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Abstract. In this article, I describe the commands that implement the estimation
of three endogenous models of binary choice outcome. The command esbinary
fits the endogenously switching model, where a potential outcome differs across
two treatment states. The command edbinary fits the endogenous dummy model,
which includes a dummy variable indicating the treatment state as one of the
explanatory variables. After one estimates the parameters of these models, various
treatment effects can be estimated as postestimation statistics. The command
ssbinary fits the sample-selection model, where an outcome is observed in only
one of the states. The commands fit these models using copula-based maximum-
likelihood estimation.
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1 Introduction
The issue of endogeneity is a common problem in empirical studies. Researchers also
frequently encounter binary choice outcomes. There are various kinds of endogeneity,
and different econometric models of binary choice outcome have been proposed to deal
with different kinds of endogeneity. The endogeneity issue fundamentally stems from
the dependence of unobservable terms in a model. To estimate model parameters con-
sistently, one must model the dependence of unobservable terms. A traditional and
commonly used assumption is joint normality. However, it is restrictive, and the viola-
tion of the distributional assumption results in inconsistency. To relax the distributional
assumption, I consider a copula-based approach that generates a joint distribution by
combining two separate marginal distributions. The copula-based approach includes the
joint normality assumption as its special case, but it also allows for various nonnormal
dependence structures of unobservable terms.

In this article, I discuss three econometric models of binary choice outcomes with
potential endogeneity that are closely related to one another, and I introduce the
commands to fit these models using the copula-based maximum-likelihood estimation
method. The first model is an endogenous switching model, where potential outcomes
differ across two alternative treatment states and the treatment state is determined
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endogenously. Hasebe (2021) discusses the copula-based approach of this model. The
command esbinary implements estimation. This command is the copula-based exten-
sion of the command switch_probit by Lokshin and Sajaia (2011), which fits the same
model under the assumption of joint normality.

In the second model, a potential endogenous dummy variable enters as one of the
variables to explain a binary choice outcome. This model can be seen as a special case
of the first model with some restrictions, such as the equality of coefficients across two
treatment states except for constant terms. Winkelmann (2012) and Hasebe (2013a)
discuss the copula-based approach of this endogenous dummy model. The Stata com-
mand biprobit fits this model under the joint normality assumption. The command
edbinary implements copula-based maximum-likelihood estimation.

The third model is also another special case of the first model, where a binary choice
outcome is observed in one of two possible states but is missing in the other state. This is
a well-known form of the sample-selection model. Dancer, Rammohan, and Smith (2008)
discuss the copula-based approach of this model. The command ssbinary implements
the copula-based maximum-likelihood estimation of this model, which relaxes the joint
normality assumption that the Stata command heckprobit makes.

The literature has also discussed the copula-based estimation of the endogenous
models of continuous outcome. See, for example, Lee (1983), Smith (2003, 2005), and
Trivedi and Zimmer (2007). Hasebe (2013b) introduces the commands to implement
the copula-based estimation of the endogenous switching and sample-selection models
of continuous outcome. The commands introduced in this article are the binary choice
outcome counterparts of the commands by Hasebe (2013b).

The endogenous switching model and its special case, the endogenous dummy model,
are useful model specifications to estimate treatment effects. Different treatment effects
are defined to allow for heterogeneity in treatment effects among different populations
(Heckman and Vytlacil 2007). The endogenous switching model enables us to derive var-
ious treatment effects straightforwardly. Building on the endogenous switching model,
Hasebe (2021) expresses the treatment effects for binary choice outcomes in terms of cop-
ulas. After one executes esbinary and edbinary, the postestimation command estat
teffects is available to estimate some treatment effects. Specifically, the command op-
tions allow the estimation of the average treatment effect (ATE), average treatment effect
on the treated (ATT), average treatment effect on the untreated (ATU), local average
treatment effect (LATE), and marginal treatment effect (MTE).

Note that the estimation of the treatment effects by these commands relies on the
parametric distributional assumptions because the commands allow for only the op-
tions of parametric copulas and marginal distributions. Such parametric assumptions
may be considered as restrictive in the recent literature of program evaluation because
the literature has moved toward less stringent assumptions in modeling and estimating
treatment effects. Indeed, several semiparametric estimators for the treatment effects
have been proposed. For example, the package mtefe by Andresen (2018) implements
several estimation methods for MTE. However, these estimators are not developed specif-
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ically for the binary choice outcome.1 These commands provide a benchmark estimation
result under the distributional assumption that is parametric but weaker than the joint
normality.

The structure of this article is as follows. The next section outlines the three models
of the binary choice outcome. Section 3 briefly explains the copula method and the
copula-based maximum-likelihood estimation of the models. Section 4 discusses various
treatment effects proposed in the literature and shows the expressions of these treatment
effects based on the endogenous switching model. Section 3 describes the commands
esbinary, edbinary, and ssbinary, followed by data applications in section 6. Sec-
tion 5 concludes the article.

2 Models
This section describes the three models of binary choice outcome, which are closely
related to one another. In the first model, a potential outcome differs across two alter-
native states (or regimes), and the state is endogenously determined. We call this an
endogenous switching model. The second model, which can be considered as a special
case of the first model, has a dummy variable indicating an endogenously chosen treat-
ment state as one of explanatory variables. We refer to this as an endogenous dummy
model. In the third model, which can also be seen as another special case of the first
model, an outcome is missing in one of two possible states. Like the two models above,
which state is chosen is endogenously determined. We call this model a sample-selection
model.

The endogenous switching model consists of three equations: a selection equation
and two outcome equations. For an individual i, i = 1, . . . , N , the selection equation is

di = 1(zi
′γ + νi ≥ 0) (1)

where 1(·) is an indicator function, zi is a vector of observable characteristics, and νi is
an unobservable term. There are two potential binary outcomes, y0i and y1i, which are
determined as follows:

y0i = 1(x0i
′β0 + ε0i ≥ 0)

y1i = 1(x1i
′β1 + ε1i ≥ 0)

x0i and x1i are vectors of explanatory variables including constant terms, and ε0i and
ε1i are unobservable terms. Although x0i and x1i can be different in theory,2 it is usual

1. Han and Vytlacil (2017) discuss an identification of the endogenous dummy model with unknown
marginal distributions, and Han and Lee (2019) propose a sieve maximum-likelihood estimation of
the endogenous dummy model with parametric copula and nonparametric marginal distributions.
Chiburis (2010) presents semiparametric bounds of ATE on a binary choice outcome. A factor
structure model is an alternative approach to model the dependence of unobservable terms. Aakvik,
Heckman, and Vytlacil (2005) define the treatment effects for binary choice outcome in a factor
structure model.

2. The command esbinary allows sets of explanatory variables to be different across the two states.
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to have the same set of explanatory variables in practice. Without loss of generality, we
assume that x0i and x1i are the same and denote them by xi. Depending on the value
of d, we observe either y0 or y1, but both outcomes cannot be observed simultaneously
for the same individual: yi = diy1i + (1− di)y0i. The endogeneity issue arises when εj ,
j = 0, 1, is not independent of ν.

Note that, although it is standard that an unobservable term enters with a positive
sign in a binary choice model, the policy evaluation literature often includes an unobserv-
able term with a negative sign in the selection equation. That is, di = 1(zi

′γ − νi ≥ 0)
instead of di = 1(zi

′γ + νi ≥ 0). This modification does not alter the interpretation of
the coefficients, although it changes the expression of joint probabilities. In the copula-
based approach, changing the sign of an unobservable term is of practical use. We will
return to this point later.

The endogenous dummy model can be seen as a special case of the first model. In
this model, constant terms differ by the treatment state, but coefficients on observables
are the same across the two states. The unobservable terms are also assumed to be
identical across the states. In other words, we can obtain the endogenous dummy
model by restricting ε0 = ε1 = ε and β0 = β1 except for constant terms. Only one
outcome equation exists, and it is written as follows:

yi = 1(αdi + xi
′β + εi ≥ 0)

In the potential outcome framework, the outcomes in this model can be interpreted as
y1i = 1(α + xi

′β + εi ≥ 0) and y0i = 1(xi
′β + εi ≥ 0). The equation for a dummy

variable di is formalized as the selection (1). The dependence between ε and ν makes d
endogenous.

The sample-selection model is also a special case of the first model. An outcome for
an individual i is observed only when di = 1, but it is missing when di = 0. Like the
endogenous dummy model, there is only one outcome equation in this model:

yi = 1(xi
′β + εi ≥ 0) if di = 1

The selection mechanism is governed by the selection (1). The sample-selection issue is
attributed to the dependence between ε and ν.

To estimate the parameters in those models, one must model the dependence between
the unobservable term in the selection equation, ν, and that in the outcome equation(s),
ε (ε0/ε1). To this end, we use a copula approach.

3 Maximum likelihood estimation
I fit the models described above using maximum likelihood estimation. I first illustrate
the maximum likelihood estimation of the endogenous switching model. I explain the
copula-based approach to model the dependence between the unobservable terms and
discuss some related issues. I leave out detailed explanations of the copula method.
See, for example, Nelsen (2006) for a general introduction of copulas and Trivedi and
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Zimmer (2007) for the use of copulas in microeconometric studies. At the end of this
section, I briefly discuss the log-likelihood functions for the other two models.

The log-likelihood function of the endogenous switching model has the following
general form:

lnL =

N∑
i=1

[di{yi ln Pr(y1i=1, di=1) + (1− yi) lnPr(y1i=0, di=1)}

+ (1− di){yi ln Pr(y0i=1, di=0) + (1− yi) lnPr(y0i=0, di=0)}]

Pr(yji, di) for j = 0, 1 is the joint probability of d and yj conditional on the observable
characteristics x and z. To specify the joint probabilities of d and yj , we specify the joint
distributions of εj and ν. Let Fj(εj) be a marginal cumulative distribution function
(c.d.f.) of εj , and let Fd(ν) be a marginal c.d.f. of ν. Let Fjd(εj , ν) be a joint c.d.f.
of εj and ν. Then, given the observable characteristics xi and zi, for example, the
probability of observing yi = 1 and di = 1 for an individual i, Pr(y1i = 1, di = 1),
can be written as 1 − F1(−xi

′β1) − Fd(−zi
′γ) + F1d(−zi

′γ,−xi
′β1). A joint normal

distribution is the most conventional assumption. Under joint normality, Pr(y1i =
1, di = 1) = 1 − Φ(−xi

′β1) − Φ(−zi
′γ) + Φ2(−xi

′β1,−zi
′γ; ρ1), where Φ(·) is the

c.d.f. of univariate standard normal distribution, Φ2(·) is the c.d.f. of bivariate normal
distribution, and ρ1 is the coefficient of correlation between ε1 and ν. Using the fact that
the bivariate normal is symmetric, we can simplify this probability as Φ2(zi

′γ,xi
′β1; ρ1).

A copula-based approach nests the joint normality but also allows nonnormal de-
pendence. In short, a copula is a function that generates a joint distribution by binding
marginal distributions. Using a copula function Cj(·), we can write the joint distri-
bution of Fjd(εj , ν) as Cj{Fj(εj), Fd(ν); θj}, where θj is a (vector of) dependence pa-
rameters. We will discuss θj below. Note that it is not necessary to use the same
copula function for the joint distributions of F0d and F1d. The subscript j for Cj indi-
cates that a copula is for the joint distribution between εj and ν. In terms of copula,
Pr(y1i = 1, di = 1) = 1 − F1(−xi

′β1) − Fd(−zi
′γ) + C1{F1(−xi

′β1),−Fd(−zi
′γ); θj}.

To form the log-likelihood function, we need to specify other joint probabilities. See
table 1 for all the relevant probabilities in terms of copula. It also lists the expression of
the probabilities when each unobservable term enters with either a positive or a negative
sign.
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Table 1. Expressions of probabilities using a copula

d = 1(z′γ + ν > 0) and yj =1(x′β+εj >0)

Pr(yj =1) 1− Fj(−x′βj)

Pr(d=1) 1− Fd(−z′γ)

Pr(yj =1, d=1) 1−Fd(−z′γ)−Fj(−x′βj)+Cj{Fj(−x′βj), Fd(−z′γ); θj}
Pr(yj =0, d=1) Fj(−x′βj)−Cj{Fj(−x′βj), Fd(−z′γ); θj}
Pr(yj =1, d=0) Fd(−z′γ)−Cj{Fj(−x′βj), ud; θj}
Pr(yj =0, d=0) Cj{Fj(−x′βj), Fd(−z′γ); θj}

Pr(yj =1|ν = ν̃) 1−
∂Cj{Fj(−x′βj), Fd(ν); θj}

∂Fd

∣∣∣∣
ν=ν̃

d = 1(z′γ + ν > 0) and yj =1(x′β−εj >0)

Pr(yj =1) Fj(x
′βj)

Pr(d=1) 1− Fd(−z′γ)

Pr(yj =1, d=1) Fj(x
′βj)−Cj{Fj(x

′βj), Fd(−z′γ); θj}
Pr(yj =0, d=1) 1−Fd(−z′γ)−Fj(x

′βj)+Cj{Fj(x
′βj), Fd(−z′γ); θj}

Pr(yj =1, d=0) Cj{Fj(x
′βj), Fd(−z′γ); θj}

Pr(yj =0, d=0) Fd(−z′γ)−Cj{Fj(x
′βj), Fd(−z′γ); θj}

Pr(yj =1|ν = ν̃)
∂Cj{Fj(x

′βj), Fd(ν); θj}
∂Fd

∣∣∣∣
ν=ν̃

d = 1(z′γ − ν > 0) and yj =1(x′β+εj >0)

Pr(yj =1) 1− Fj(−x′βj)

Pr(d=1) Fd(z
′γ)

Pr(yj =1, d=1) Fd(z
′γ)−Cj{Fj(−x′βj), Fd(z

′γ)}
Pr(yj =0, d=1) Cj{Fj(−x′βj), Fd(z

′γ); θj}
Pr(yj =1, d=0) 1−Fd(z

′γ)−Fj(−x′βj)+Cj{Fj(−x′βj), Fd(z
′γ); θj}

Pr(yj =0, d=0) Fj(−x′βj)−Cj{Fj(−x′βj), Fd(z
′γ); θj}

Pr(yj =1|ν = ν̃) 1−
∂Cj{Fj(−x′βj), Fd(ν); θj}

∂Fd

∣∣∣∣
ν=ν̃

d = 1(z′γ − ν > 0) and yj =1(x′β−εj >0)

Pr(yj =1) Fj(x
′βj)

Pr(d=1) Fd(z
′γ)

Pr(yj =1, d=1) Cj{Fj(x
′βj), Fd(z

′γ); θj}
Pr(yj =0, d=1) Fd(z

′γ)−Cj{Fj(x
′βj), Fd(z

′γ); θj}
Pr(yj =1, d=0) Fj(x

′βj)−Cj{Fj(x
′βj), Fd(z

′γ); θj}
Pr(yj =0, d=0) 1−Fd(z

′γ)−Fj(x
′βj)+Cj{Fj(x

′βj), Fd(z
′γ); θj}

Pr(yj =1|ν = ν̃)
∂Cj{Fj(x

′βj), Fd(ν); θj}
∂Fd

∣∣∣∣
ν=ν̃

Although one of the main advantages of the copula approach is its ability to separate
the specification of the marginal distributions of the unobservables from the specifica-
tion of the dependence structure when modeling a joint distribution, we consider only
common marginal distributions. Standard normal distribution (which corresponds to
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probit) and logistic distribution (which corresponds to logit) are common choices for
binary choice models. My commands provide an option of probit or logit for each
marginal distribution. A future task could be to expand the commands by adding more
flexible marginal distributions. Still, various dependence structures by copulas allow us
to model a rich pattern of joint distributions.

Many different copula functions are available. Table 2 shows the list of copula
functions available in the commands discussed in this article. See Nelsen (2006) and
Trivedi and Zimmer (2007) for other copula functions. Among the copulas in table 2,
Gaussian, Frank, Clayton, Gumbel, and Joe are popular parametric copulas in empirical
applications. These copulas, other than Gaussian, belong to the Archimedean family,
of which copulas have useful properties in empirical modeling (Smith 2003). Different
copulas exhibit different dependence structures. For example, a Gaussian copula is
symmetric in that the degrees of dependence are the same in both the lower and the
upper tails of a joint distribution. A Gaussian copula with univariate standard normal
margins corresponds to the standard assumption of joint normality. A Frank copula
is also symmetric but has weaker tail dependence than a Gaussian copula. Clayton,
Gumbel, and Joe are symmetric. A Clayton copula has strong lower-tail but weak
upper-tail dependence, while Gumbel and Joe copulas have weaker lower-tail but strong
upper-tail dependence. See Nelsen (2006) and Trivedi and Zimmer (2007) for graphical
representations of dependence structures of different copulas.

Table 2. Copula functions

Copula name C(u1, u2; θ)

Product u1u2

Gaussian Φ2{Φ−1(u1),Φ
−1(u2); θ}

Farlie–Gumbel–Morgenstern (FGM) u1u2{1 + θ(1− u1)(1− u2)}

Plackett
r −

√
r2 − 4u1u2θ(θ − 1)

2(θ − 1)
Ali–Mikhail–Haq (AMH) u1u2 {1− θ(1− u1)(1− u2)}−1

Clayton
(
u−θ
1 + u−θ

2 − 1
)−1/θ

Frank −θ−1 log

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

(e−θ − 1)

}
Gumbel exp

[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ]

Joe 1−
{
(ũ1)

θ
+ (ũ2)

θ − (ũ1ũ2)
θ
}1/θ

notes: Let ui = Fi(ωi) be a marginal c.d.f. of a random variable ωi for i = 1, 2. For Plackett,
r = 1 + (θ − 1)(u1 + u2). For Joe, ũj = 1− uj .

Besides the dependence pattern, the degree of dependence is important to measure.
Even though a dependence parameter θ governs a degree of dependence, it is not di-
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rectly comparable across copulas. Along with the estimated θ, it is common to report
Kendall’s τ as a comparable measure of the degree of dependence. Kendall’s τ can be
computed as a function of θ, although some copulas have no closed form. In principle,
it takes the range of [−1, 1], with the upper (lower) bound corresponding to perfect
positive (negative) dependence. A copula that covers this entire range is called compre-
hensive. Not all copulas are comprehensive, and so their ranges of possible values of τ
are narrower than [−1, 1]. See table 3 for a feasible range of τ of each copula. Clayton,
Gumbel, and Joe copulas allow only positive dependence. Although it is restrictive,
changing the sign of the unobservable term enables us to evade this restriction. For
example, by letting εj = −ε∗j and defining the copula with respect to ε∗j and ν, we can
allow for negative dependence for these copulas.

Table 3. Copula dependence parameter and Kendall’s τ

Copula name Range of θ θind Kendall’s τ(θ) Range of τ

Product N.A. N.A. N.A. N.A.

Gaussian −1 ≤ θ ≤ 1 0 2

π
sin−1(θ) −1 ≤ τ ≤ 1

FGM −1 ≤ θ ≤ 1 0 2

9
θ −2

9
≤ τ ≤ 2

9

Plackett 0 < θ < ∞ 1 · −1 ≤ τ ≤ 1

AMH −1 ≤ θ ≤ 1 0
(
3θ − 2

θ

)
−0.1817 ≤ τ <

1

3

−2

3

(
1− 1

θ

)2

ln (1− θ)

Clayton 0 ≤ θ < ∞ 0 θ

θ + 2
0 ≤ τ < 1

Frank −∞ < θ < ∞ 0 1− 4

θ
{1−D1(θ)} −1 < τ < 1

Gumbel 1 ≤ θ < ∞ 1 θ − 1

θ
0 ≤ τ < 1

Joe 1 ≤ θ < ∞ 1 · 0 ≤ τ < 1

notes: θind is the value of θ if independent. For Frank, D1(θ) is a Debye function: D1(θ) =

(1/θ)
∫ θ
0 {t/(et − 1)}dt. For Plackett and Joe, no closed form is available.

The important value of Kendall’s τ is 0. It indicates the independence between the
underlying unobservable terms. When independent, the endogeneity issue does not arise
in our models, and separate estimation of outcome equations is consistent and efficient.
To test the independence, we make use of the fact that the specific value of θ corresponds
to τ = 0 (see table 3). A usual hypothesis test can be conducted, such as a likelihood-
ratio or Wald test on θ = θind, and the test statistic is asymptotically distributed as χ2
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under the null. Caution is necessary when a copula is Clayton, Gumbel, or Joe because
the independence occurs at the boundary of the parameter space of θ. In this case,
the test statistic asymptotically follows a mixture of χ2 distribution under the null.
Our commands report the p-value of the independence test, which takes this fact into
account.

To implement maximum likelihood estimation, we need to choose the copula func-
tions C0 and C1. If we have ideas on the shapes of the joint distributions of the
unobservable terms, it may not be hard to choose an appropriate copula. However, in
practice it is unusual to have such information a priori. We usually choose copulas that
fit data best. A straightforward way to select copulas is based on information criteria
such as the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC).3 To allow for possible misspecification of a copula, Trivedi and Zimmer (2007)
recommend the “sandwich” variance estimator under the theory of quasilikelihood.

The copula-based maximum-likelihood estimation of the other two models can be
conducted basically in the same way. The log-likelihood function of the endogenous
dummy model is almost identical to that of the endogenous switching model. However,
it has no subscript for an outcome y:

lnL =

N∑
i=1

[di{yi ln Pr(yi=1, di=1) + (1− yi) lnPr(yi=0, di=1)}

+ (1− di){yi ln Pr(yi=1, di=0) + (1− yi) lnPr(yi=0, di=0)}]

Because there are only two unobservable terms, ε and ν, only one copula is considered.
The expressions of the joint probabilities in table 1 are also applicable here, although
the subscript j does not matter and the vector of explanatory variable x includes a
dummy variable d in this model. The log-likelihood function of the sample-selection
model is

lnL =

N∑
i=1

[di{yi ln Pr(yi=1, di=1) + (1− yi) lnPr(yi=0, di=1)}

+ (1− di) lnPr(di=0)]

As with the endogenous dummy variable, one copula function is considered. The expres-
sions of joint probabilities in table 1 are directly applicable by ignoring the subscript j.

4 Treatment effects
Different treatment effects are defined to allow for heterogeneous treatment effects
among different populations. The structure of the endogenous switching model en-
ables us to derive various treatment effects straightforwardly. For example, Heckman,
Tobias, and Vytlacil (2003) derive various treatment-effect estimators based on the

3. There have been more formal selection procedures proposed in the literature. For example, see Cai
and Wang (2014). However, we do not consider these procedures to avoid additional complexity.
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switching model with continuous outcomes under the joint normality assumption. When
an outcome is binary, the treatment effects can be expressed in terms of marginal or
joint probabilities in table 1. As mentioned earlier, the endogenous dummy model
can be considered a restricted case of the endogenous switching model. By observing
y1i = 1(α + xi

′β + εi ≥ 0) and y0i = 1(xi
′β + εi ≥ 0), we see the derivation of the

treatment effects below also applies to the endogenous dummy model. Note that the
treatment effects discussed below are conditional on x and z.

The ATE is the average effect among the whole population:

E(y1 − y0) = Pr(y1=1)− Pr(y0=1)

The ATT is the average effect for those who are actually treated:

E(y1 − y0|d=1) = Pr(y1=1|d=1)− Pr(y0=1|d=1)

=
Pr(y1=1, d=1)− Pr(y0=1, d=1)

Pr(d=1)

The ATU is for those who are not treated:

E(y1 − y0|d=0) = Pr(y1=1|d=0)− Pr(y0=1|d=0)

=
Pr(y1=1, d=0)− Pr(y0=1, d=0)

Pr(d=0)

The LATE is the treatment effect for those who change the treatment status in response
to a change in an instrument variable. To define LATE, suppose that a value of the kth
variable of z, which is excluded from x, zk changes from the lower value zk,L to the
upper value zk,U , and let d(zk) be the treatment indicator with the value of zk. Then
LATE is

E{y1 − y0|d(zk,U )=1, d(zk,L)=0}
= Pr{y1=1|d(zk,U )=1, d(zk,L)=0} − Pr{y0=1|d(zk,U )=1, d(zk,L)=0}

=
Pr{y1=1, d(zk,U )=1} − Pr{y1=1, d(zk,L)=1}

Pr{d(zk,U )=1} − Pr{d(zk,L)=1}

− Pr{y0=1, d(zk,U )=1} − Pr{y0=1, d(zk,L)=1}
Pr{d(zk,U )=1} − Pr{d(zk,L)=1}

Heckman and Vytlacil (2005) show that these treatment effects are weighted averages
of the MTE. See Heckman and Vytlacil (2005, 2007) for further discussion. MTE is the
treatment effect for those with a particular value of ν, which is

E (y1 − y0|ν = ν̃) = Pr (y1=1|ν= ν̃)− Pr (y0=1|ν= ν̃)

Note that when ν enters in the selection with a positive (negative) sign, the larger
(smaller) ν̃ is, and the more likely an individual is to receive the treatment. ν is often
normalized as ν∗ = Fd(ν) so that 0 < ν∗ < 1. A larger (smaller) value of ν∗ indicates
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a higher propensity to receive the treatment when the sign of ν is positive (negative)
in the selection equation. Pr(yj = 1|ν = ν̃) can be expressed as the derivative of a
copula function. That is, the shapes of MTE differ by the dependence structure of the
unobservable terms. The simulation study by Hasebe (2021) shows the misspecification
of copula results in the biased estimation of MTE and other treatment effects.

Although it is implicit, the treatment effects discussed above are conditional on x
and z. The unconditional treatment effects are estimated by evaluating the treatment
effects for each observation and then by averaging relevant samples. ATE, LATE, and
MTE are estimated by averaging over the whole sample. ATT and ATU are the averages
of the subsamples of those with di = 1 and those with di = 0, respectively.

The asymptotic variance of the conditional version of the treatment effects can be
obtained by applying the delta method. When estimating the asymptotic variance of
the unconditional version of the treatment-effect estimators, we additionally consider
the sampling variability from the randomness of covariates xi and zi. Our commands for
the estimation of the unconditional treatment effects report the standard errors taking
this variability into consideration. The derivation of the asymptotic variance is based on
Newey and McFadden (1994). See also Terza (2016) for the correct asymptotic variance
of sample means of nonlinear transformations such as the treatment-effect estimators
discussed here.

5 The commands
This section describes the commands esbinary, edbinary, and ssbinary, which imple-
ment copula-based maximum-likelihood estimation of the models with a binary choice
outcome. These commands utilize the Stata command ml. This section also describes
the postestimation command estat teffects, which estimates the treatment effects
after the execution of esbinary and edbinary.

5.1 esbinary

5.1.1 Syntax

The syntax for the command is as follows:

esbinary (depvar0
[
=
]

varlist0)
[
(depvar1

[
=
]

varlist1)
] [

if
] [

in
] [

weight
]
,

select(depvars = varlists
[
, noconstant offset(varnameo)

]
)[

copula0(copula) copula1(copula) margsel(margin) margin0(margin)
margin1(margin) negatives negative0 negative1 consel noconstant

offset(varnameo) constraints(constraints) vce(vcetype) maximize_options
]
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aweights, fweights, iweights, and pweights can be used depending on the methods
chosen; see [U] 11.1.6 weight.

When dependent variables and sets of explanatory variables are the same across
regimes, you need to specify only one equation. If not, you need to specify two equations
separately, with each equation enclosed by parentheses. In this case, the first equation
is for regime 0 and the second equation is for regime 1.

5.1.2 Options

select(depvars = varlists
[
, noconstant offset(varnameo)

]
) specifies the

variables and options for the selection equation. depvars should be coded as 0 or 1,
with 0 indicating regime 0 and 1 indicating regime 1. select() is required.

copula0(copula) specifies a copula function for the dependence between the error terms
in the selection equation and regime 0, ν and ε0, which must be one of the list in
table 2. Available copulas are product, gaussian, fgm, plackett, amh, clayton,
frank, gumbel, and joe. The default is copula0(gaussian). Note that the name
of copula is case sensitive, so all letters in the name should be typed in lowercase,
for example, copula0(gaussian). Except for copula0(product), the results table
displays estimates of an auxiliary dependence parameter (atheta0) and a depen-
dence parameter (theta0). For copulas for which Kendall’s τ can be calculated
analytically, as in table 3, the results table reports the estimate of τ0 tau0.

copula1(copula) specifies a copula function for the dependence between the error terms
in the selection equation and regime 1, ν and ε1, which must be one of the list in
table 2. Available copulas are product, gaussian, fgm, plackett, amh, clayton,
frank, gumbel, and joe. The default is copula1(gaussian). Note that the name
of copula is case sensitive, so all letters in the name should be typed in lowercase,
for example, copula1(gaussian). Except for copula1(product), the results table
displays estimates of an auxiliary dependence parameter (atheta1) and a depen-
dence parameter (theta1). For copulas for which Kendall’s τ can be calculated
analytically, as in table 3, the results table reports the estimate of τ1 tau1.

margsel(margin) specifies the marginal distribution of the error term in the selection
equation, Fd(ν). margin may be probit (or normal) or logit (or logistic). The
default is margsel(probit).

margin0(margin) specifies the marginal distribution of the error term in regime 0,
F0(ε0). margin may be probit (or normal) or logit (or logistic). The default is
margin0(probit).

margin1(margin) specifies the marginal distribution of the error term in regime 1,
F1(ε1). margin may be probit (or normal) or logit (or logistic). The default is
margin1(probit).

negatives makes the error term of the selection equation negative.

negative0 makes the error term of regime 0 negative.



746 Endogenous models of binary choice outcome

negative1 makes the error term of regime 1 negative.

consel allows contributions to the likelihood of the selection equation by observations
whose selection decision is observed but whose outcome variables or some of the
covariates in the outcome equations are not observed.

noconstant suppresses the constant term of the outcome equation.

offset(varnameo) includes varnameo in the model with the coefficient constrained to 1.

constraints(constraints); see [R] Estimation options.

vce(vcetype) specifies the type of the standard errors reported, which includes types
that are robust to some kinds of misspecification (robust), that allow for intragroup
correlation (cluster clustvar), and that are derived from asymptotic theory (oim,
opg); see [R] vce_option.

maximize_options: difficult, technique(algorithm_spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see
[R] Maximize. These options are seldom used.

5.1.3 Stored results

Results that are stored by esbinary, edbinary, and ssbinary in common are listed at
the end of this section. The results stored in e() specific to esbinary are as follows:

Scalars
e(negatives) 1 if the option negatives is specified, 0 otherwise
e(negative0) 1 if the option negative0 is specified, 0 otherwise
e(negative1) 1 if the option negative1 is specified, 0 otherwise

Macros
e(cmd) esbinary
e(estat_cmd) program used to implement estat
e(copula0) specified copula0()
e(copula1) specified copula1()
e(margsel) specified margsel()
e(margin0) specified margin0()
e(margin1) specified margin1()

5.1.4 Postestimation statistics

After an execution of esbinary, the estat teffects command is available to estimate
the treatment effects as postestimation statistics. estat teffects has the following
syntax:

estat teffects
[
, ate att atu late(varname lower upper) mte(nu)

]
This command estimates the unconditional treatment effects and their standard

errors using the estimated parameters of the endogenous switching model.
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The options for estat teffects are as follows:

ate estimates ATE. This is the default.

att estimates ATT.

atu estimates ATU.

late(varname lower upper) estimates LATE when the value of varname (zk) changes
from lower (zk,L) to upper (zk,U ). lower and upper should be numerical.

mte(nu) estimates MTE evaluated at nu (ν). nu should be numerical.

estat teffects stores the following in r():

Matrix
r(table) table of result

The matrix r(table) contains the estimated treatment effect in the first column, its
standard error in the second column, the z-value in the third column, and the p-value in
the fourth column. When only one option is specified, this matrix is a row vector. When
more than one option is specified, the rows of this matrix correspond to the treatment
effects that are specified as options.

5.1.5 Prediction

After an execution of esbinary, the predict command is available to compute several
predictions for each observation. predict has the following syntax:

predict
[

type
]

newvar
[

if
] [

in
] [

, psel xb0 xb1 xbsel prob0 prob1 prob00

prob11 prob01 prob10 cll te tt tu late(varname lower upper) mte(nu)
]

The options for predict are as follows:

psel calculates the probability that the treatment status of the selection variable is 1:
Pr(di = 1). This is the default.

xb0 calculates the linear prediction of the outcome variable of regime 0: xi
′β0.

xb1 calculates the linear prediction of the outcome variable of regime 1: xi
′β1.

xbsel calculates the linear prediction of the selection variable: zi′γ.

prob0 calculates the probability that the outcome variable of regime 0 is equal to 1:
Pr(y0i = 1).

prob1 calculates the probability that the outcome variable of regime 1 is equal to 1:
Pr(y1i = 1).

prob00 calculates the joint probability that the outcome variable of regime 0 is equal
to 1 when the treatment status is 0: Pr(y0i = 1, di = 0).
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prob11 calculates the joint probability that the outcome variable of regime 1 is equal
to 1 when the treatment status is 1: Pr(y1i = 1, di = 1).

prob01 calculates the hypothetical joint probability that the outcome variable of regime
0 is equal to 1 when the treatment status is 1: Pr(y0i = 1, di = 1).

prob10 calculates the hypothetical joint probability that the outcome variable of regime
1 is equal to 1 when the treatment status is 0: Pr(y1i = 1, di = 0).

cll computes the contribution to the log-likelihood function by each observation.

te computes the observation-level treatment effect: E(y1i − y0i|xi).

tt computes the observation-level treatment effect on the treated: E(y1i − y0i|di =
1,xi, zi).

tu computes the observation-level treatment effect on the untreated: E(y1i − y0i|di =
0,xi, zi).

late(varname lower upper) computes the observation-level LATE when the value of
varname (zk) changes from lower (zk,L) to upper (zk,U ): E{y1i − y0i|d(zk,U ) =
1, d(zk,L) = 0,xi, zi}.

mte(nu) computes the observational-level MTE evaluated at nu (ν): E(y1i − y0i|ν =
ν,xi).

5.2 edbinary

5.2.1 Syntax

The syntax for edbinary is as follows:

edbinary depvar
[
=
]

indepvars
[

if
] [

in
] [

weight
]
,

select(depvars = varlists
[
, noconstant offset(varnameo)

]
)[

copula(copula) margsel(margin) margout(margin) negatives negativeo

consel noconstant offset(varnameo) constraints(constraints) vce(vcetype)
maximize_options

]
aweights, fweights, iweights, and pweights can be used depending on the methods
chosen; see [U] 11.1.6 weight.

5.2.2 Options

select(depvars = varlists
[
, noconstant offset(varnameo)

]
) specifies the

variables and options for the selection equation. depvars should be coded as 0 or 1,
with 0 indicating regime 0 and 1 indicating regime 1. select() is required.
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copula(copula) specifies a copula function for the dependence between the error terms
in the selection equation and outcome equations, which must be one of the list in
table 2. Available copulas are product, gaussian, fgm, plackett, amh, clayton,
frank, gumbel, and joe. The default is copula(gaussian). Note that the name
of copula is case sensitive, so all letters in the name should be typed in lowercase,
for example, copula(gaussian). Except for copula(product), the results table
displays estimates of an auxiliary dependence parameter (atheta) and a dependence
parameter (theta). For copulas for which Kendall’s τ can be calculated analytically,
as in table 3, the results table reports the estimate of τ .

margsel(margin) specifies the marginal distribution of the error term in the selection
equation. margin may be probit (or normal) or logit (or logistic). The default
is margsel(probit).

margout(margin) specifies the marginal distribution of the error term in the outcome
equation. margin may be probit (or normal) or logit (or logistic). The default
is margout(probit).

negatives makes the error term of the selection equation negative.

negativeo makes the error term of the outcome equation negative.

consel allows contributions to the likelihood of selection equation by observations whose
selection decision is observed but whose outcome variables or some of the covariates
in the outcome equations are not observed.

noconstant suppresses the constant term of the outcome equation.

offset(varnameo) includes varnameo in the model with the coefficient constrained to 1.

constraints(constraints); see [R] Estimation options.

vce(vcetype) specifies the type of the standard errors reported, which includes types
that are robust to some kinds of misspecification (robust), that allow for intragroup
correlation (cluster clustvar), and that are derived from asymptotic theory (oim,
opg); see [R] vce_option.

maximize_options: difficult, technique(algorithm_spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see
[R] Maximize. These options are seldom used.
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5.2.3 Stored results

The results stored in e() specific to edbinary are as follows:

Scalars
e(negatives) 1 if the option negatives is specified, 0 otherwise
e(negativeo) 1 if the option negativeo is specified, 0 otherwise

Macros
e(cmd) edbinary
e(estat_cmd) program used to implement estat
e(copula) specified copula()
e(margsel) specified margsel()
e(margout) specified margout()

5.3 Postestimation statistics

After an execution of edbinary, the estat teffects command is available to estimate
the treatment effects as postestimation statistics. estat teffects has the following
syntax:

estat teffects
[
, ate att atu late(varname lower upper) mte(nu)

]
This command estimates the unconditional treatment effects and their standard

errors using the estimated parameters of the endogenous dummy model.

5.3.1 Options

The options for estat teffects are as follows:

ate estimates ATE. This is the default.

att estimates ATT.

atu estimates ATU.

late(varname lower upper) estimates LATE when the value of varname (zk) changes
from lower (zk,L) to upper (zk,U ). lower and upper should be numerical.

mte(nu) estimates MTE evaluated at nu (ν). nu should be numerical.

5.3.2 Stored results

estat teffects stores the following in r():

Matrix
r(table) table of result
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The matrix r(table) contains the estimated treatment effect in the first column, its
standard error in the second column, the z-value in the third column, and the p-value in
the fourth column. When only one option is specified, this matrix is a row vector. When
more than one option is specified, the rows of this matrix correspond to the treatment
effects that are specified as options.

5.3.3 Prediction

After an execution of edbinary, the predict command is available to compute several
predictions for each observation. predict has the following syntax:

predict
[

type
]

newvar
[

if
] [

in
] [

, psel pout xbo xbsel prob0 prob1

prob00 prob11 prob01 prob10 cll te tt tu late(varname lower upper)
mte(nu)

]
The options for predict are as follows:

psel calculates the probability that the treatment status of the selection variable is 1:
Pr(di = 1). This is the default.

pout calculates the probability that the treatment status of the outcome variable is 1:
Pr(yi = 1).

xbo calculates the linear prediction of the outcome variable: αdi + xi
′β.

xbsel calculates the linear prediction of the selection variable: zi′γ.

prob0 calculates the probability that the outcome variable is equal to 1 for the treatment
status d = 0: Pr(y0i = 1).

prob1 calculates the probability that the outcome variable is equal to 1 for the treatment
status d = 1: Pr(y1i = 1).

prob00 calculates the joint probability that the outcome variable is equal to 1 and the
treatment status is 0 when the treatment dummy variable takes the value 0 in the
outcome equation: Pr(y0i = 1, di = 0).

prob11 calculates the joint probability that the outcome variable is equal to 1 and the
treatment status is 1 when the treatment dummy variable takes the value 1 in the
outcome equation: Pr(y1i = 1, di = 1).

prob01 calculates the hypothetical joint probability that the outcome variable is equal
to 1 and the treatment status is 1 when the treatment dummy variable takes the
value 0 in the outcome equation: Pr(y0i = 1, di = 1).

prob10 calculates the hypothetical joint probability that the outcome variable is equal
to 1 and the treatment status is 0 when the treatment dummy variable takes the
value 1 in the outcome equation: Pr(y1i = 1, di = 0).

cll computes the contribution to the log-likelihood function by each observation.



752 Endogenous models of binary choice outcome

te computes the observation-level treatment effect: E(y1i − y0i|xi).

tt computes the observation-level treatment effect on the treated: E(y1i − y0i|di =
1,xi, zi).

tu computes the observation-level treatment effect on the untreated: E(y1i − y0i|di =
0,xi, zi).

late(varname lower upper) computes the observation-level LATE when the value of
varname (zk) changes from lower (zk,L) to upper (zk,U ): E{y1i − y0i|d(zk,U ) =
1, d(zk,L) = 0,xi, zi}.

mte(nu) computes the observational-level MTE evaluated at nu (ν): E(y1i − y0i|ν =
ν,xi).

5.4 ssbinary

5.4.1 Syntax

The syntax for the command is as follows:

ssbinary depvar
[
=
]

indepvars
[

if
] [

in
] [

weight
]
,

select(depvars = varlists
[
, noconstant offset(varnameo)

]
)[

copula(copula) margsel(margin) margout(margin) negatives negativeo

noconstant offset(varnameo) constraints(constraints) vce(vcetype)
maximize_options

]
aweights, fweights, iweights, and pweights can be used depending on the methods
chosen; see [U] 11.1.6 weight.

5.4.2 Options

select(depvars = varlists
[
, noconstant offset(varnameo)

]
) specifies the

variables and options for the selection equation. depvars should be coded as 0 or 1,
with 0 indicating regime 0 and 1 indicating regime 1. select() is required.

copula(copula) specifies a copula function governing the dependence between the er-
rors in the outcome equation and selection equation, which must be one of the list
in table 2. Available copulas are product, gaussian, fgm, plackett, amh, clayton,
frank, gumbel, and joe. The default is copula(gaussian). Note that the name
of copula is case sensitive, so all letters in the name should be typed in lowercase,
for example, copula(gaussian). The results table reports the estimate of the de-
pendence parameter θ theta (and an ancillary parameter atheta). For copulas for
which Kendall’s τ can be calculated analytically, as in table 3, the results table
reports the estimate of τ .
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margsel(margin) specifies the marginal distribution of the error term in the selection
equation. margin may be probit (or normal) or logit (or logistic). The default
is margsel(probit).

margout(margin) specifies the marginal distribution of the error term in the outcome
equation. margin may be probit (or normal) or logit (or logistic). The default
is margout(probit).

negatives makes the error term of the selection equation negative.

negativeo makes the error term of the outcome equation negative.

noconstant suppresses the constant term of the outcome equation.

offset(varnameo) includes varnameo in the model with the coefficient constrained to 1.

constraints(constraints); see [R] Estimation options.

vce(vcetype) specifies the type of the standard errors reported, which includes types
that are robust to some kinds of misspecification (robust), that allow for intragroup
correlation (cluster clustvar), and that are derived from asymptotic theory (oim,
opg); see [R] vce_option.

maximize_options: difficult, technique(algorithm_spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), nonrtolerance, and from(init_specs); see
[R] Maximize. These options are seldom used.

5.4.3 Stored results

The results stored in e() specific to ssbinary are as follows:

Scalars
e(negatives) 1 if the option negatives is specified, 0 otherwise
e(negativeo) 1 if the option negativeo is specified, 0 otherwise

Macros
e(cmd) ssbinary
e(copula) specified copula()
e(margsel) specified margsel()
e(margout) specified margout()

5.4.4 Prediction

After an execution of ssbinary, the predict command is available to compute several
predictions for each observation. predict has the following syntax:

predict
[

type
]

newvar
[

if
] [

in
] [

, pmargin p11 p10 p01 p00 psel pcond xb

xbsel cll
]
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The options for predict are as follows:

pmargin calculates the probability that the outcome is 1: Pr(yi = 1). This is the
default.

p11 calculates Pr(yi = 1, di = 1).

p10 calculates Pr(yi = 1, di = 0).

p01 calculates Pr(yi = 0, di = 1).

p00 calculates Pr(yi = 0, di = 0).

psel calculates the probability that the outcome is observed: Pr(di = 1).

pcond calculates Pr(yi = 1|di = 1).

xb calculates the linear prediction of the outcome variable: xi
′β.

xbsel calculates the linear prediction of the selection variable: zi′γ.

cll computes the contribution to the log-likelihood function by each observation.

5.5 Notes

5.5.1 Stored results

Results that are stored after the execution of esbinary, edbinary, and ssbinary in
common are as follows:
Scalars

e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq_model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(ll) log likelihood
e(chi2) χ2

e(p) significance of model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged; 0 otherwise
e(ll0) log likelihood, independent model
e(AIC) AIC
e(BIC) BIC
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Macros
e(depvar) names of dependent variables
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset1) offset for outcome equation
e(offset2) offset for selection equation
e(chi2type) Wald or LR; type of model χ2 test
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or mini-

mization
e(ml_method) type of ml method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) b V
e(predict) program used to implement predict

Matrices
e(b) coefficient vector
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance–covariance matrix of the estimators

Functions
e(sample) marks estimation sample

5.5.2 Ancillary parameter

In the maximum likelihood estimation, θ is not directly estimated. Instead, an ancillary
dependence parameter θ∗, which takes any real value, is directly estimated, and it is
transformed to the dependence parameter so that it takes a feasible value, as in table 3.
The way to transform differs by copula:

θ =


(eθ

∗ − e−θ∗
)/(eθ

∗
+ e−θ∗

) (Gaussian, FGM, AMH)
eθ

∗ (Plackett, Clayton)
1 + eθ

∗ (Gumbel, Joe)
θ∗ (Frank)

The ancillary dependence parameter and transformed dependence parameter are re-
ported as atheta and theta, respectively.

6 Examples
To illustrate the use of the commands, we show two sets of examples.

6.1 Example 1

The first set of examples uses a dataset from the Stata website. This dataset is the
one used for the example of heckprobit and biprobit. Assuming joint normality, our
commands with the default options yield the same results that the Stata commands do.
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First, we fit the sample-selection binary model. The Stata command heckprobit
fits this model under the joint normality assumption.

. webuse school

. heckprobit private years logptax, select(vote = years loginc logptax)
(output omitted )

Iteration 5: log likelihood = -74.244973
Probit model with sample selection Number of obs = 95

Selected = 59
Nonselected = 36

Wald chi2(2) = 1.04
Log likelihood = -74.24497 Prob > chi2 = 0.5935

Coefficient Std. err. z P>|z| [95% conf. interval]

private
years -.1142596 .1461715 -0.78 0.434 -.4007505 .1722313

logptax .3516101 1.016483 0.35 0.729 -1.64066 2.34388
_cons -2.780667 6.905827 -0.40 0.687 -16.31584 10.75451

vote
years -.0167511 .0147735 -1.13 0.257 -.0457067 .0122045

loginc .9923023 .4430008 2.24 0.025 .1240368 1.860568
logptax -1.278783 .5717545 -2.24 0.025 -2.399401 -.1581646

_cons -.5458205 4.070417 -0.13 0.893 -8.523692 7.432051

/athrho -.8663164 1.450017 -0.60 0.550 -3.708298 1.975665

rho -.6994978 .7405281 -.9987983 .9622674

LR test of indep. eqns. (rho = 0): chi2(1) = 0.27 Prob > chi2 = 0.6020
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The command ssbinary with the default specifications yields the same result, al-
though the results are not exactly identical because of a nonlinear optimization process.

. ssbinary private years logptax, select(vote = years loginc logptax)
(output omitted )

Iteration 5: log likelihood = -74.244973
Sample Selection Binary Outcome Model: gaussian-probit-probit

Number of obs = 95
Wald chi2(2) = 1.04

Log likelihood = -74.244973 Prob > chi2 = 0.5935

Coefficient Std. err. z P>|z| [95% conf. interval]

private
years -.1142596 .1461715 -0.78 0.434 -.4007505 .1722313

logptax .3516101 1.016483 0.35 0.729 -1.64066 2.34388
_cons -2.780667 6.905827 -0.40 0.687 -16.31584 10.75451

select
years -.0167511 .0147735 -1.13 0.257 -.0457067 .0122045

loginc .9923023 .4430008 2.24 0.025 .1240368 1.860568
logptax -1.278783 .5717545 -2.24 0.025 -2.399401 -.1581646

_cons -.5458205 4.070417 -0.13 0.893 -8.523692 7.432051

/atheta -.8663165 1.450017 -0.60 0.550 -3.708298 1.975665

theta -.6994978 .7405279 -.9987983 .9622674
tau -.4931859 .6596862 -.9687874 .8245599

LR test of independence : Test statistic 0.272 with p-value 0.6020
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Next, we fit the endogenous dummy model. The Stata command biprobit fits this
model under the joint normality assumption, and the command edbinary yields the
same result with the default specifications.

. biprobit (private = vote logptax loginc years) (vote = logptax loginc years)
(output omitted )

. * Our command edbinary yields the same result.

. edbinary private = logptax loginc years, select(vote = logptax loginc years)
(output omitted )

Iteration 7: log likelihood = -89.098442
Bivariate Binary Outcome Model: gaussian-probit-probit

Number of obs = 95
Wald chi2(4) = 4.14

Log likelihood = -89.098442 Prob > chi2 = 0.3870

Coefficient Std. err. z P>|z| [95% conf. interval]

private
vote 1.047535 .6753432 1.55 0.121 -.2761137 2.371183

logptax .4241346 .7265603 0.58 0.559 -.9998975 1.848167
loginc -.0962434 .5746769 -0.17 0.867 -1.222589 1.030103
years -.0034985 .0240795 -0.15 0.884 -.0506935 .0436965
_cons -3.56953 4.262826 -0.84 0.402 -11.92452 4.785456

vote
logptax -1.327977 .6061065 -2.19 0.028 -2.515923 -.1400298
loginc .9801528 .4390441 2.23 0.026 .1196422 1.840663
years -.019161 .015062 -1.27 0.203 -.0486819 .0103599
_cons -.0562336 4.336532 -0.01 0.990 -8.55568 8.443213

/atheta -1.293455 1.248206 -1.04 0.300 -3.739895 1.152984

theta -.8600287 .3249712 -.9988719 .8187404
tau -.659109 .4054579 -.9697578 .6106544

LR test of independence : Test statistic 0.399 with p-value 0.5277

As described in the previous section, some treatment effects are estimated using the
postestimation command estat teffects after edbinary. For example, we estimate
ATE, ATT, and ATU using the options ate, att, and atu, respectively.

. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE .23215 .20633 1.1251 .26053
ATT .08399 .0393 2.1371 .03259
ATU .48042 .52679 .91197 .36178

The predict command has the options to compute the observation-level treatment
effects. Taking the average of the predicted values over the relevant samples, we ob-
tain the unconditional treatment effects that are the same as the results from estat
teffects.
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. predict te, te

. predict tt, tt

. predict tu, tu

. * ATE

. summarize te
Variable Obs Mean Std. dev. Min Max

te 95 .2321475 .0299214 .1400827 .301635
. * ATT
. summarize tt if vote == 1

Variable Obs Mean Std. dev. Min Max

tt 59 .0839859 .0377103 .0008582 .1777933
. * ATU
. summarize tu if vote == 0

Variable Obs Mean Std. dev. Min Max

tu 36 .4804196 .0740163 .3137575 .5859616

The last example is the estimation of the endogenous switching model. Although
there is no Stata command to fit this model, the command switch_probit, written by
Lokshin and Sajaia (2011), fits it under the joint normality assumption.

. * The community-contributed command (install it if not installed).

. switch_probit private logptax loginc years, select(vote = logptax loginc years)
(output omitted )
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. * Our command esbinary yields the same result.

. esbinary (private logptax loginc years), select(vote = logptax loginc years)
> difficult

(output omitted )
Iteration 14: log likelihood = -87.605063
Switching Binary Outcome Model: Copula: gaussian-gaussian & Margin:
> probit-probit-probit

Number of obs = 95
Wald chi2(3) = 0.30

Log likelihood = -87.605063 Prob > chi2 = 0.9592

Coefficient Std. err. z P>|z| [95% conf. interval]

regime0
logptax -.1247044 .9198479 -0.14 0.892 -1.927573 1.678164
loginc .261568 .6560623 0.40 0.690 -1.02429 1.547427
years .010009 .0273661 0.37 0.715 -.0436276 .0636456
_cons -3.449124 5.164728 -0.67 0.504 -13.57181 6.673557

regime1
logptax .9175379 .7580993 1.21 0.226 -.5683094 2.403385
loginc -.7603868 .5244297 -1.45 0.147 -1.78825 .2674765
years -.0491842 .1278883 -0.38 0.701 -.2998406 .2014722
_cons 1.153637 6.37084 0.18 0.856 -11.33298 13.64025

selection
logptax -1.404702 .6504772 -2.16 0.031 -2.679614 -.1297902
loginc .9819269 .4351344 2.26 0.024 .1290792 1.834775
years -.0201954 .0152615 -1.32 0.186 -.0501074 .0097166
_cons .463035 4.682142 0.10 0.921 -8.713795 9.639865

/atheta0 -2.689369 491.0011 -0.01 0.996 -965.0339 959.6552
/atheta1 -5.519322 133.8555 -0.04 0.967 -267.8713 256.8327

theta0 -.9908151 8.978176 -1 1
theta1 -.9999679 .0086032 -1 1

tau0 -.9136494 42.26836 -1 1
tau1 -.9948962 .6831694 -1 1

LR test of independence : Test statistic 1.196 with p-value 0.5499

Note that the maximization option difficult often helps the program converge.
There are some occasions when the log-likelihood function does not converge without
this option.

As with the command edbinary, using estat teffects after esbinary estimates
the treatment effects.

. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE .28671 .13993 2.049 .04047
ATT .08233 .13299 .61912 .53584
ATU .61656 .47186 1.3067 .19133
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Because the model specifications are different, the treatment-effect estimates of
esbinary are different from those of edbinary reported above.

6.2 Example 2

This application is from Winkelmann (2012), which is originally based on Deb, Munkin,
and Trivedi (2006).4 It examines if the effect of an enrollment in a health maintenance
organization (HMO) on the outcome of interest is whether an individual has any positive
ambulatory heath expenditure (PAMBEXP). Explanatory variables include socioeconomic
characteristics of each individual. Two variables are excluded from the outcome equa-
tions but included in the selection equation. These instrumental variables are the age of
spouse (SPAGE) and whether the spouse enrolled in a health maintenance organization
in the previous year (LAGSPHMO).

. clear

. infile AMBEXP LNAMBEXP DAMBEXP HOSPEXP LNHOSPEXP DHOSPEXP PPO HMO FFS FAMSIZE
> AGE EDUC INCOME FEMALE BLACK HISPANIC MARRIED NOREAST MIDWEST SOUTH MSA AGE2
> AGEXFEM VEGOOD GOOD FAIRPOOR PHYSLIM TOTCHR INJURY SPAGE LAGSPPPO LAGSPHMO
> YEAR98 YEAR99 YEAR00 YEAR01 using "meps96_01.txt"
(20,460 observations read)
. keep if FFS != 1 // drop all individuals enrolled in a
> fee-for-service plan
(8,078 observations deleted)
. * outcome variable
. generate PAMBEXP = (AMBEXP > 0) // 1 if ambulatory expediture is positive
. * setting locals
. local Y PAMBEXP
. local S HMO
. local Zlist FAMSIZE EDUC INCOME FEMALE BLACK HISPANIC MARRIED NOREAST MIDWEST
> SOUTH MSA AGE AGE2 AGEXFEM VEGOOD GOOD FAIRPOOR PHYSLIM TOTCHR INJURY YEAR98
> YEAR99 YEAR00 YEAR01 SPAGE LAGSPHMO
. local Xlist FAMSIZE EDUC INCOME FEMALE BLACK HISPANIC MARRIED NOREAST MIDWEST
> SOUTH MSA AGE AGE2 AGEXFEM VEGOOD GOOD FAIRPOOR PHYSLIM TOTCHR INJURY YEAR98
> YEAR99 YEAR00 YEAR01

First, we fit the endogenous switching model by the command esbinary. In this
example, we do not have a particular idea about the dependence structure of the un-
observable terms. We choose the best-fitting combination of copulas that attains the
smallest value of the AIC or BIC. We allow for different copulas for C0 and C1. The
copulas to be considered are Gaussian, Frank, Clayton, Gumbel, and Joe. For the last
three copulas, we consider the negative version as well. We fix the standard normal as
marginal distributions. The number of parameters to estimate is the same across all
copula models. Therefore, choosing the minimum AIC or BIC is equivalent to choosing
the largest log likelihood. We find the best-fitting combination of copulas by using
loops.

4. The data are obtained from http://qed.econ.queensu.ca/jae/datasets/deb003/.

http://qed.econ.queensu.ca/jae/datasets/deb003/
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. * list of copulas

. local copula_list gaussian frank clayton gumbel joe nclayton ngumbel njoe

. local llmax = -999999999

. foreach copula0 of local copula_list {
2. foreach copula1 of local copula_list {
3. foreach j in 0 1 {
4. if "`copula`j''"=="nclayton" | "`copula`j''"=="ngumbel" |

> "`copula`j''"=="njoe" {
5. local negative`j' negative`j'
6. if "`copula`j''"=="nclayton" local cname`j' clayton
7. if "`copula`j''"=="ngumbel" local cname`j' gumbel
8. if "`copula`j''"=="njoe" local cname`j' joe
9. }
10. else {
11. local negative`j'
12. local cname`j' `copula`j''
13. }
14. }
15. quietly esbinary (`Y' `Xlist'), select(`S' = `Zlist') difficult
> copula0(`cname0') copula1(`cname1') `negative0' `negative1' iterate(50)
> vce(robust)
16. if `e(ll)' > `llmax' {
17. local llmax = `e(ll)'
18. estimates store best_ll_model
19. }
20. }
21. }

We store the estimation result of the largest log-likelihood combination of copulas
under the name of best_ll_model. After the loop, we display the stored result. To
save space, we show the estimated coefficients for only selected explanatory variables.

. estimates restore best_ll_model
(results best_ll_model are active now)
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. estimates replay

Model best_ll_model

Switching Binary Outcome Model: Copula: joe-n-clayton & Margin:
> probit-probit-probit

Number of obs = 12,382
Wald chi2(24) = 115.78

Log pseudolikelihood = -8328.6889 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

regime0
FAMSIZE -.0795145 .0268144 -2.97 0.003 -.1320697 -.0269594

EDUC .0345774 .0167232 2.07 0.039 .0018005 .0673542
INCOME .0029204 .0018453 1.58 0.114 -.0006963 .0065372
FEMALE .6910343 .3274524 2.11 0.035 .0492393 1.332829
BLACK -.1651596 .1091418 -1.51 0.130 -.3790736 .0487544

HISPANIC -.3803383 .1104741 -3.44 0.001 -.5968635 -.1638131
(output omitted )

_cons .4990339 .7443555 0.67 0.503 -.9598761 1.957944

regime1
FAMSIZE -.0808057 .012126 -6.66 0.000 -.1045721 -.0570392

EDUC .0644769 .0070161 9.19 0.000 .0507255 .0782283
INCOME .0046353 .0008534 5.43 0.000 .0029626 .006308
FEMALE .9118476 .1288768 7.08 0.000 .6592537 1.164441
BLACK -.2738078 .0478586 -5.72 0.000 -.3676088 -.1800067

HISPANIC -.0968655 .0453532 -2.14 0.033 -.1857561 -.0079749
(output omitted )

_cons -.611228 .2526928 -2.42 0.016 -1.106497 -.1159592

selection
FAMSIZE -.0489857 .0120616 -4.06 0.000 -.072626 -.0253454

EDUC -.0166882 .0070091 -2.38 0.017 -.0304258 -.0029505
INCOME -.0010322 .0006916 -1.49 0.136 -.0023878 .0003234
FEMALE .0089783 .1200184 0.07 0.940 -.2262534 .2442101
BLACK .1720656 .0479293 3.59 0.000 .0781259 .2660054

HISPANIC .1696283 .0480129 3.53 0.000 .0755248 .2637318
(output omitted )

SPAGE -.1104754 .0196521 -5.62 0.000 -.1489928 -.071958
LAGSPHMO 1.708451 .0442205 38.63 0.000 1.621781 1.795122

_cons 2.096168 .2477623 8.46 0.000 1.610563 2.581774

/atheta0 -.4474592 1.266758 -0.35 0.724 -2.930259 2.035341
/atheta1 -.8915252 .5012244 -1.78 0.075 -1.873907 .0908566

theta0 1.63925 .8097753 1.053383 8.654859
theta1 .4100299 .205517 .1535227 1.095112

tau1 -.1701348 .0707673 -.3538198 -.0712891

tau0 .26288519
Wald test of independence : Test statistic 4.581 with p-value 0.0668
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The best-fitting combination of copulas is Joe for C0 and the negative version of
Clayton for C1. The estimated τ ’s indicate that the dependence between ε0 and ν is
positive and the dependence between ε1 and ν is negative. Both of the dependences
are relatively weak, and we cannot reject the joint independence at the 5% level of
significance, but we can at the 10% level.

Based on this estimated endogenous switching model, we estimate the treatment
effects. For illustration, we also report the three estimates of LATE as well as ATE, ATT,
and ATU. One is the LATE when the value of LAGSPHMO switches from 0 to 1. The other
two are the LATE when the spouse gets older by one year from 34 years old (the value
of LAGSPHMO increases from 3.4 to 3.5) and from 58 years old.

. * treatment effects

. * ATE, ATT, ATU

. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE -.04881 .03246 -1.5035 .13272
ATT -.06514 .03784 -1.7212 .08522
ATU .04346 .02279 1.9071 .05651
. * LATE
. estat teffects, late(LAGSPHMO 0 1)
Treatment Effects:

Estimate SE z P>|z|
LATE .03536 .0226 1.5646 .11768
. estat teffects, late(SPAGE 3.4 3.5)
Treatment Effects:

Estimate SE z P>|z|
LATE .03657 .02102 1.7394 .08196
. estat teffects, late(SPAGE 5.8 5.9)
Treatment Effects:

Estimate SE z P>|z|
LATE .01841 .02005 .91838 .35842

As for the comparison, we show the estimates of the treatment effects under the
assumption of the joint normality.

. * the joint normal model

. esbinary (`Y' `Xlist'), select(`S' = `Zlist') difficult vce(robust)
(output omitted )

. * treatment effects

. * ATE, ATT, ATU

. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE -.00939 .02665 -.35255 .72442
ATT -.01533 .03069 -.49941 .61749
ATU .02431 .02467 .98541 .32442
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. * LATE

. estat teffects, late(LAGSPHMO 0 1)
Treatment Effects:

Estimate SE z P>|z|
LATE .02141 .02385 .89771 .36934
. estat teffects, late(SPAGE 3.4 3.5)
Treatment Effects:

Estimate SE z P>|z|
LATE .0222 .02347 .94617 .34406
. estat teffects, late(SPAGE 5.8 5.9)
Treatment Effects:

Estimate SE z P>|z|
LATE .01573 .02142 .73449 .46265

The estimates of the treatment effects are considerably different between the best-
fitting copula model and the joint normal model, although the signs are the same. Under
the joint normality assumption, none of the treatment effects are statistically significant.
On the other hand, the ATT, the ATU, and one of the LATEs from the best-fitting copulas
model are statistically significant, at least at the 10% level.

The heterogeneity in the treatment effects is more apparent when we see MTE. We
estimate and plot MTEs over normalized values of ν with 95% confidence intervals.
We normalize ν as Φ(ν) so that it takes values between 0 and 1. This normalized
value represents the propensity for treatment. Pointwise MTEs and standard errors are
estimated using a loop.

. * MTE

. generate P = .
(12,382 missing values generated)
. quietly generate MTEjn = .
. quietly generate MTEjn_se =.
. forvalue j = 1/99 {

2. display "`j'", _continue
3. local p = `j'/100
4. local v = invnormal(`p')
5. quietly estat teffects, mte(`v')
6. matrix b = r(table)
7. quietly replace MTEjn = b["MTE","Estimate"] if _n == `j'
8. quietly replace MTEjn_se = b["MTE","SE"] if _n == `j'
9. }
(output omitted )

Then, we plot the estimated MTEs over the propensity of the treatment with the
95% confidence intervals.

. generate lowjn = MTEjn - 1.96*MTEjn_se
(12,283 missing values generated)
. generate highjn = MTEjn + 1.96*MTEjn_se
(12,283 missing values generated)
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. twoway (rline lowjn highjn P, sort bcolor(black) lpattern(dot))
> (line MTEjn P, lcolor(black) lwidth(medium) lpattern(solid)),
> xtitle("normalized {&nu}")
> ytitle("MTE")
> legend(order(2 "MTE" 1 "95% C.I.") ring(0) pos(7))
> graphregion(color(white)) plotregion(lcolor(black))
> yline(0)
> name(mtejn, replace)
> yscale(range(-0.3 0.2)) ytick(-0.3(0.1)0.2) ylabel(-0.3(0.1)0.2)
> ysize(5) xsize(5)
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Figure 1. MTE from the endogenous switching model

We plot the estimated MTEs from the model with the best-fitting copulas in fig-
ure 1(a). Figure 1(b) shows the estimated MTEs from the joint normality for compar-
ison. Both figures show the downward sloping MTE curves, indicating that the more
likely an individual is to be treated, the smaller the treatment effect is. The result
that the ATT is smaller than the ATU reflects this downward slope. While the MTE
is not significant at any value of the propensity under the joint normality assumption,
the MTEs from the best-fitting copulas are significantly different from 0 at lower and
higher values of the treatment propensity. This pattern makes the ATT and the ATU
(marginally) significant. The former puts more weight on MTE at higher values of the
treatment propensity, but the latter weights MTEs at lower values.

Similarly, we can fit the endogenous dummy model and the treatment effects. At this
time, there is only one copula to be specified, and a Frank copula is chosen as the best-
fitting copula. As before, we also fit the model under the joint normality assumption
for comparison. To save space, we suppress the results of the model estimation, and we
report the estimation results of the treatment effects.
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. edbinary `Y' `Xlist', select(`S' = `Zlist') difficult copula(frank) vce(robust)
(output omitted )

. * treatment effects

. * ATE, ATT, ATU

. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE .02589 .02853 .90731 .36424
ATT .02665 .02973 .89657 .36995
ATU .02153 .02174 .99054 .32191
. * LATE
. estat teffects, late(LAGSPHMO 0 1)
Treatment Effects:

Estimate SE z P>|z|
LATE .02182 .02216 .98451 .32487
. estat teffects, late(SPAGE 3.4 3.5)
Treatment Effects:

Estimate SE z P>|z|
LATE .02184 .02222 .98292 .32565
. estat teffects, late(SPAGE 5.8 5.9)
Treatment Effects:

Estimate SE z P>|z|
LATE .0226 .0234 .96558 .33425
. * the joint normal model
. edbinary `Y' `Xlist', select(`S' = `Zlist') difficult vce(robust)

(output omitted )
. * treatment effects
. * ATE, ATT, ATU
. estat teffects, ate att atu
Treatment Effects:

Estimate SE z P>|z|
ATE .01305 .02114 .61743 .53695
ATT .01331 .02167 .61392 .53927
ATU .01159 .01808 .64127 .52135
. * LATE
. estat teffects, late(LAGSPHMO 0 1)
Treatment Effects:

Estimate SE z P>|z|
LATE .0118 .0185 .63776 .52363
. estat teffects, late(SPAGE 3.4 3.5)
Treatment Effects:

Estimate SE z P>|z|
LATE .01163 .01816 .64061 .52178
. estat teffects, late(SPAGE 5.8 5.9)
Treatment Effects:

Estimate SE z P>|z|
LATE .01195 .01882 .63484 .52553

Interestingly, all the treatment effects from the same model are close to one another. In
other words, there is no heterogeneity in the treatment effects. This finding is clearer
from the plots of MTEs (figure 2). The figures show almost horizontal lines. The MTEs
from the best-fitting copula model are slightly larger than those from the joint normal
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model. This explains why the ATE, ATT, ATU, and LATEs are higher in the copula model
than the joint normal model.
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Figure 2. MTE from the endogenous dummy model

7 Conclusions
The issue of endogeneity is an empirical challenge that applied researchers often face.
There are various kinds of endogeneity, and different econometric methods have been
proposed in the literature. Apart from the endogeneity issue, researchers also frequently
encounter binary choice outcomes. In this article, I discussed the three models of binary
choice outcomes that are designed to address the endogeneity issue, and I introduced
the commands to fit each of these models. Specifically, the command esbinary fits
the endogenous switching model, edbinary fits the endogenous dummy model, and
ssbinary fits the sample-selection model, implementing maximum likelihood estimation
with a copula method. The copula method allows for various dependence structures of
the unobservable terms. Moreover, one can estimate various treatment effects based on
the estimated endogenous switching model or the endogenous dummy model by using
the postestimation command estat teffects. The option to fit more flexible marginal
distributions and the option to select a suitable copula function more formally are left
as future tasks.
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-4

. net install st0691 (to install program files, if available)

. net get st0691 (to install ancillary files, if available)
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