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Abstract. In this article, we introduce a new command, cspa, that implements
the conditional superior predictive ability test developed in Li, Liao, and Quaed-
vlieg (2022, Review of Economic Studies 89: 843–875). With the conditional per-
formance of predictive methods measured nonparametrically by the conditional
expectation functions of their predictive losses, we test the null hypothesis that a
benchmark model weakly outperforms a collection of competitors uniformly across
the conditioning space. The proposed command can implement this test for both
independent cross-sectional data and serially dependent time-series data. Confi-
dence sets for the most superior model can be obtained by inverting the test, for
which the cspa command also offers a convenient implementation.

Keywords: st0696, cspa, conditional moment inequality, forecast evaluation, func-
tional inference, series estimation

1 Introduction
Making accurate predictions is a central task of data analysis. Economists in central
banks routinely update their forecasts on a broad range of macroeconomic indicators
to inform policymaking. Investors in financial markets devote a tremendous amount
of effort to predict asset prices’ movements. Data analytics for various socioeconomic
activities have also stimulated new generations of predictive models on the “micro”
level for firms, communities, households, and individuals. At the same time, numer-
ous machine-learning techniques have been developed to address complex forecasting
problems in the era of “big data”.

In view of the ever-growing abundance of potentially good predictive methods, eval-
uating their relative performance is evidently of great practical importance. The most
intuitive approach, which is also commonly adopted in machine-learning studies, is to
directly compare the forecasting accuracy measured by certain loss functions. Such eval-
uation may be further formalized as a statistical hypothesis testing problem. Arguably
the most popular test in economic applications is the pseudo out-of-sample Diebold–
Mariano test (Diebold and Mariano 1995) for the null hypothesis that the ex post losses
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(for example, the squared prediction error) of two predictive methods are equal in expec-
tation. Diebold and Mariano’s proposal is effectively a t test that may be implemented
by regressing the observed loss differential between the competing methods on a con-
stant term and checking whether the estimated intercept is significantly different from
zero. This can easily be done in Stata via regress (see [R] regress) for independent
data or, more generally, newey (see [TS] newey) for data with serial dependence.

Although the Diebold–Mariano test provides a simple way of forecasting evaluation,
a more practically relevant question would be to investigate whether a specific method
generates more accurate forecasts than its competitors. Following this direction, the
test for unconditional superior predictive ability was first developed by White (2000)
and later refined by Hansen (2005). The null hypothesis of such a test states that a
benchmark method (weakly) outperforms a set of competing alternatives.

Because the aforementioned tests are based on the unconditional average perfor-
mance of the competing predictions, they invariably “integrates out” the heterogeneity
across subsample periods (for example, expansion or recession episodes) or subpopu-
lations (for example, income or age groups) and hence may be too coarse for certain
practical applications. Unraveling the state-dependent or characteristic-dependent rel-
ative performance among predictive models naturally calls for a conditional evaluation
approach. The first attempt in this aspect, to our best knowledge, traces back to
the conditional equal predictive ability (CEPA) test proposed by Giacomini and White
(2006). Under the CEPA null hypothesis, the conditional expected loss functions of
different forecasting methods are identically the same across all conditioning states.

In this article, we propose a new command, cspa, that offers a convenient imple-
mentation for the conditional superior predictive ability (CSPA) test recently proposed
by Li, Liao, and Quaedvlieg (2022). The null hypothesis of interest states that the
conditional expected loss of a benchmark predictive model is no larger than those of the
competing models uniformly across all conditioning states (specified by a conditioning
variable chosen a priori by the user). In this sense, the CSPA null hypothesis asserts
that the benchmark is a uniformly weakly dominating method among all predictive
models under consideration. “Passing” the test indicates that the benchmark method is
likely to perform well not only on average but also across all subpopulations “sliced” by
the conditioning variable chosen by the user, which may be a macroeconomic cyclical
indicator, a financial risk measure, or an individual characteristic, depending on the
empirical context.

The main functionality of the proposed cspa command is to implement the CSPA
test for a given benchmark against a collection of competitors. A rejection indicates
that some competitor outperforms the benchmark over some conditioning states. A
nonrejection, on the other hand, suggests that the benchmark is weakly dominating.
Moreover, by rotating the benchmark role across all models, we may form the confi-
dence set for the most superior (CSMS) as the collection of all nonrejected benchmarks.
This operation can also be accomplished easily by calling the csms option. We shall
demonstrate how to carry out these inferential tasks in an empirical example on asset
volatility forecasting using a dataset from Li, Liao, and Quaedvlieg (2022).
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The remainder of this article is organized as follows. Section 2 provides a brief review
on the CSPA testing procedure and the underlying intuition. Section 3 documents the
syntax of the cspa command and available options. Section 4 demonstrates the key
functionalities of the proposed command in an empirical example. Section 5 concludes.

2 The conditional evaluation method
This section provides a brief review of the CSPA test developed in Li, Liao, and Quaed-
vlieg (2022). Section 2.1 describes the setting. Section 2.2 details the CSPA testing
procedure. To simplify the discussion, we mainly focus on the time-series setting, with
the understanding that random samples with independent observations may be consid-
ered as a special “time series” with no serial dependence.

2.1 The setting and hypotheses of interest

Let (F †
t )1≤ t≤ n denote the time series to be predicted. Correspondingly, we consider a

series of benchmark predictions, (F0,t)1≤ t≤ n, and a collection of J competing alterna-
tives, (Fj,t)1≤ t≤ n, 1 ≤ j ≤ J . The performance of these predictive methods is gauged
by a user-specified loss function, L(·, ·), so the loss for model j at period t is L(F †

t , Fj,t).
Commonly used loss functions include the quadratic loss, absolute deviation loss, and
Stein’s loss.1 The performance of the benchmark method relative to the jth competing
alternative is thus measured by the loss differential series

Yj,t = L(F †
t , Fj,t)− L(F †

t , F0,t)

Its conditional mean function, given a user-specified conditioning variable Xt, is further
defined as

hj(x) ≡ E(Yj,t |Xt = x)

Note that hj(x) ≥ 0 indicates that the benchmark method is expected to (weakly)
outperform the jth competitor conditional on Xt = x.

The null hypothesis of the CSPA test asserts that

H0 : hj(x) ≥ 0, for all x ∈ X , 1 ≤ j ≤ J (1)

where X is the support of Xt. Under the null hypothesis, the benchmark method out-
performs all competing alternatives uniformly across all conditioning states. Evidently,
by the law of iterated expectations, this also implies that the unconditional expected loss
of the benchmark is lower than those of the competing methods [that is, E(Yj,t) ≥ 0].
However, the CSPA null hypothesis is generally much more stringent than its uncondi-
tional counterpart. As such, the (uniform) conditional dominance criterion may help
the researcher discriminate competing predictive methods that appear “uncondition-
ally similar”, and thus it complements conventional evaluation methods such as the
Diebold–Mariano test.
1. Stein’s loss function is defined in (3) on page 931.
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2.2 The testing procedure

We now detail how the cspa command implements the CSPA test in the background. The
first step is to nonparametrically estimate the conditional expectation functions of the
loss differentials [that is, {hj(·) : 1 ≤ j ≤ J}] by running series regressions. Specifically,
let p(x) = (p1(x), . . . , pm(x))> be an m-dimensional vector of approximating basis
functions. For each j, we regress Yj,t on p(Xt) with the resulting regression coefficient
given by

b̂j = Q̂−1

{
n−1

n∑
t=1

p(Xt) Yj,t

}
where Q̂ = n−1

n∑
t=1

p(Xt) p(Xt)
>

The nonparametric series estimator for hj(·) is then constructed as

ĥj(·) = p(·)>b̂j

The underlying nonparametric inference theory requires the number of series terms
m → ∞ in large samples, so the unknown conditional expectation functions can be well
approximated.

The current version of cspa uses Legendre polynomials to form the approximating
functions p(Xt). An important property of the Legendre polynomials is that they
are orthogonal on the [−1, 1] interval with respect to the uniform distribution. This
orthogonality property helps mitigate the multicollinearity among series terms and hence
improves the numerical stability of the estimation procedure in finite samples. Other
types of orthogonal series basis may also be adopted to serve the same purpose, which is
left for future development. To better exploit the orthogonality of Legendre polynomials,
we recommend performing a preliminary transformation on the conditioning variable Xt

to make it approximately uniformly distributed on the [−1, 1] interval; see the method()
option for available choices provided in cspa.

To carry out the test, one must account for the sampling variability of the functional
estimates ĥj(·). Let ûj,t = Yj,t − ĥj(Xt) be the residual from the jth regression, and
collect them in a J-dimensional column vector ût. We estimate the joint variance–
covariance matrix for the series regression coefficients b̂j , 1 ≤ j ≤ J , using

Ω̂ ≡
(
IJ ⊗ Q̂

)−1

Â
(
IJ ⊗ Q̂

)−1

where IJ denotes the J × J identity matrix, ⊗ is the Kronecker product, and Â is
a Newey–West estimator for the “long-run” covariance matrix of the Jm-dimensional
vector ût⊗p(Xt). The lag parameter for the Newey–West estimator may be set via the
lag() option in cspa; also see [TS] newey. Note that if it is known a priori that there is
no serial correlation in the data (for example, when the observations are assumed to be
independent), one may set lag(0), which is also the default option in cspa. We further
partition Ω̂ into J × J blocks of m × m submatrices. The standard error function of
ĥj(·) is then estimated as
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σ̂j(x) ≡
{
p(x)>Ω̂(j, j)p(x)

}1/2

where Ω̂(j, j) is the (j, j) block extracted from the aforementioned partition of Ω̂.

At a significance level α, the rejection decision of the CSPA test is determined as
follows.

Step 1. Simulate a Jm-dimensional normal random vector (ξ∗>1 , . . . , ξ∗>J )> ∼
N (0, Ω̂), where each ξ∗j is m dimensional. Set t̂∗j (x) ≡ p(x)>ξ∗j /σ̂j(x).

Step 2. Repeat step 1 many times. For some constant z > 0, define K̂ as the
1 − z/ log(n) quantile of max1≤ j≤ J supx∈X t̂∗j (x) in the simulated sample and
then set

V̂ ≡
{
(j, x) : ĥj(x) ≤ min

1≤ j≤ J
inf
x∈X

{
ĥj(x) + n−1/2K̂σ̂j(x)

}
+ 2n−1/2K̂σ̂j(x)

}
The default value of z is 0.1, which may be modified by calling the ais() option.

Step 3. Set k̂1−α as the (1 − α) quantile of sup(j,x)∈V̂ t̂
∗
j (x). Reject the null

hypothesis (1) if and only if

η̂1−α ≡ min
1≤ j≤ J

inf
x∈X

{
ĥj(x) + n−1/2k̂1−ασ̂j(x)

}
< 0 (2)

Let us clarify some intuition underlying this testing procedure. The set V̂ described
in step 2 implements an adaptive inequality selection (corresponding with the ais()
option). It can be shown that, with probability approaching 1, V̂ contains all (j, x)’s
that minimize hj(x). From (1), we can easily see that whether the null hypothesis
holds is solely determined by the functions’ values at these extremum points. The
selection step focuses the test on the relevant conditioning region and so improves its
power. Step 3 then investigates the validity of the null hypothesis by examining the
uniform upper confidence bounds for hj(·). We note that the rejection decision described
in (2) naturally admits a graphical representation. Indeed, the functional estimates
ĥj(·) + n−1/2k̂1−ασ̂j(·) are 1 − α upper confidence bounds for hj(·) uniformly over
the selected set V̂ . If some of these upper bounds dip below zero over some part of
the conditioning space, we interpret it as significant statistical evidence against the null
hypothesis [that is, hj(x) ≥ 0 for all (j, x)], which leads to a formal rejection.

For some applications, it may be more natural to treat all competing predictive
methods “symmetrically”, rather than picking a particular one as the benchmark. In this
situation, one may naturally rotate the benchmark role across all competing methods
and then collect all nonrejected benchmarks in a set,

M̂1−α = {0 ≤ j ≤ J : the α-level CSPA test
with method j as the benchmark does not reject}
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This operation is formally an inversion of the CSPA test, and, by the duality between tests
and confidence sets, M̂1−α is a 1−α level CSMS (which collects methods with the lowest
conditional expected loss uniformly across all conditioning states). The implementation
can be easily carried out via cspa by calling the csms option.

3 The cspa command
This section documents the syntax and functionalities of the cspa command. The
command requires the moremata (Jann 2005) package, which may be installed in the
command line via ssc install moremata.

3.1 Syntax

The syntax of the cspa command is

cspa condvar benchmark competitors
[

if
] [

in
] [

, ais(#) lag(#) m(#)

method(transtype) siglevel(#) ngrid(#) triml(#) trimr(#) mc(#) csms

plot plotu detail(color) excel
]

condvar is the conditioning variable; benchmark is the loss of the benchmark; and com-
petitors is a list of loss variables associated with the competitors.

3.2 Options

ais(#) specifies the degree of adaptive inequality selection. The default is ais(0.1).
The selection may be disabled by setting ais(0).

lag(#) specifies the number of lags for computing the Newey–West estimator Ân. The
default is lag(0).

m(#) specifies the number of Legendre polynomial terms used in series estimation. The
default is given by the integer part of max(4, n1/5).

method(transtype) specifies the transformation implemented on the conditioning vari-
able. The main purpose of doing so is to make the regressors approximately or-
thogonal, which generally improves the numerical stability of the series regression,
especially when many series terms are included. The approximating functions are
Legendre polynomials of the transformed variable. The current version supports the
following transformation methods, with method(rank) being the default.

none: no transformation

affine: affine transformation x 7→ 2{x−min(x)} / {max(x)−min(x)} − 1
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normal: normal transformation x 7→ 2Φ{(x − x)/σ} − 1, where x and σ are the
sample mean and standard deviation of x and Φ is the cumulative distribution
function of the standard normal distribution

lognormal: log-normal transformation x 7→ 2Φ{(log x − log x)/Σ} − 1, where log x
and Σ are the sample mean and standard deviation of log x and Φ is the cumu-
lative distribution function of the standard normal distribution

rank: x 7→ 2q(x)− 1, where q(x) is the empirical quantile of x

siglevel(#) specifies the significance level (in percent) for the CSPA test. The default
is siglevel(5).

ngrid(#) specifies the number of grid points used for discretizing the support of the
conditioning state variable. The default is ngrid(1000).

triml(#) sets the left limit of the conditioning region X to be the # empirical quantile
of condvar. The default is triml(0).

trimr(#) sets the right limit of the conditioning region X to be the 1 −# empirical
quantile of condvar. The default is trimr(0).

mc(#) specifies the number of Monte Carlo simulations used to construct the critical
values. The default is mc(5000).

csms calculates the CSMS by rotating the benchmark role across all competing methods.

plot produces plots of the lower envelope of estimated conditional mean functions of loss
differentials and their upper confidence bounds, with the transformed conditioning
variable plotted on the horizontal axis.

plotu produces plots of the lower envelope of estimated conditional mean functions of
loss differentials and their upper confidence bounds, with the original conditioning
variable plotted on the horizontal axis.

detail(color) adds the estimated conditional mean functions of loss differentials onto
the plot generated by plot or plotu. The color of these functions is specified by
color.

excel creates an Excel file that contains the requisite estimates for producing the plots
generated by plot or plotu.
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3.3 Stored results

cspa stores the following in e():

Scalars
e(N) number of observations
e(ts) CSPA test statistic
e(pvalue) p-value of the CSPA test

Macros
e(cmd) cspa
e(condvar) name of the conditioning variable
e(loss) name of the loss variables
e(method) transformation method

Matrices
e(xgrid) grid points of the conditioning variable
e(h_hat) estimates of the conditional expected loss differentials
e(lowerenvelope) estimate of the lower envelope of the conditional expected loss differ-

entials
e(cb) estimate of the confidence bound

4 An empirical example
4.1 Data description

Our real-data demonstration is based on a dataset from the empirical study of Li,
Liao, and Quaedvlieg (2022). rv.dta contains a time series of daily realized volatilities
of the Boeing Company, computed as the sum of squared five-minute returns within
regular trading hours, and six time series of one-day-ahead volatility forecasts that are
generated using a first-order autoregressive process, AR(1), an AR(22), and an AR(22)
with lasso selection, the heterogeneous autoregressive (HAR) model of Corsi (2009), the
heterogeneous autoregressive quarticity (HARQ) model developed in Bollerslev, Patton,
and Quaedvlieg (2016), and an autoregressive fractionally integrated moving average
(ARFIMA) model. These forecasts are formed under a rolling-window scheme with 1,000
daily observations, and the evaluation sample ranges from May 2001 to December 2013,
resulting in 3,180 daily forecasts. We refer the reader to Li, Liao, and Quaedvlieg
(2022) for details on their constructions. The dataset also contains a time series of
lagged Chicago Board Options Exchange volatility indexes (VIX) that shall be used as
the conditioning variable Xt for conducting the CSPA test.

Following Li, Liao, and Quaedvlieg (2022), we use Stein’s loss function to measure
the performance of the forecasts; that is,

L(F †
t , Fj,t) =

Fj,t

F †
t

− log

(
Fj,t

F †
t

)
− 1 (3)

This is a natural choice because volatility is a scale parameter and Stein’s loss is
commonly used in the study of scale problems. The losses of the six volatility forecasts
are then generated as follows:
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. *** Load data ***

. use rv

. *** Calculate loss ***

. generate ar1 = (rv_ar1/true) - log((rv_ar1/true)) - 1

. generate ar22 = (rv_ar22/true) - log((rv_ar22/true)) - 1

. generate ar22lasso = (rv_ar22lasso/true) - log((rv_ar22lasso/true)) - 1

. generate har = (rv_har/true) - log((rv_har/true)) - 1

. generate harq = (rv_harq/true) - log((rv_harq/true)) - 1

. generate arfima = (rv_arfima/true) - log((rv_arfima/true)) - 1

4.2 One-versus-one CSPA test

We illustrate the most basic usage of the cspa command by conducting a one-versus-one
conditional evaluation for two competing models: AR(1) and HAR. Specifically, we per-
form the CSPA test with one of them as the benchmark and the other as the competitor
(so J = 1). The tests are implemented as follows:

. cspa vix ar1 har, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

ar1 -0.1029 (reject) 0.0002

. cspa vix har ar1, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har 0.0405 (non-reject) 0.9998

The output table of cspa reports the test statistic η̂1−α at the user-specified sig-
nificance level α, which by default is 5%. The null hypothesis that the benchmark
uniformly weakly dominates the competitor is rejected when η̂1−α < 0. The table also
reports the p-value of the test. Looking at the tables above, we see that the CSPA null
hypothesis with AR(1) being the benchmark is strongly rejected, but the test does not
reject the CSPA null for HAR at any conventional significance level, suggesting that HAR
is the superior predictive method.

With plot specified, cspa also plots the estimated conditional expected loss differ-
ential function ĥ1(·) along with the upper confidence bound ĥ1(·) + n−1/2k̂1−ασ̂1(·) as
shown in figure 1. Recall that a negative loss differential indicates that the benchmark
underperforms the competitor, and vice versa. Moreover, the CSPA test rejects the null
hypothesis if the upper confidence bound dips below zero over some part of the condi-
tioning space. From the left panel of figure 1, we see that AR(1) actually underperforms
HAR over the entire conditioning space with high statistical significance. Meanwhile,
the upper confidence bound plotted on the right panel is always above zero, which is
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consistent with the fact that the CSPA test does not reject the null hypothesis that HAR
uniformly weakly dominates AR(1).
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Figure 1. Diagnostic plots for one-versus-one CSPA tests

The results presented above are generated under the default setting of cspa, except
that we set the Newey–West lag parameter at lag(11) to account for serial dependence
following Li, Liao, and Quaedvlieg (2022). The significance level is α = 5%, which may
be modified via the siglevel() option. By default, the series basis consists of m = 5
series terms (that is, m(5)), corresponding with a fourth-order Legendre polynomial. In
addition, the conditioning variable vix is transformed onto the [−1, 1] interval via the
rank transformation (that is, method(rank)). Robustness checks with respect to these
choices can be conveniently implemented by modifying the corresponding options, as
illustrated in section 4.5 below.

4.3 One-versus-all CSPA test

We next demonstrate how to implement the CSPA test with multiple competitors. Re-
call that rv.dta contains six competing volatility forecasts. We may thus perform
one-versus-all CSPA tests with one model as the benchmark and all the other five mod-
els as competitors, corresponding with J = 5. Under the null hypothesis, the benchmark
model weakly dominates all the others uniformly across the conditioning space spanned
by the VIX. The following command implements such a test, with HAR being the bench-
mark:

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har -0.0095 (reject) 0.0002
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From the table, we see that the CSPA null hypothesis for the HAR benchmark is
strongly rejected. Although the one-versus-one test presented in section 4.2 suggests
that HAR outperforms AR(1), the more stringent one-versus-all test reveals that HAR is
no longer uniformly superior once additional competitors join the competition.

For comparison, we further implement the test for the HARQ benchmark as follows:

. cspa vix harq ar1 ar22 ar22lasso har arfima, lag(11) plot

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

harq 0.0054 (non-reject) 0.6778

Here we see that the CSPA null hypothesis cannot be rejected at any conventional
significance level, offering formal statistical evidence for HARQ’s superiority relative to
the other competitors across conditioning states.

In the present setting with multiple competitors, plot draws the estimated lower
envelope function min1≤ j≤ J ĥj(·), which depicts the worst-case relative performance
of the benchmark (in comparison with the “toughest” competitor) across the differ-
ent conditioning states. The associated upper confidence bound min1 ≤ j≤ J{ĥj(·) +

n−1/2k̂1−ασ̂j(·)} is also plotted; if this bound ever falls below zero, the null hypothesis
is rejected.

The left panel of figure 2 shows the plots associated with the HAR benchmark; the
right panel, the plots associated with the HARQ benchmark. From the left panel, we
see that the lower envelope function is always below zero, suggesting that at every
conditioning state the HAR benchmark is outperformed by some competitor. The upper
confidence bound dips below zero over the low-VIX region, which explains the CSPA
test’s rejection decision. On the other hand, we see from the right panel that the lower
envelope function for the HARQ benchmark is generally “more positive”, indicating its
better relative performance. The associated upper confidence bound is always above
zero, which is why the null hypothesis is not rejected for HARQ.
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Figure 2. Diagnostic plots for one-versus-all CSPA tests

Note that for the one-versus-all test the plot option draws only the lower envelope
function and its upper confidence bound, which concisely summarize the information
from all J functional estimates. That noted, it may be useful for diagnostic purposes
to also examine the individual ĥj(·) estimates of conditional expected loss differentials.
Their plots can be added by further calling the detail(color) option, as illustrated in
figure 3.

-.0
5

0
.0

5
.1

.1
5

Δ 
Lo

ss

-1 -.5 0 .5 1
Transformed vix

Lower Envelope 95% Confidence Bound

Conditional Expectations of Loss Differentials

(a) Benchmark: HAR

0
.0

5
.1

.1
5

Δ 
Lo

ss

-1 -.5 0 .5 1
Transformed vix

Lower Envelope 95% Confidence Bound

Conditional Expectations of Loss Differentials

(b) Benchmark: HARQ

Figure 3. Detailed diagnostic plots for one-versus-all CSPA tests

Here the detail(gray) option draws the estimated conditional expectation func-
tions of loss differentials, ĥj(·), for 1 ≤ j ≤ 5, and the corresponding lower envelope
function (the black solid curve). Because the lower envelope function consists of the
minimum values of ĥj(·), that is, min1≤j≤J ĥj(·), it always coincides with some parts of
the ĥj(·) curves. As a choice of design, we do not differentiate these gray curves using
different line patterns so as to avoid a potential excess of information, especially for
applications with many competing models. That being said, users may customize such
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plots according to their specific needs using the more detailed output generated by the
excel option.

The left panel of figure 3 reveals that, although HAR does not pass the CSPA test,
its estimated conditional expected loss is lower than three competitors, as evidenced by
the three ĥj(·) curves above zero; but it is “beaten” by the other two competitors across
all conditioning states. Note that the lower envelope function here is solely formed by
these two superior competitors. Also, note from the right panel that the lower envelope
for the HARQ benchmark coincides with one particular ĥj(·) curve (overlaid by the lower
envelope), which is associated with the ARFIMA model.

4.4 CSMS

As discussed in section 2.2, the CSMS may be constructed by collecting all benchmarks
that are not rejected by the CSPA test. In particular, the one-versus-all tests performed
in section 4.3 suggest that, at the 95% confidence level, HARQ belongs to the CSMS but
HAR does not. We may further implement the test for the other benchmarks to decide
whether they should be included in the CSMS.

The cspa command offers a more compact way to accomplish this task. With the
csms option turned on, the command will automatically perform the requisite tests by
rotating the benchmark role across all competing models, as shown below.

. cspa vix ar1 ar22 ar22lasso har harq arfima, lag(11) csms

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

ar1 -0.1156 (reject) 0.0002

ar22 -0.0174 (reject) 0.0002

ar22lasso -0.0339 (reject) 0.0002

har -0.0095 (reject) 0.0002

harq 0.0052 (non-reject) 0.6834

arfima 0.0057 (non-reject) 0.7876

The 95% CSMS = {harq, arfima}.

Here the output table reports the CSPA test statistics and the associated p-values for
all six one-versus-all tests with different benchmarks. It also reports the CSMS, which in
the current example consists of the HARQ and ARFIMA models. Note that when csms is
active it is unnecessary to distinguish benchmark from competitors because all models
under consideration are treated symmetrically.
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4.5 Options

We highlight a few options that are more likely to be useful in typical empirical appli-
cations. For brevity, the illustration below focuses on the one-versus-all CSPA test for
the HAR benchmark. Recall from section 4.3 that the null hypothesis is rejected when
the testing procedure is implemented under cspa’s default setting. Our goal here is to
perform some robustness checks with respect to this choice.

We first consider the number of series terms, m. Instead of using the default value,
we may manually set it to 4, 6, 8, or 10 by modifying the m() option as shown below.
The null hypothesis is still strongly rejected in all of these settings.

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(4)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har -0.0102 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(6)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har -0.0093 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(8)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har -0.0087 (reject) 0.0002

. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) m(10)

Transformation on vix: Rank.

Benchmark CSPA Test (5%) p-value

har -0.0086 (reject) 0.0002

Next we recall that, under the default setting, the approximating functions are
formed as Legendre polynomials of the rank-transformed vix. The purpose of using the
rank transformation is to make the conditioning variable approximately uniformly dis-
tributed on [−1, 1], which helps reduce the multicollinearity among the series regressors.
We may also use the other types of transformations by modifying the method() option.
Because the distribution of VIX is close to being log-normal, method(lognormal) is a
natural choice for this task. From the implementation below, we see that this modifi-
cation does not affect the rejection decision of the CSPA test.
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. cspa vix har ar1 ar22 ar22lasso harq arfima, lag(11) method(lognormal)

Transformation on vix: Lognormal.

Benchmark CSPA Test (5%) p-value

har -0.0085 (reject) 0.0002

Finally, we note that the diagnostic figures generated by the plot option are plotted
on the transformed scale over the [−1, 1] interval. Alternatively, we may also set the
horizontal axis to the original untransformed scale by using the plotu option. To clarify,
the only effect of switching from plot to plotu is to compress or stretch the plotted
curves along the horizontal axis, resulting in an alternative graphical presentation. The
underlying testing results are completely unchanged. A concrete demonstration is given
below, with the new plot displayed on figure 4. From the figure, we see that the sta-
tistical evidence against the null hypothesis mainly stems from the subregion with the
VIX below 25%. We also note that the gap between the confidence bound and non-
parametric estimate is fairly wide when the VIX is, say, above 50%. This is because the
effective sample size for the local estimation on this region is relatively small, resulting
in imprecise nonparametric estimates. This is also why the corresponding segment is
“compressed” under the rank-transformed scale as previously shown on the left panel
of figure 2.
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Figure 4. Diagnostic plot for the one-versus-all CSPA test generated by plotu (bench-
mark: HAR)

5 Conclusion
In this article, we described a new command, cspa, that conducts the CSPA test recently
developed in Li, Liao, and Quaedvlieg (2022). Specifically, this command enables re-
searchers to compare the performance of predictive methods across the conditioning
space and construct the corresponding CSMS. The main functionalities of the cspa com-
mand were illustrated in an empirical application on volatility forecasting.
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The proposed command is particularly useful when the researcher is interested not
only in the competing models’ average performance but also in their more detailed be-
havior across different conditioning states (for example, business cycle, financial condi-
tions, and demographic characteristics). The method is general enough to accommodate
time-series data with unknown forms of serial correlation and heteroskedasticity, and
it can be readily specialized for applications with independent random samples under
the default setting with lag(0). An unconditional superior predictive ability test anal-
ogous to that proposed by Hansen (2005) may be implemented by setting m(1), which
is equivalent to conditioning on only the constant term. In principle, one can also use
cspa to implement a nonparametric version of the CEPA test of Giacomini and White
(2006) by treating a conditional moment equality as a pair of conditional moment in-
equalities. That being said, this task may be more directly accomplished in Stata via a
nonparametric regression by using, for example, the tssreg command proposed in Li,
Liao, and Gao (2020).

The current version of cspa may be improved in several ways. One is to allow for
a multidimensional conditioning variable Xt. Because of the curse of dimensionality,
how to “optimally” choose the approximating functions become a more relevant and
challenging problem. The multidimensional setting would also require a more advanced
visualization design than the simple plots of loss differential and confidence bound curves
adopted in the one-dimensional setting here. It is also conceivable that other types of
approximation basis functions may be more suitable than the Legendre polynomials in
certain empirical settings, which may be a useful direction for future development.

6 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-4

. net install st0696 (to install program files, if available)

. net get st0696 (to install ancillary files, if available)
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