
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2022)
22, Number 4, pp. 998–1003 DOI: 10.1177/1536867X221141068

Stata tip 148: Searching for words within strings
Nicholas J. Cox
Department of Geography
Durham University
Durham, U.K.
n.j.cox@durham.ac.uk

1 The problem: Looking for words
Searching for particular text within strings is a common data management problem.
One frequent context is whenever various possible answers to a question are bundled
together in values of a string variable. Suppose people are asked which sports they enjoy
or something more interesting, like which statistical software they use routinely. To keep
the matter simple, we will first imagine just lists of one or more numbers that are concise
codes for distinct answers, say, "42" for "cricket" or "1" for "Stata". Nonnumeric
codes will also be considered in due course. For more on handling such questions,
sometimes called multiple response, see Cox and Kohler (2003) or Jann (2005).

The precise problem discussed in this tip is finding text in strings whenever such text
is a word in Stata’s sense, or something close to that. This needs a little explanation.

Here is a tiny sandbox dataset that will be enough to show the problem and some
devices that can yield solutions. By way of example, we will focus mainly on a goal of
generating indicator variables, sometimes known as dummy variables. For one overview
of generating such variables, see Cox and Schechter (2019). We will also touch on the
problem of counting instances of a word.

. input str8 mytext
mytext

1. "1"
2. "1 2"
3. "1 2 11"
4. "11 12 13"
5. "11 12 13 111"
6. end

Searching for "1" or "2", say, starts with looking for either character with a string
function. The function strpos() is useful for that. For a rapid personal survey of
especially useful functions, see Cox (2011a).

Finding such single characters is easy and unproblematic if the possible answers are
one character long at most. More generally, searches are easy if there is no ambiguity.
Consider

. generate byte is1 = strpos(mytext, "1") > 0

The function strpos() looks for particular text within other text. It returns 0 if that
particular text is not found and a positive number, the position of that particular text,
if that text is found. Thus, the position of "1" in "1 2" is 1, the position of "2" in

© 2022 StataCorp LLC dm0110

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X221141068&domain=pdf&date_stamp=2023-01-05


N. J. Cox 999

"1 2" is 3, and so on. Hence, an indicator variable like is1 will be returned as 1 if there
are observations in which strpos() returns a positive result. Otherwise, the indicator
variable will be returned as 0. If you are new to the idea that an expression like

strpos(mytext, "1") > 0

returns 1 if true and 0 if false, see Cox and Schechter (2019) or, more directly, Cox
(2005, 2016).

If you look again at the sandbox, you should see what is coming next. Looking for
"1" with

strpos("1 2 11", "1")

will still work, fortunately, but looking for "1" with

strpos("11 12 13", "1")

will yield a false positive. The problem is that we want to find "1" only if it occurs by
itself, namely, as a separate word. Stata’s primary sense of a word within a string is
that words are separated by spaces.

In some Stata contexts, double quotation marks bind together more strongly than
spaces separate, so "Stata is subtle" would be treated as a single word if the quota-
tion marks were explicit. For present purposes, we will leave that complication aside.

2 A solution: Looking for spaces too
Let’s carry forward the idea that we need to look for spaces too. At first sight, this is a
beautiful idea that just does not work very well because there are too many possibilities
to catch. Thus, looking for "1 " catches "1"—as part of "1 "—and not "11" within
"1 2 11", which is as intended. But it catches the first "1 "—as part of "11 "—within
"11 12 13", which is not what we want. Other way round, looking for " 1" catches
correctly sometimes and incorrectly other times. Looking for " 1 "—with spaces before
and after—will not work if "1" is the first word or the last word, so without a previous
space or a following space, respectively.

But that last idea can be made to work with a simple twist. Congratulations if you
thought of this directly!

. generate byte is1 = strpos(" " + mytext + " ", " 1 ")

. list

mytext is1

1. 1 1
2. 1 2 1
3. 1 2 11 1
4. 11 12 13 0
5. 11 12 13 0



1000 Stata tip 148

So we solve the problem of initial and following spaces by supplying them on the fly.
Note that we do not need to generate a new variable or replace an existing variable;
we just get Stata to work with a version of the variable with extra spaces. Extra spaces
that go beyond our need are harmless, because " 1 ", in which “1” has two spaces
before it and two after it, is treated the same way as " 1 ", in which “1” has one space
before it and one after it.

3 What about other separators?
Suppose our string variable used another separator, say, commas, which could just be a
different convention or a good idea anyway if spaces occur naturally. Someone’s favorite
sport might be "water polo" or "debugging code". Then whatever the commas sep-
arate are not words in Stata’s technical sense, but they are still words for us or atoms
we wish to seek as such.

We could still use a similar idea of looking for ",1," within "," + mytext + ",".
We just need to watch for gratuitous extra spaces so that "1 ," is not missed. If strings
could be moderately complicated, we might need a different method. More positively,
if spaces have no meaning and we have values like "1,2 ,3", then changing all commas
to spaces allows the method of the previous section to be used.

4 A solution: What would change if we deleted words?
Here is another solution. This time around, an example comes before the explanation.

. generate byte IS1 = strlen(mytext) > strlen(subinword(mytext, "1", "", 1))

. list

mytext is1 IS1

1. 1 1 1
2. 1 2 1 1
3. 1 2 11 1 1
4. 11 12 13 0 0
5. 11 12 13 0 0

We get the same answer, so how did that work?

The function strlen() measures the length of strings by counting characters. Al-
though no longer documented, the older name length() still works if you remember or
prefer that.

The function subinword() replaces text with other text if and only if that text
occurs as a word in Stata’s primary sense. The function knows how to handle words
at the beginning and end of strings. However, subinword() does not follow Stata’s
extended sense that a word can be defined (meaning, delimited) by explicit double
quotation marks.



N. J. Cox 1001

But how does replacing text help? We do not want to change text; we are just
searching for it. Yet, if the result of replacing text by an empty string (deleting it, to
put it plainly) would be to reduce the length of the string, then evidently we did find
that text.

Notice “would be”. As before, we do not have to generate a new variable or replace
an existing variable. We just get Stata to tell us what the result would be if the text
existed and so would be deleted.

Whether the length of the string is greater than the length of the string with the
word removed is a true or false question. Either the first length is greater because there
is at least one instance of the word or the two lengths are the same because there is no
such instance. If the expression is true, 1 is returned; and if it is false, 0 is returned,
giving us an indicator variable.

This method is of interest for another reason: you may want to count instances of a
word. We could have written

. generate byte IS1 = strlen(mytext) > strlen(subinword(mytext, "1", "", .))

The difference is in the last argument fed to subinword(), namely, system missing .
rather than 1. That different syntax instructs Stata to delete all instances of the word
"1" rather than the first only. For detecting whether the word exists, you need know
only that it exists at least once.

If the problem is counting instances instead of checking for existence, then the dif-
ference in lengths

. generate count1 = strlen(mytext) - strlen(subinword(mytext, "1", "", .))

is precisely the number of times "1" occurs as a word. If you are looking for instances
of "11" or "111", remember to divide by 2 or 3—the lengths of the words in ques-
tion, respectively—or you will get the number of characters notionally deleted, not the
number of words.

For more on counting substrings, see Cox (2011b).

5 Nonnumeric words
Datasets may include one or more nonnumeric words bundled in a string variable.
Suppose there was a survey question about which programming languages are routine
for Stata users, with possible answers such as one or more of Python, Julia, C++, and C.

Handling such nonnumeric words can be both easier and more difficult than handling
numeric words. The possibility of ambiguity is less but still present, as witness checking
for mentions of C and finding them within mentions of C++. Hence, insisting on searching
for a word, and not just a substring, can be necessary using one of the devices just
explained.



1002 Stata tip 148

Greater difficulty can arise because of variations in spelling and punctuation, de-
pending sensitively on how such data were entered and collated. Suppose that none
was expected as an answer when true but that there are also instances of None, NONE,
and so forth. This particular variability is easily handled by looking for none within
strlower() or—according to taste—looking for NONE within strupper(). The older
function names lower() and upper() are equivalent and still work. Other variations in
spelling may be harder to handle, but the first step is always to find out exactly which
names were used.

6 A list of tricks
We have covered two main ideas:

• Words are separated by spaces, so look for a word together with previous and
following spaces, remembering how to catch words at the beginning or the end of
a string (sections 2 and 3).

• If we ask Stata to tell us whether and how the length of a string would change
if we were to delete a word, we have ways to detect the occurrence of that word,
either yes or no, or the number of occurrences if that is what we seek (section 4).

That is not a complete treatise, even on this small topic. A longer account might
mention other possibilities, complications that may arise, or possible solutions.

First, I will mention other problems:

• I have focused on plain ASCII characters, but searching for Unicode needs more
care and different functions.

• I have mentioned but not fully solved the complication of “words” that include
spaces. But the more complicated the string we are searching for, the less likely
ambiguity is to bite.

• I have focused on simple searching of string variables, but string manipulation
is needed in other contexts, such as parsing user input if you are writing Stata
programs.

Now, I will signal other solutions:

• Many readers will already know about regular expression syntax.

• Sometimes, we cannot solve a problem with one command line. We may need
to use the gettoken (see [P] gettoken) command or the split (see [D] split)
command. We may need to loop over words with a construct like foreach or
forvalues (see [P] foreach or [P] forvalues).

All of these matters deserve detailed treatment, which is left to other accounts.



N. J. Cox 1003

7 Acknowledgment
William Lisowski made helpful comments on a draft.

References
Cox, N. J. 2005. FAQ: What is true or false in Stata? http://www.stata.com/support/
faqs/data/trueorfalse.html.

. 2011a. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471. https://doi.org/10.1177/1536867X1101100308.

. 2011b. Stata tip 98: Counting substrings within strings. Stata Journal 11:
318–320. https://doi.org/10.1177/1536867X1101100212.

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229–236. https://doi.org/10.1177/1536867X1601600117.

Cox, N. J., and U. Kohler. 2003. Speaking Stata: On structure and shape: The
case of multiple responses. Stata Journal 3: 81–99. https: // doi.org / 10.1177 /
1536867X0300300106.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246–259. https: // doi.org / 10.1177 /
1536867X19830921.

Jann, B. 2005. Tabulation of multiple responses. Stata Journal 5: 92–122. https:
//doi.org/10.1177/1536867X0500500113.

http://www.stata.com/support/faqs/data/trueorfalse.html
http://www.stata.com/support/faqs/data/trueorfalse.html
https://doi.org/10.1177/1536867X1101100308
https://doi.org/10.1177/1536867X1101100212
https://doi.org/10.1177/1536867X1601600117
https://doi.org/10.1177/1536867X0300300106
https://doi.org/10.1177/1536867X0300300106
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X0500500113
https://doi.org/10.1177/1536867X0500500113

	Table of Contents
	Articles and Columns
	The Stata Journal Editors' Prize 2022: Christopher F. Baumto.44em.
	Endogenous models of binary choice outcomes: Copula-based maximum-likelihood estimation and treatment effectsto.44em.T. Hasebe
	Machine learning using Stata/Pythonto.44em.G. Cerulli
	power swgee: GEE-based power calculations in stepped wedge cluster randomized trialsto.44em.to.44em.J. A. Gallis, X. Wang, P. J. Rathouz, J. S. Preisser, F. Li, and E. L. Turner
	rcm: A command for the regression control methodto.44em.G. Yan and Q. Chen
	qpair: A command for analyzing paired Q-sorts in Q-methodologyto.44em.to.44em.N. Akhtar-Danesh and S. C. Wingreen
	crtrest: A command for ratio estimators of intervention effects on event rates in cluster randomized trialsto.44em.X. Ma and Y. B. Cheung
	Conditional evaluation of predictive models: The cspa commandto.44em.to.44em.J. Li, Z. Liao, R. Quaedvlieg, and W. Zhou
	portfolio: A command for conducting portfolio analysis in Statato.44em.to.44em.H. Zhu and L. Yang
	printcase: A command for visualizing single observationsto.44em.to.44em.M. D. Weinreb and J. Trinitapoli
	Estimating the risk of events with stpriskto.44em.M. Bottai
	Speaking Stata: Automating axis labels: Nice numbers and transformed scalesto.44em.to.44em.N. J. Cox

	Notes and Comments
	Stata tip 147: Porting downloaded packages between machinesto.44em.R. B. Newson
	Stata tip 148: Searching for words within stringsto.44em.N. J. Cox

	Software Updates
	Blank Page
	Blank Page
	Blank Page



