, the results from the in-time placebo test using 2002q1 as the fake treatment
time are reported, as well as the corresponding graphs shown in figure 4.

Implementing placebo test using fake treatment time 2002q1...
Placebo test results using fake treatment time 2002q1:

Time Actual Outcome Predicted Outcome Treatment Effect

2002q1 -0.0100 -0.0096 -0.0004
2002q2 0.0050 0.0106 -0.0056
2002q3 0.0280 0.0110 0.0170
2002q4 0.0480 0.0312 0.0168
2003q1 0.0410 0.0253 0.0157
2003q2 -0.0090 -0.0057 -0.0033
2003q3 0.0380 0.0240 0.0140
2003q4 0.0470 0.0372 0.0098
2004q1 0.0770 0.0527 0.0243
2004q2 0.1200 0.0702 0.0498
2004q3 0.0660 0.0531 0.0129
2004q4 0.0790 0.0431 0.0359
2005q1 0.0620 0.0200 0.0420
2005q2 0.0710 0.0217 0.0493
2005q3 0.0810 0.0321 0.0489
2005q4 0.0690 0.0231 0.0459
2006q1 0.0900 0.0410 0.0490
2006q2 0.0620 0.0265 0.0355
2006q3 0.0640 0.0213 0.0427
2006q4 0.0660 0.0079 0.0581
2007q1 0.0550 -0.0013 0.0563
2007q2 0.0620 0.0222 0.0398
2007q3 0.0680 0.0219 0.0461
2007q4 0.0690 0.0573 0.0117
2008q1 0.0730 0.0547 0.0183

Mean 0.0569 0.0277 0.0292

Note: The average treatment effect over the post-treatment periods is 0.0292.
Finished.



872 The rcm command

-.1
-.0

5
0

.0
5

.1
gd

p

1993q1 1996q1 1999q1 2002q1 2005q1 2008q1
time

Actual Predicted

Placebo Test Using Fake Treatment Time 2002q1

(a) Actual and predicted paths

-.0
2

0
.0

2
.0

4
.0

6
pl

ac
eb

o 
ef

fe
ct

s 
of

 g
dp

1993q1 1996q1 1999q1 2002q1 2005q1 2008q1
time

Placebo Test Using Fake Treatment Time 2002q1

(b) Treatment effects

Figure 4. Graphs for in-time placebo test in example 1

From figure 4, it is apparent that there are no “significant” placebo effects during
the “fake posttreatment periods” from 2002q1 to 2004q1, the durations of which are
indicated by the two vertical dashed lines in figure 4. This gives us more confidence in
the significance of the actual treatment effects, if any.

6.2 Example 2: German reunification (Abadie, Diamond, and Hain-
mueller 2015)

Because example 1 from Hsiao, Ching, and Wan (2012) contains no covariates, we
turn to the case of German reunification in Abadie, Diamond, and Hainmueller (2015)
to demonstrate the use of the rcm command in the presence of covariates. Abadie,
Diamond, and Hainmueller (2015) study the effect of the 1990 German reunification on
the economy of West Germany using the SCM. As we shall see, applying the RCM to the
same data yields similar results.

repgermany.dta is attached to the rcm command and includes the following vari-
ables for West Germany and 16 other Organisation for Economic Co-operation and
Development member countries from 1960 to 2003: the outcome variable gdp (GDP per
capita) and covariates infrate (inflation rate defined as annual percentage change in
consumer prices), trade (trade openness defined as export plus imports as percentage
of GDP), and industry (industry share of value added). We ignore other covariates,
which contain too many missing values.
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After loading repgermany.dta and declaring it a panel dataset with xtset country
year, we use the command xtsum to look at summary statistics for the relevant variables:

. use repgermany, clear

. xtset country year
Panel variable: country (strongly balanced)
Time variable: year, 1960 to 2003

Delta: 1 unit
. xtsum gdp infrate trade industry
Variable Mean Std. dev. Min Max Observations

gdp overall 12144.14 8951.553 707 37548 N = 748
between 2346.311 7267.5 16063.09 n = 17
within 8656.906 -890.8128 35869.26 T = 44

infrate overall 5.867715 5.127335 -.9151205 28.78333 N = 727
between 2.340064 3.117853 10.71496 n = 17
within 4.598013 -5.226749 24.93645 T = 42.7647

trade overall 53.12414 26.4594 9.429324 149.6824 N = 646
between 25.39686 16.7063 113.8836 n = 17
within 9.020864 16.58236 88.92298 T = 38

industry overall 33.23844 5.161249 21.59255 48.00126 N = 541
between 3.427973 27.35454 39.68952 n = 17
within 4.024088 23.4932 42.88638 T-bar = 31.8235

The above results show that all three covariates have more or less missing values,
which may affect the prediction of posttreatment counterfactual outcomes. We use the
command label list to find the unit number for the treated unit West Germany:

. label list
country:

1 Australia
2 Austria
3 Belgium
4 Denmark
5 France
6 Greece
7 Italy
8 Japan
9 Netherlands
10 New Zealand
11 Norway
12 Portugal
13 Spain
14 Switzerland
15 UK
16 USA
17 West Germany

The results show that the unit number for West Germany is 17. Hence, we shall use
the option trunit(17) to specify West Germany as the treated unit. To specify the
treatment period, we use the option trperiod(1990) because the German reunification
occurred in 1990. In the presence of three covariates, we have many predictors. There-
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fore, we use lasso with 5-fold cross-validation for model selection, followed by postlasso
OLS for estimation and prediction:

. rcm gdp infrate trade industry, trunit(17) trperiod(1990) method(lasso)
> criterion(cv) fold(5) placebo(unit cutoff(20) period(1980))

The options method(lasso), criterion(cv), and fold(5) specify model selection by
lasso with 5-fold cross-validation. The option placebo(unit cutoff(20)) requests an
in-space placebo test while requiring the pretreatment MSPE of fake treatment units to
be no more than 20 times that of the treated unit.3 The option placebo(period(1980))
specifies the in-time placebo test with 1980 as the fake treatment period, which is 10
years earlier than the actual treatment period of 1990.

This command returns a rich set of information, starting with model selection,
estimation, and prediction. The optimal model contains nine predictors, including
industry·Spain (industry for Spain), which showcases the value of adding covariates
to RCM. The pretreatment fit is excellent, with an R2 of 0.99999 by postlasso OLS. The
corresponding graphs for counterfactual outcomes and treatment effects are shown in
figure 5.

Step 1: Select the suboptimal models
(method lasso specified)
Selecting the suboptimal model...
Step 2: Select the optimal model from the suboptimal models
(criterion cv specified for 5-fold cross-validation)
Comparing the suboptimal models containing different set of predictors:

K lambda CVMSE R-squared Operation

1 4287.1880 2.178e+07 0.0888 add gdp·Italy
2 2954.9924 1.037e+07 0.5668 add gdp·Netherlands
3 2692.4790 8.618e+06 0.6403 add gdp·Austria
4 1855.8213 4.096e+06 0.8289 add gdp·Denmark
5 1614.0987 3.091e+06 0.8706 add gdp·USA
7 459.7011 2.517e+05 0.9894 add gdp·Greece gdp·Norway
6 218.3953 61772.7118 0.9976 drop gdp·Netherlands
7 150.5314 31060.5191 0.9988 add gdp·Switzerland
8 137.1586 26263.3771 0.9990 add industry·Spain
9 59.3727 7092.8250 0.9998 add gdp·Netherlands
9 44.9133 4923.4104 0.9999 .

Among models with 1-67 predictors, the optimal model contains 9 predictors
with CVMSE = 4923.4104.

3. Because the donor pool is small, with only 16 control units, we set a higher threshold of pretreatment
MSPE to preserve the size of the donor pool.
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Fitting results in the pre-treatment periods using post-lasso OLS:

Mean Absolute Error = 12.87119 Number of Observations = 30
Mean Squared Error = 3.0e+02 Number of Predictors = 9
Root Mean Squared Error = 17.30368 R-squared = 0.99999

gdp·WestGer~y Coefficient Std. err. t P>|t| [95% conf. interval]

gdp·Austria 0.1331 0.0708 1.88 0.093 -0.0271 0.2934
gdp·Denmark 0.1046 0.0788 1.33 0.217 -0.0735 0.2828
gdp·Greece 0.1513 0.0422 3.58 0.006 0.0557 0.2468
gdp·Italy 0.2914 0.0838 3.48 0.007 0.1018 0.4809

gdp·Netherl~s 0.1334 0.1097 1.22 0.255 -0.1148 0.3816
gdp·Norway -0.0313 0.0598 -0.52 0.613 -0.1665 0.1039

industry·Sp~n -44.6926 11.6744 -3.83 0.004 -71.1019 -18.2833
gdp·Switzer~d 0.0548 0.0343 1.60 0.144 -0.0228 0.1324

gdp·USA 0.2282 0.0439 5.20 0.001 0.1289 0.3276
_cons 1755.2090 419.7465 4.18 0.002 805.6764 2704.7417

Prediction results in the post-treatment periods using post-lasso OLS:

Time Actual Outcome Predicted Outcome Treatment Effect

1990 20465.0000 20104.6133 360.3867
1991 21602.0000 20930.3809 671.6191
1992 22154.0000 21677.2500 476.7500
1993 21878.0000 22194.6797 -316.6797
1994 22371.0000 23190.9297 -819.9297
1995 23035.0000 24052.6562 -1017.6562
1996 23742.0000 24926.1309 -1184.1309
1997 24156.0000 25896.0312 -1740.0312
1998 24931.0000 26988.5430 -2057.5430
1999 25755.0000 27935.7734 -2180.7734
2000 26943.0000 29389.8184 -2446.8184
2001 27449.0000 30392.2207 -2943.2207
2002 28348.0000 31518.2871 -3170.2871
2003 28855.0000 32363.5508 -3508.5508

Mean 24406.0000 25825.7761 -1419.7761

Note: The average treatment effect over the post-treatment periods is
-1419.7761.
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Figure 5. Graphs for German reunification in example 2

It is apparent from figure 5 that the treatment effects were positive for only three
years (possibly because of a boom in demand following the German reunification) but
turned increasingly negative thereafter. In fact, these results are very similar to those
originally reported by Abadie, Diamond, and Hainmueller (2015) using the SCM. Results
are then reported from the in-space placebo test:

Implementing placebo test using fake treatment unit Australia...Austria...
> Belgium...Denmark...France...Greece...Italy...Japan...Netherlands...NewZealand
> ...Norway...Portugal...Spain...Switzerland...UK...USA...
Placebo test results using fake treatment units:

Unit Pre MSPE Post MSPE Post/Pre MSPE Pre MSPE of Fake Unit/
Pre MSPE of Treated Unit

WestGermany 299.4172 3.79e+06 12654.5085 1.0000
Australia 7823.7705 . . 26.1300

Austria 2715.1534 4.34e+05 160.0022 9.0681
Belgium 543.8757 . . 1.8164
Denmark 4200.7224 1.09e+06 258.5140 14.0297
France 365.3031 2.93e+05 802.7585 1.2200
Greece 8905.4055 . . 29.7425
Italy 4666.7858 1.17e+05 25.1081 15.5862
Japan 1656.3602 1.10e+06 664.9375 5.5319

Netherlands 1675.8367 5.79e+05 345.3352 5.5970
NewZealand 5861.0887 7.17e+05 122.3009 19.5750

Norway 2575.4635 . . 8.6016
Portugal 5330.0930 . . 17.8016

Spain 476.2446 2.10e+05 441.4192 1.5906
Switzerland 6176.4133 . . 20.6281

UK 2613.4331 4.13e+05 157.8457 8.7284
USA 1.11e+04 2.59e+06 234.1799 36.9503

Note: (1) The probability of obtaining a post/pre-treatment MSPE ratio as
large as WestGermany's is 0.4118.
(2) Total 4 units with pre-treatment MSPE 20 times larger than the
treated unit are excluded in computing pointwise p-values, including
Australia Greece Switzerland USA.



G. Yan and Q. Chen 877

Placebo test results using fake treatment units (continued, cutoff = 20):

Time Treatment Effect p-value of Treatment Effect
Two-sided Right-sided Left-sided

1990 360.3867 0.3846 0.3077 0.7692
1991 671.6191 0.4615 0.3077 0.7692
1992 476.7500 0.6923 0.5385 0.5385
1993 -316.6797 0.9231 0.6923 0.3846
1994 -819.9297 0.3077 1.0000 0.0769
1995 -1017.6562 0.3077 1.0000 0.0769
1996 -1184.1309 0.3077 1.0000 0.0769
1997 -1740.0312 0.3077 1.0000 0.0769
1998 -2057.5430 0.6154 1.0000 0.0769
1999 -2180.7734 0.6923 1.0000 0.0769
2000 -2446.8184 0.6923 1.0000 0.0769
2001 -2943.2207 0.7692 1.0000 0.0769
2002 -3170.2871 0.7692 1.0000 0.0769
2003 -3508.5508 0.7692 1.0000 0.0769

Note: (1) The two-sided p-value of the treatment effect for a particular
period is defined as the frequency that the absolute values of the
placebo effects are greater than or equal to the absolute value of
treatment effect.
(2) The right-sided (left-sided) p-value of the treatment effect for a
particular period is defined as the frequency that the placebo effects
are greater (smaller) than or equal to the treatment effect.
(3) If the treatment effects are mostly positive, then the right-sided
p-values are recommended; whereas the left-sided p-values are
recommended if the treatment effects are mostly negative.

Notice that the posttreatment MSPEs for six countries (that is, Australia, Belgium,
Greece, Norway, Portugal, and Switzerland) are missing, which is due to missing ob-
servations for making posttreatment predictions. If one wishes to fill in missing values
before applying the RCM, the rcm command provides convenient utilities: one can use
either the sample mean with the option fill(mean) or linear interpolation with the
option fill(linear).

The above results show that, as an overall measure of significance of the treatment
effects over the entire posttreatment periods, the p-value based on the post/pre MSPE
ratio is 0.4118, which is larger than any conventional level of significance. Then the
four countries (that is, Australia, Greece, Switzerland, and the United States) with
pretreatment MSPEs at least 20 times more than that of West Germany are excluded,
and the rest will continue with the pointwise in-space placebo test.

However, if we look at pointwise left-sided p-values (because the treatment effects
are mostly negative), the left-sided p-values are 0.0769 for 10 posttreatment periods
starting from 1994, which is significant at the 10% level. Also, bear in mind that the
smallest p-value attainable for the dataset is (1/13) ≈ 0.0769 because there are only
12 countries kept in the donor pool. These results from the in-space placebo test are
presented graphically in figure 6.
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(c) Two-sided p-values of treatment effects

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
rig

ht
-s

id
ed

 p
-v

al
ue

s 
of

 tr
ea

tm
en

t e
ff

ec
ts

 o
f g

dp

1990 1995 2000 2005
time

Placebo Test Using Fake Treatment Units

(d) Right-sided p-values of treatment effects
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(e) Left-sided p-values of treatment effects

Figure 6. Graphs for in-space placebo test in example 2
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Last, the results from the in-time placebo test using 1980 as the fake treatment time
are reported, as well as the corresponding graphs shown in figure 7.

Implementing placebo test using fake treatment time 1980...
Placebo test results using fake treatment time 1980:

Time Actual Outcome Predicted Outcome Treatment Effect

1980 11083.0000 11048.8652 34.1348
1981 12115.0000 12114.9834 0.0166
1982 12761.0000 12888.2305 -127.2305
1983 13519.0000 13755.9736 -236.9736
1984 14481.0000 14766.0557 -285.0557
1985 15291.0000 15613.6670 -322.6670
1986 15998.0000 16203.2393 -205.2393
1987 16679.0000 16926.9902 -247.9902
1988 17786.0000 17999.3027 -213.3027
1989 18994.0000 19095.3828 -101.3828
1990 20465.0000 20174.4883 290.5117
1991 21602.0000 20953.9238 648.0762
1992 22154.0000 21812.3711 341.6289
1993 21878.0000 22367.1992 -489.1992
1994 22371.0000 23546.5918 -1175.5918
1995 23035.0000 24460.1660 -1425.1660
1996 23742.0000 25509.9199 -1767.9199
1997 24156.0000 26435.2461 -2279.2461
1998 24931.0000 27414.1738 -2483.1738
1999 25755.0000 28618.4395 -2863.4395
2000 26943.0000 30140.9590 -3197.9590
2001 27449.0000 30884.2793 -3435.2793
2002 28348.0000 31672.4336 -3324.4336
2003 28855.0000 . .

Mean 20066.7826 21060.9949 -994.2123

Note: The average treatment effect over the post-treatment periods is
-994.2123.

Finished.
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Figure 7. Graphs for in-time placebo test in example 2

Apparently, the placebo effects during the “fake posttreatment periods” from 1980 to
1989 are negligible, which supports our confidence in the significance of actual treatment
effects, if any.

7 Conclusion
The RCM is a convenient approach for causal inference in panel data with a single treated
unit that exploits cross-sectional correlation to construct counterfactual outcomes by
linear regression. In this article, we reviewed the RCM methodology and presented the
command rcm for efficient implementation of the RCM with or without covariates.

Available methods for model selection include best subset, lasso, and forward step-
wise and backward stepwise regression, while available selection criteria include the
AICc, the AIC, the BIC, the MBIC, and cross-validation. Estimation and prediction can
be made by OLS, lasso, or postlasso OLS. For statistical inference, both in-space and in-
time placebo tests can be implemented. The rcm command produces a series of graphs
for visualization along the way. We demonstrated the use of rcm by revisiting clas-
sic examples of political and economic integration between Hong Kong and mainland
China (Hsiao, Ching, and Wan 2012) and German reunification (Abadie, Diamond, and
Hainmueller 2015).
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-4

. net install st0693 (to install program files, if available)

. net get st0693 (to install ancillary files, if available)

The rcm command also is available on the Statistical Software Components Archive
and can be installed directly in Stata with the command

. ssc install rcm
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