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Abstract. I present two related commands, r_ml_stata_cv and c_ml_stata_cv,
for fitting popular machine learning methods in both a regression and a classi-
fication setting. Using the recent Stata/Python integration platform introduced
in Stata 16, these commands provide hyperparameters’ optimal tuning via K-fold
cross-validation using grid search. More specifically, they use the Python Scikit-
learn application programming interface to carry out both cross-validation and
outcome/label prediction.
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1 Introduction
Machine learning (ML) (also known as statistical learning1) has emerged as a leading
data-science approach in many fields, including business, engineering, medicine, adver-
tising, and scientific research. Placing itself in the intersection of statistics, computer
science, and artificial intelligence, ML’s main objective is turning information into valu-
able knowledge by “letting the data speak”, limiting the model’s prior assumptions,
and promoting a model-free philosophy. Relying on algorithms and computational tech-
niques, more than on analytic solutions, ML targets big data and complexity reduction,
although sometimes at the expense of results’ interpretability (Hastie, Tibshirani, and
Friedman 2009; Varian 2014).

Unlike other software, such as R, Python, MATLAB, and SAS, Stata does not have
dedicated built-in packages for fitting ML algorithms, if one excludes the Lasso package
of Stata 16. Recently, however, the Stata community has developed some popular
ML routines that Stata users can suitably exploit. Among them, I mention Schonlau
(2005) implementing a boosting Stata plugin; Guenther and Schonlau (2016) providing

1. In the literature, the terms ML and statistical learning are used interchangeably. The term ML,
however, was initially coined and used by engineers and computer scientists. Historically, this term
was popularized by Samuel (1959) in his famous article on the use of experience-based learning ma-
chines for playing the game of checkers as opposed to symbolic/knowledge-based learning machines
relying on hard-wired programming rules. Samuel proved that teaching a machine increasingly
complex rules to carry out intelligent tasks (as in the case of expert-systems) was a much less
efficient strategy than letting the machine learn from experience, that is, from data. Consequently,
he pointed out that statistical learning is the basis of a better ability of machines to learn from
past (stored) events. We may say, in this sense, that ML is based on statistical learning. Of course,
term usage is also reflected in the scientific community of developers, with engineers preferring to
use the label “machine” learning and statisticians preferring the label “statistical” learning.
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a command fitting support vector machines (SVM); Ahrens, Hansen, and Schaffer (2020)
setting out the lassopack, a set of commands for model selection and prediction with
regularized regression; and Schonlau and Zou (2020) providing a command for the
random forests algorithm. All of these are valuable packages for executing popular ML
algorithms within Stata.

The absence of an integrated Stata package for carrying out ML algorithms also pre-
vents uniformity and comparability of these methods. To pursue generality, uniformity,
and comparability, one should rely on a software platform able to suitably integrate
most of the mainstream ML methods. For example, Python has powerful platforms to
carry out both ML and deep-learning algorithms (Raschka and Mirjalili 2019). Among
them, the most popular are Scikit-learn for fitting many ML methods, and TensorFlow
and Keras for more generally fitting neural network and deep-learning techniques. These
make Python, which is freeware, probably the most effective and complete software for
ML and deep-learning available within the community.

The Stata 16 release introduced a useful Stata/Python application programming
interface (API). The Stata Function Interface (sfi) module allows users to interact
Python’s capabilities with core features of Stata. The command can be used interac-
tively or in do-files and ado-files.

Taking advantage of the new Stata/Python integration interface, Droste (2022) has
developed pylearn, a set of commands to perform supervised learning in Stata. These
commands all exhibit a common Stata-like syntax for model estimation and postesti-
mation. The pylearn suit currently allows for fitting decision trees, random forests,
adaptive boosting, gradient boosting, and multilayer perceptrons (neural networks) di-
rectly from Stata. Specifically, pylearn is a wrapper of the popular Python library
Scikit-learn. The pylearn ML commands are nearly exact reproductions of the Python
functions implementing the same ML methods. However, at present, they do not provide
hyperparameters’ tuning via cross-validation (CV).

In a similar manner, still using the Stata/Python integration interface, this article
presents two related commands, r_ml_stata_cv and c_ml_stata_cv, wrapping Python
functions for fitting popular ML methods in both a regression and a classification setting.
Both commands provide hyperparameters’ optimal tuning via K-fold CV by implement-
ing grid search. Like with pylearn, they use the Python Scikit-learn API to execute both
CV and outcome/label prediction. Compared with pylearn, these commands present a
smaller set of options but have two important advantages: i) they implement a larger set
of learners, and ii) for every learner, they allow users for customized K-fold CV over the
most relevant tuning parameters (those entailing a trade-off between prediction variance
and prediction bias).

Why would the Stata community need these commands? I see three related an-
swers to this question. First, Stata users who are willing to apply ML methods would
benefit from these commands because they can allow them to perform ML without
time-consuming investment in learning other software. Second, these commands pro-
vide users with standard Stata returns and variables’ generation that can be further
used in subsequent Stata coding within the same do-file. This makes the user’s work-
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flow smoother, less error-prone, and faster. Third, these commands represent a sort
of case study showing the potential of integrating Stata and Python. In my experi-
ence, Stata is unbeatable compared with Python when it comes to performing intensive
data management and manipulation, descriptive statistics, and immediate graphing,
while Python is more suitable for its large set of implemented ML algorithms, an all-
encompassing availability of libraries, and computing speed and sophisticated graphing
(not only 3D, but also deep contour plots, and images’ reproduction).

The structure of the article is as follows. Section 2 presents a brief introduction to
ML, where section 2.1 sets out the basics, section 2.2 the optimal tuning procedure via
CV, and section 2.3 the learning methods and architecture. Sections 3.1 and 3.2 present
the syntax of r_ml_stata_cv and c_ml_stata_cv. Section 3.3 presents the syntax of
get_test_train, a command one can use to generate the training and testing datasets
from an initial dataset loaded in the current Stata session. For users to familiarize
with these commands, section 4 illustrates a simple step-by-step application for fitting
a regression tree, while section 5 shows how to apply the proposed commands to a real
dataset (specifically, the popular iris.dta) for classification purposes. To deal with a
larger dataset, section 6 focuses on the classification of handwritten numerals, a task
that can be encompassed within the larger set of image recognition studies. Section 7,
finally, develops an ML estimation of conditional average treatment effects (CATEs), thus
showing that the methods implemented via c_ml_stata_cv and r_ml_stata_cv can be
used not only for predictive purposes but also for estimating causal effects. Section 8
concludes the article.

2 A brief introduction to ML
2.1 The basics of ML

ML is the branch of artificial intelligence mainly focused on statistical prediction (Bo-
den 2018). The literature distinguishes between supervised and unsupervised learning,
referring to a setting where the outcome variable is known (supervised) or unknown
(unsupervised). In statistical terms, supervised learning coincides with a regression or
classification setup, where regression represents the case in which the outcome variable
is numerical, and classification represents the case in which it is categorical. In contrast,
unsupervised learning deals with unlabeled data, and its main concern is that of gen-
erating a categorical variable via proper clustering algorithms. Unsupervised learning
can thus be encompassed within statistical cluster analysis.

In this article, I focus on supervised ML.2 We are thus interested in predicting either
numerical variables (regression) or label classes (classification) as a function of p pre-
dictors (or features) that may be quantitative or qualitative, or both. From a statistical
point of view, we want to fit the conditional expectation of y, the outcome, on a set of
p predictors, x, starting from the following population equation:

y = f(x1, . . . , xp) + ε

2. This section and the next are based on the book of Hastie, Tibshirani, and Friedman (2009).
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where ε is an error term with mean equal to zero and finite variance. By taking the
expectation over x, and assuming that E(ε|x) = 0, we have

y = E(y|x) + ε = f(x1, . . . , xp) + ε

that is,
E(y|x) = f(x1, . . . , xp) (1)

The conditional expectation f(·) represents a function mapping predictors and expected
outcomes. The main purpose of supervised ML is that of fitting (1) with the aim of
reducing as much as possible the prediction error coming up when one wants to predict
actual outcome variables. When y is a numerical outcome (regression setting), the
prediction error can be defined as e = y − f̂(x), with f̂(·) indicating prediction from a
specific ML method. In a regression setting, ML scholars focus on minimizing the mean
squared error (MSE), defined as MSE = E{y− f̂(x)}2. However, while the in-sample MSE
(the so-called “training-MSE”) is generally affected by overfitting (thus going to zero as
the model’s degrees of freedom—or complexity—increase), the out-of-sample MSE (also
known as “test-MSE”) has the property to be a convex function of model complexity, and
thus characterized by an optimal level of complexity (Hastie, Tibshirani, and Friedman
2009).

It can be proved [see (2.46) in Hastie, Tibshirani, and Friedman (2009)] that the
test-MSE, when evaluated at one out-of-sample observation (also called “new instance”
in the ML jargon), can be decomposed into three components—variance, squared bias,
and irreducible error—as follows:

E
{
y − f̂ (x0)

}2

= Var
{
f̂(x0)

}
+
[
Bias

{
f̂ (x0)

}]2
+ Var(ε)

where x0 is a new instance, that is, an observation that did not participate in producing
the ML fit f̂(·). Figure 1 shows a graphical representation of the pattern of the previous
quantities as functions of model complexity. It is immediate to see that, as long as model
complexity increases, the bias decreases while the variance increases monotonically.
Because of this, the test-MSE sets out a parabola-shaped pattern, which allows us to
minimize it at a specific level of model complexity. This is the optimal model tuning,
whenever complexity is measured by a specific hyperparameter λ. In the figure, the
irreducible error variance represents a constant lower bound of the test-MSE. It is not
possible to overcome this minimum test-MSE, because it depends on the nature of the
data-generating process (intrinsic unpredictability of the phenomenon under analysis).
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Figure 1. Trade-off between bias and variance as functions of model complexity

In the classification setting, the MSE is meaningless because in this case we have
class labels and not numerical values. For classification purposes, the correct objective
function to minimize is the (test-)mean classification error (MCE), defined as

MCE = E
[
I
{
y 6= Ĉ(x)

}]
where I(·) is an index function (taking value 1 if its argument is a true statement and 0
otherwise), and Ĉ(x) is the fitted classifier. As in the case of the MSE, it can be proved
(Hastie, Tibshirani, and Friedman 2009) that the training-MCE overfits the data when
model complexity increases, while the test-MCE allows us to find the optimal model’s
complexity. Therefore, the graph of figure 1 can be likewise extended to the case of the
test-MCE.

2.2 Optimal tuning via CV

Finding the optimal model complexity, parameterized by a generic hyperparameter λ,
is a computational task. There are basically three ways to tune an ML model:

• Information criteria

• Bootstrap

• K-fold CV

Information criteria are based on goodness-of-fit formulas that adjust the training
error by penalizing too complex models (that is, models characterized by large degrees
of freedom). Traditional information criteria comprise the Akaike information criterion
and the Bayesian information criterion, and can be applied to both linear and nonlinear
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models (probit, logit, poisson, etc.). Unfortunately, the information criteria are valid
only for linear or generalized linear models (GLM), that is, for parametric regression.
They cannot be computed for nonparametric methods like—for example—tree-based or
nearest neighbor regressions.

For nonparametric models, the test error can be estimated via computational tech-
niques, more specifically, by resampling methods. Bootstrap—resampling with replace-
ment from the original sample—could in theory be a practical solution, provided that
the original dataset is used as a validation dataset and the bootstrapped ones as train-
ing datasets. Unfortunately, the bootstrap has the limitation of generating observation
overlaps between the test and the training datasets, because about two-thirds of the
original observations appear in each bootstrap sample. This occurrence undermines its
use to validate an out-of-sample ML procedure. Figure 2 illustrates a simple example
visualizing bootstrap overlapping in a sample with N = 10 observations and B = 2
bootstrap replications.

Original 
dataset

(Validation)

Boot 1
(training)

Val 1
(test)

No overlap
1 1 2
2 1 3
3 4 6
4 4 7
5 5
6 8
7 9
8 10
9 10

10 10

Boot 2
(training)

Val 2
(test)

No overlap
4 1
4 2
4 3
5 7
6 10
6
6
8
8
9

Test 1 Train 2Train 1 Test 2

Figure 2. Visualizing bootstrap overlapping in a sample with N = 10 observations and
B = 2 bootstrap replications

The observations of the original sample are labeled: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The first
bootstrap produces the sample Boot 1, which we use as a training dataset. If the original
sample has to be the validation sample, we clearly have an overlap; specifically, units 1,
4, 5, 8, 9, 10 appear in both the training and the testing samples. The nonoverlapping
sample is in the column with heading Val 1 and contains the following units: 2, 3, 6, 7.
We may use these units as validating observations. In conclusion, the model will be
trained over Boot 1 and validated over Val 1, thus producing a first estimate of the
prediction error (either MSE or MCE). By repeating the same procedure as many times
as the number of preset bootstrap samples, we obtain an estimate of the mean prediction
error and its standard deviation.
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CV is the workhorse of the test-error estimation in ML. The idea is to randomly divide
the initial dataset into K equal-sized portions called folds. This procedure suggests to
leave out fold k and fit the model to the other (K − 1) folds (wholly combined) to
then obtain predictions for the left-out kth fold. This is done in turn for each fold
k = 1, 2, . . . ,K, and then the results are combined by averaging the (K − 1) estimates
of the error. In a regression setting, where y is numerical, the CV procedure can be
carried out as follows:

• Split randomly the initial dataset into K folds denoted as G1, G2, . . . , GK , where
Gk refers to part k. Assume that there are nk observations in fold k. If N is a
multiple of K, then nk = n/K.

• For each fold k = 1, 2, . . . ,K, compute the mean squared error (MSE):

MSEk =
∑
i∈Gk

(yi − ŷi)
2
/nk

where ŷi is the fit for observation i, obtained from the dataset with fold k removed.

• Compute

CVK =

K∑
i=1

nk

n
MSEk

which is the average out-of-sample MSE obtained fold by fold.

Observe that, by setting K = n, we obtain the n-fold or leave-one-out CV. Also, because
CVK is an estimation of the true test error, estimating its standard error can provide a
confidence interval and thus a measure of test accuracy’s uncertainty.

Finally, for ML classification purposes, the CV procedure follows the same protocol
except considering the MCE in place of the MSE. Moreover, in the case of binary clas-
sification, other accuracy measures can be used, such as the area under the receiver
operating characteristics (ROC) curve and the F1-score (the harmonic mean of recall
and precision).3

3. More specifically, for binary classification, we can build a matrix called the confusion matrix showing
the number of test cases that were correctly and incorrectly classified. Consider a classification
setting with two target classes: 1 = positive and 0 = negative. After using a specific ML classifier,
we can define four groups: TN, the number of negative cases correctly classified; TP, the number of
positive cases correctly classified; FN, the number of positive cases incorrectly classified as negative;
and FP, the number of negative cases incorrectly classified as positive. The precision, defined as
TP/(TP+FP), is the ratio of correct positive classifications to the total number of predicted positive
classifications. The recall, defined as TP/(TP+ FN), is the ratio of correct positive classifications
to the total number of positive classifications (that is, both correct and incorrect). Finally, the
ROC curve plots the true positive rate (the recall) against the false positive rate TN/(TN + FP).
We can thus compute the area under the ROC curve. The larger the area, the better the model
prediction performance.
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2.3 Learning methods and architecture

A learner Lj is a mapping from the set [x,θj ,λj , fj(·)] to an outcome y, where x is
the vector of features, θj is a vector of estimation parameters, λj is a vector of tuning
parameters, and fj(·) is an algorithm taking as inputs x, θj , and λj . While the members
of the GLM family (linear, probit, and multinomial regressions are classical examples)
are highly parametric and not characterized by tuning parameters, ML models—such as
local-kernel, nearest-neighbor, or tree-based regressions—may be highly nonparametric
and characterized by one or more hyperparameters λj , which may be optimally chosen
to minimize the test prediction error, that is, the out-of-sample predicting accuracy of
the learner, as stressed in the previous section.

A detailed description of all the available ML methods is beyond the scope of this
article. Table 1, however, sets out the most popular ML algorithms proposed in the
literature along with the most relevant associated tuning parameters.

Table 1. Main ML methods and associated tuning hyperparameters

ML method Parameter 1 Parameter 2 Parameter 3

Linear models N of covariates
and GLM

Lasso Penalization coefficient
Elastic net Penalization coefficient Elastic parameter
Nearest neighbor N of neighbors
Neural network N of hidden layers N of neurons L2 penalization
Trees N of leaves/depth
Boosting Learning parameter N of sequential N of leaves/depth

trees
Random forest N of features for splitting N of bootstraps N of leaves/depth
Bagging Tree depth N of bootstraps
SVM C Γ
Kernel regression Bandwidth Kernel function
Piecewise regression N of knots
Series regression N of series terms

Combining these methods can produce a computational architecture (that is, a vir-
tual learning machine) enabling increased statistical prediction accuracy and its esti-
mated precision (van der Laan, Polley, and Hubbard 2007). Figure 3 presents the learn-
ing architecture proposed by Cerulli (2021). This framework is made of three linked
learning processes: i) the learning over the tuning parameter λ, ii) the learning over the
algorithm f(·), and iii) the learning over new additional information. The departure is
in point 1, from where we set off assuming the availability of a dataset [x, y].
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Figure 3. The meta-learning machine architecture; drawn from Cerulli (2021)

The first learning process aims at selecting the optimal tuning parameter(s) for a
given algorithm fj(·). As seen above, ML scholars typically do it usingK-fold CV to draw
test-accuracy (or, equivalently, test-error) measures and related standard deviations.

At the optimal λj , one can recover the largest possible prediction accuracy for the
learner fj(·). Further prediction improvements can be achieved only by learning from
other learners, namely, by exploring other fj(·), with j = 1, . . . ,M (where M is the
number of learners at hand).

Figure 3 shows the training estimation procedure corresponding to the medium-gray
sequence of boxes leading to MSETRAIN, which is, de facto, a dead-end node, being the
training error plagued by overfitting.

The light-gray sequence in figure 3 leads to MSETEST. This sequence helps one make
correct decisions about the predicting quality of the current learner. At this node, the
analyst can compare the current MSETEST with a benchmark one (possibly prefixed) and
conclude whether to predict using the current learner or to explore alternative learners
in the hope of increasing predictive performance. If the level of the current prediction
error is too high, the architecture would suggest to explore other learners.

In the ML literature, learning over learners is called meta learning and entails an
exploration of the out-of-sample performance of alternative algorithms fj(·) with the
goal of identifying one behaving better than those already explored (van der Laan and
Rose 2011). For each new fj(·), this architecture finds an optimal tuning parameter and
a new estimated accuracy (along with its standard deviation). The analyst can either
explore the entire bundle of alternatives and select the best one or decide to select the
first learner whose accuracy is larger than the benchmark. Either case is automatically
run by this virtual machine.
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The third and final learning process concerns the availability of new information,
via additional data collection. This induces a reiteration of the initial process whose
final outcome can lead one to choose a different algorithm and tuning parameter(s),
depending on the nature of the incoming information. This process is called online
learning (Parisi et al. 2019; Bottou 1998).

As a final step, one may combine predictions of single optimal learners into a single
super-prediction (ensemble learning). What is the advantage of this procedure? The
prediction error of a learner depends on the sum of (squared) prediction bias and pre-
diction variance. Because the sum of independent and identically distributed random
variables has a smaller variance than that of the individual elements of the sum, the
benefit of aggregating learners is obtaining a predictor with a smaller variance (Zhou
2012). However, because the bias of the ensemble predictor is not guaranteed to be the
smallest among the biases of the individual learners, its estimated error might not be
smaller than that of a single learner.4 As a consequence, using an ensemble method
may not lead to accuracy improvements, although, in applications, the opposite case
occurs rather often (Kumar 2020).

3 The commands
3.1 Syntax for r_ml_stata_cv

The command r_ml_stata_cv fits some popular ML regression algorithms. It considers
as the main inputs a continuous response variable y (that is, the depvar), a series of
predictors (or features) in varlist explaining the y, and a series of options.

r_ml_stata_cv depvar varlist
[

if
] [

in
]
, mlmodel(modeltype)

data_test(filename) seed(integer)
[

learner_options cv_options
other_options

]
depvar is a numerical variable. varlist is a list of numerical variables representing the
predictors. When a feature is categorical, it is the user’s responsibility to generate the
appropriate dummies because the command does not do this by default.

4. To clarify this point, consider the following illustrative example. Assume that the true value to
predict in the population is equal to 10. Suppose there are three predictors, L1, L2, and L3, with
zero prediction variances but with means respectively equal to µ1 = 15, µ2 = 20, and µ3 = 25.
The squared bias of L1 is thus b21 = (15 − 10)2 = 25, of L2 is b22 = (20− 10)2 = 100, and of L3 is
b23 = (25 − 10)2 = 225. Because the ensemble prediction is an average of the predictions from L1,
L2, and L3, its squared bias is equal to {(15 + 20 + 25)/3− 10}2 = 100. This value, equal to that
of L2, is not the smallest; L1 performs better obtaining a MSE equal to 25.
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3.1.1 Main options

mlmodel(modeltype) specifies the ML algorithm to be estimated. modeltype may be
one of the following: boost (boosting), elasticnet (elastic net), nearestneighbor
(nearest neighbor), neuralnet (neural network), ols (ordinary least squares),
randomforest (bagging and random forests), svm (SVM), or tree (tree regression).
mlmodel() is required.

data_test(filename) requests to provide a testing dataset as filename. data_test()
is required.

seed(integer) specifies an integer seed to assure replication of results. seed() is re-
quired.

3.1.2 learner_options

• Boosting (option mlmodel(boost)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

– learning_rate(#) specifies the coefficient that shrinks the contribution of
each tree to the boosting’s prediction. # is a float or, for cross-validation, a
list of floats.

– n_estimators(#) specifies the number of boosting iterations to perform. #
is an integer or, for cross-validation, a list of integers.

• Elastic net (option mlmodel(elasticnet)):

– alpha(#) specifies the so-called shrinkage parameter, that is, a constant
that multiplies the penalty term. alpha(0) corresponds to ordinary least
squares. # is a float or, for cross-validation, a list of floats.

– l1_ratio(#) specifies the elastic net mixing parameter, varying between 0
(lasso regression) and 1 (ridge regression). Intermediate values of this pa-
rameter weigh the lasso and ridge penalization terms differently. # is a float
or, for cross-validation, a list of floats.

• Nearest neighbor (option mlmodel(nearestneighbor)):

– nn(#) specifies the number of nearest neighbors. # is an integer or, for
cross-validation, a list of integers.
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• Neural network (option mlmodel(neuralnet)):

– n_neurons_l1(#) specifies the number of neurons (or hidden units) in the
first (hidden) layer. # is an integer or, for cross-validation, a list of integers.

– n_neurons_l2(#) specifies the number of neurons (or hidden units) in the
second (hidden) layer. # is an integer or, for cross-validation, a list of inte-
gers.

– alpha(#) specifies the L2 penalization parameter. # is a float or, for cross-
validation, a list of floats.

• Random forest (option mlmodel(randomforest)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

– max_features(#) specifies the number of features to consider when looking
for the tree best split. # is an integer or, for cross-validation, a list of integers.

– n_estimators(#) specifies the number of bootstrapped trees. # is an inte-
ger or, for cross-validation, a list of integers.

• SVM (option mlmodel(svm)):

– c(#) specifies the SVM regularization parameter. # is a float or, for cross-
validation, a list of floats.

– gamma(#) specifies the kernel coefficient for the radial basis function (RBF).
# is a float or, for cross-validation, a list of floats.

• Tree regression (option mlmodel(tree)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

3.1.3 cv_options

cross_validation(name) specifies a name for the dataset that will contain CV results.
This file is automatically generated and saved in the user’s current working directory.
The command uses K-fold CV.

n_folds(integer) specifies the number of CV folds.

3.1.4 other_options

prediction(name) generates predictions of the outcome variable name. Both training
and testing predictions are generated.

default allows fitting the specified ML model with parameters equal to Scikit-learn’s
default values.
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graph_cv allows display of the CV optimal tuning graph, which draws the pattern of
both train and test accuracy.

save_graph_cv(name) saves in the current working directory the CV optimal tuning
graph.

3.1.5 Stored results

r_ml_stata_cv stores the following in e():

Scalars
e(N_train_all) total number of observations in the initial training dataset
e(N_train_used) number of training observations used
e(N_test_all) total number of observations in the initial testing dataset
e(N_test_used) number of testing observations used
e(N_features) number of features
e(TRAIN_ACCURACY) K-fold CV training average accuracy (= explained variance)
e(TEST_ACCURACY) K-fold CV testing average accuracy (= explained variance)
e(SE_TEST_ACCURACY) K-fold CV standard error of the testing average accuracy (= explained

variance)
e(BEST_INDEX) best CV index
e(N_FOLDS) number of folds used for CV
e(Train_mse) MSE on training data
e(Test_mse) MSE on testing data
e(Train_mape) mean absolute prediction error (MAPE) on training data
e(Test_mape) MAPE on testing data

If learner_options are used, r_ml_stata_cv stores the following in e():

For mlmodel(boost):

Scalars
e(OPT_MAX_DEPTH) maximum depth of the tree
e(OPT_LEARNING_RATE) shrinking contribution of each tree to the boosting’s prediction
e(OPT_N_ESTIMATORS) number of boosting iterations

For mlmodel(elasticnet):

Scalars
e(OPT_ALPHA) penalization parameter
e(OPT_L1_RATIO) elastic net mixing parameter: 0 = lasso, 1 = ridge regression

For mlmodel(nearestneighbor):

Scalar
e(OPT_NN) number of nearest neighbors to use

Macro
e(OPT_WEIGHT) local kernel weighting scheme: uniform (observations equally

weighted) or distance (observations weighted by the inverse of
their distance from the point of imputation)
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For mlmodel(neuralnet):

Scalars
e(OPT_NEURONS_L_1) number of neurons in the first layer
e(OPT_NEURONS_L_2) number of neurons in the second layer
e(OPT_ALPHA) L2 penalization parameter

For mlmodel(randomforest):

Scalars
e(OPT_N_ESTIMATORS) number of bootstrapped trees for the boosting ensemble prediction
e(OPT_MAX_DEPTH) maximum depth of the tree
e(OPT_MAX_FEATURES) number of splitting features

For mlmodel(svm):

Scalars
e(OPT_C) SVM regularization parameter
e(OPT_GAMMA) kernel coefficient for the RBF

For mlmodel(tree):

Scalar
e(OPT_DEPTH) maximum depth of the tree

3.1.6 Remarks

To run this program, you need to have both Stata 16 (or later) and Python (from
version 2.7 onward) installed. You can find information about how to install Python
on your machine here: https: //www.python.org/downloads. In addition, the Python
Scikit-learn (and related dependencies) and sfi APIs must be uploaded before running
the command. You can find information about how to install and use them at, re-
spectively, https: // scikit-learn.org / stable / install.html and https: //www.stata.com/
python/api17.5

The r_ml_stata_cv program incorporates the pylearn, setup command attributed
to Droste (2022) to check whether your computer has the prerequisite Python packages,
and if not, will automatically try to install them.

3.2 Syntax for c_ml_stata_cv

The command c_ml_stata_cv fits ML classification algorithms. It considers as the
main inputs a categorical (integer) response variable y (that is, the depvar), a series of
predictors (or features) in varlist explaining the y, and a series of options.

c_ml_stata_cv depvar varlist
[

if
] [

in
]
, mlmodel(modeltype)

data_test(filename) seed(integer)
[

learner_options cv_options
other_options

]
5. The sfi API is already installed in Stata 16 and later versions.

https://www.python.org/downloads
https://scikit-learn.org/stable/install.html
https://www.stata.com/python/api17
https://www.stata.com/python/api17
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depvar is a categorical (integer) variable. varlist is a list of numerical variables repre-
senting the predictors. When a feature is categorical, it is the user’s responsibility to
generate the appropriate dummies because the command does not do this by default.

3.2.1 Options

mlmodel(modeltype) specifies the ML algorithm to be estimated. modeltype may be
one of the following: boost (boosting), multinomial (multinomial classification),
naivebayes (naïve Bayes), nearestneighbor (nearest neighbor), neuralnet (neu-
ral network), randomforest (bagging and random forests), regmult (regularized
multinomial), svm (SVM), or tree (tree classification). mlmodel() is required.

data_test(filename) requests to provide a testing dataset as filename. data_test()
is required.

seed(integer) specifies an integer seed to assure replication of results. seed() is re-
quired.

3.2.2 learner_options

• Boosting (option mlmodel(boost)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

– learning_rate(#) specifies the coefficient that shrinks the contribution of
each tree to the boosting’s prediction. # is a float or, for cross-validation, a
list of floats.

– n_estimators(#) specifies the number of boosting iterations to perform. #
is an integer or, for cross-validation, a list of integers.

• Nearest neighbor (option mlmodel(nearestneighbor)):

– nn(#) specifies the number of nearest neighbors. # is an integer or, for
cross-validation, a list of integers.

• Neural network (option mlmodel(neuralnet)):

– n_neurons_l1(#) specifies the number of neurons (or hidden units) in the
first (hidden) layer. # is an integer or, for cross-validation, a list of integers.

– n_neurons_l2(#) specifies the number of neurons (or hidden units) in the
second (hidden) layer. # is an integer or, for cross-validation, a list of inte-
gers.

– alpha(#) specifies the L2 penalization parameter. # is a float or, for cross-
validation, a list of floats.
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• Random forest (option mlmodel(randomforest)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

– max_features(#) specifies the number of features to consider when looking
for the tree best split. # is an integer or, for cross-validation, a list of integers.

– n_estimators(#) specifies the number of bootstrapped trees. # is an inte-
ger or, for cross-validation, a list of integers.

• Regularized multinomial (option mlmodel(regmult)):

– alpha(#) specifies the so-called shrinkage parameter, that is, a constant that
multiplies the penalty term. alpha(0) corresponds to standard multinomial
model. # is a float or, for cross-validation, a list of floats.

– l1_ratio(#) specifies the mixing parameter, varying between 0 (lasso L1

penalization) and 1 (ridge L2 penalization). Intermediate values of this pa-
rameter weigh the lasso and ridge penalization terms differently. # is a float
or, for cross-validation, a list of floats.

• SVM (option mlmodel(svm)):

– c(#) specifies the SVM regularization parameter. # is a float or, for cross-
validation, a list of floats.

– gamma(#) specifies the kernel coefficient for the RBF. # is a float or, for
cross-validation, a list of floats.

• Tree classification (option mlmodel(tree)):

– tree_depth(#) specifies the maximum tree depth. # is an integer or, for
cross-validation, a list of integers.

3.2.3 cv_options

cross_validation(name) specifies a name for the dataset that will contain CV results.
This file is automatically generated and saved in the user’s current working directory.
The command uses K-fold CV.

n_folds(integer) specifies the number of CV folds.

3.2.4 other_options

prediction(name) generates class and probability predictions of the outcome variable
name. Both training and testing predictions are generated.

default allows fitting the specified ML model with parameters equal to Scikit-learn’s
default values.
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graph_cv allows display of the CV optimal tuning graph, which draws the pattern of
both train and test accuracy.

save_graph_cv(name) saves in the current working directory the CV optimal tuning
graph.

3.2.5 Stored results

c_ml_stata_cv stores the following in e():

Scalars
e(N_train_all) total number of observations in the initial training dataset
e(N_train_used) number of training observations used
e(N_test_all) total number of observations in the initial testing dataset
e(N_test_used) number of testing observations used
e(N_features) number of features
e(TRAIN_ACCURACY) K-fold CV training average accuracy (= share of correct classification

matches)
e(TEST_ACCURACY) K-fold CV testing average accuracy (= share of correct classification

matches)
e(SE_TEST_ACCURACY) K-fold CV standard error of the testing average accuracy (= share of

correct classification matches)
e(BEST_INDEX) best CV index
e(N_FOLDS) number of folds used for CV
e(Train_err) MCE on training data
e(Test_err) MCE on testing data

If learner_options are used, c_ml_stata_cv stores the following in e():

For mlmodel(boost):

Scalars
e(OPT_MAX_DEPTH) maximum depth of the tree
e(OPT_LEARNING_RATE) shrinking contribution of each tree to the boosting’s prediction
e(OPT_N_ESTIMATORS) number of boosting iterations

For mlmodel(naivebayes):

Scalar
e(OPT_VAR_SMOOTHING)portion of the largest variance of all predictors that is added to

variances for calculation stability

For mlmodel(nearestneighbor):

Scalar
e(OPT_NN) number of nearest neighbors to use

Macro
e(OPT_WEIGHT) local kernel weighting scheme: uniform (observations equally

weighted) or distance (observations weighted by the inverse of
their distance from the point of imputation)
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For mlmodel(neuralnet):

Scalars
e(OPT_NEURONS_L_1) number of neurons in the first layer
e(OPT_NEURONS_L_2) number of neurons in the second layer
e(ALPHA) L2 penalization parameter

For mlmodel(randomforest):

Scalars
e(OPT_N_ESTIMATORS) number of bootstrapped trees for the boosting ensemble prediction
e(OPT_MAX_DEPTH) maximum depth of the tree
e(OPT_MAX_FEATURES) number of splitting features

For mlmodel(regmult):

Scalars
e(OPT_ALPHA) penalization parameter
e(OPT_L1_RATIO) mixing parameter: 0 = lasso, 1 = ridge penalization

For mlmodel(svm):

Scalars
e(OPT_C) SVM regularization parameter
e(OPT_GAMMA) kernel coefficient for the RBF

For mlmodel(tree):

Scalar
e(OPT_DEPTH) maximum depth of the tree

3.2.6 Remarks

To run this program, you need to have both Stata 16 (or later) and Python (from
version 2.7 onward) installed. You can find information about how to install Python
on your machine here: https: //www.python.org/downloads. In addition, the Python
Scikit-learn (and related dependencies) and sfi APIs must be uploaded before running
the command. You can find information about how to install and use them at, re-
spectively, https: // scikit-learn.org / stable / install.html and https: //www.stata.com/
python/api17.6

The c_ml_stata_cv program incorporates the pylearn, setup command attributed
to Droste (2022) to check whether your computer has the prerequisite Python packages,
and if not, will automatically try to install them.

6. The sfi API is already installed in Stata 16 and later versions.

https://www.python.org/downloads
https://scikit-learn.org/stable/install.html
https://www.stata.com/python/api17
https://www.stata.com/python/api17
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3.3 Syntax for get_train_test

The command get_train_test can be used to generate the training and testing data-
sets from an initial dataset loaded in the current Stata session.

get_train_test, dataname(data_name) split(shares) split_var(name)
rseed(integer)

3.3.1 Options

dataname(data_name) specifies the name of the dataset open in the current Stata
session. dataname() is required.

split(shares) requests to provide two numbers (ranging from 0 to 1) representing the
shares of observations for the training and testing datasets. split() is required.

split_var(name) generates a flag variable distinguishing the training and testing ob-
servations. split_var() is required.

rseed(integer) specifies an integer seed to assure replication of results. rseed() is
required.

3.3.2 Returns

The get_train_test command generates a training dataset as data_name_train and
a testing dataset as data_name_test. They are automatically located in the current
directory.

4 Application 1: Fitting a tree regression with train and
test predictions

In this section, I present an illustrative application of the use of r_ml_stata_cv within
a cross-section data structure. I use the popular Boston housing dataset (boston.dta)
from the U.S. Census Service. The dataset contains information in 13 variables about
a total of 506 Boston areas. Here I am interested in predicting the median value of
owner-occupied homes in $1,000s in each individual area as a function of the remaining
12 predictors measuring house and neighborhood characteristics of the area, such as
crime level, percentage of lower status of the population, and average number of rooms
per dwelling.
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In what follows, I show step by step how to implement a tree regression using
r_ml_stata_cv.

• Step 1. Before starting, install Python (from version 2.7 onward) and the Python
packages Scikit-learn, NumPy, Pandas, and SciPy. If you need help installing
Python and its packages, refer to the Python webpage.7 This command uses the
pylearn package (Droste 2022) to check whether you have Python and all the
needed dependencies installed on the machine. To install pylearn, type

. net install pylearn,
> from(https://raw.githubusercontent.com/mdroste/stata-pylearn/master/src)

• Step 2. Once you have Python and pylearn installed on your machine, you
need to install r_ml_stata_cv from the Stata Journal website and look at the
documentation file of the command to explore its syntax:

. help r_ml_stata_cv

• Step 3. The command requires a training and a testing dataset. I form both
datasets using the get_train_test command, inducing a split of 80% training
and 20% testing observations:

. * Load initial dataset

. sysuse boston, clear
(Written by R. )
. * Form the train and test datasets
. get_train_test, dataname("boston") split(0.80 0.20) split_var(svar)
> rseed(101)

7. Specifically, look at the Python installation page: https://realpython.com/installing-python.

https://realpython.com/installing-python
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• Step 4. We can now run r_ml_stata_cv with the mlmodel(tree) option in
default mode (that is, with Scikit-learn’s default options):

. * Form the target and the features

. global y "medv"

. global X "zn indus chas nox rm age dis rad tax ptratio black lstat"

. * Run tree regression in default mode

. use boston_train, clear
(Written by R. )
. r_ml_stata_cv $y $X,
> mlmodel(tree) data_test("boston_test")
> default prediction("pred") seed(10)

(output omitted )

Learner: Tree regression

Dataset information

Target variable = "medv" Number of features = 12
N. of training units = 405 N. of testing units = 101
N. of used training units = 405 N. of used testing units = 101

Parameters

Tree depth = largest tree possible

Validation results

MSE = mean squared error MAPE = mean absolute percentage
> error
Training MSE = 0 Testing MSE = 49.644951
Training MAPE % = 0 Testing MAPE % = 21.923632

Results show three panels.8 The first panel provides information on the used
data. Here we see that the command has used 405 training observations and 101
testing observations. The second panel displays the parameters at which the tree
has been fit. For a tree, the main parameter is the depth, which in this case is
the largest possible. The third panel presents validation results by contrasting
in-sample and out-of-sample MSE and MAPE. Validation signals a strong presence
of tree overfitting with training errors equal to 0, but with sizable testing errors.

Because I specified the prediction() option, the command has generated two vari-
ables: pred, containing predictions for both the testing and the training datasets, and
_train_index, a flag variable indicating whether an observation is a training or a testing
one. Note that the testing dataset is appended below the training dataset.

8. Before displaying output, both r_ml_stata_cv and c_ml_stata_cv display (in red) a panel of
“Python warnings” concerning the current fit. For the sake of brevity, I do not report this panel
of results here, but they can be useful sometimes, for example, to check whether convergence of
certain algorithms is achieved.
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The default option is appealing, but with it one cannot customize parameters nor
run CV to find optimal parameter tuning. Thus, I rerun the command while allowing
for a tree depth of size 3 (options cross_validation() and n_folds() are necessary
in this case):

. * Run tree regression with specific tree depth

. capture rm cv.dta

. use boston_train, clear
(Written by R. )
. r_ml_stata_cv $y $X,
> mlmodel(tree) data_test("boston_test")
> prediction("pred") tree_depth(3) cross_validation("cv")
> n_folds(5) seed(10)

(output omitted )

Learner: Tree regression

Dataset information

Target variable = "medv" Number of features = 12
N. of training units = 405 N. of testing units = 101
N. of used training units = 405 N. of used testing units = 101

Cross-validation results

Accuracy measure = explained variance Number of folds = 5
Best grid index = 0 Optimal tree depth = 3
Training accuracy = .84580618 Testing accuracy = .2984019
Std. err. test accuracy = .65469445

Validation results

MSE = mean squared error MAPE = mean absolute percentage
> error
Training MSE = 14.502344 Testing MSE = 40.720762
Training MAPE % = 16.141842 Testing MAPE % = 21.355281
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We have now an additional panel of results for the CV run over 5 folds. The optimal
tree depth is trivially equal to the one we have fixed in advance (that is, 3). However, to
appreciate the real value of using the cross_validation("CV") option, one can specify
a grid of values for the tree depth and search for the optimal one:

. * Run tree regression with cross-validated tree depth

. capture rm cv.dta

. use boston_train, clear
(Written by R. )
. r_ml_stata_cv $y $X,
> mlmodel(tree) data_test("boston_test")
> prediction("pred") tree_depth(1 2 3 4 5 6 7 8 9) cross_validation("cv")
> n_folds(5) seed(10) graph_cv

(output omitted )

Learner: Tree regression

Dataset information

Target variable = "medv" Number of features = 12
N. of training units = 405 N. of testing units = 101
N. of used training units = 405 N. of used testing units = 101

Cross-validation results

Accuracy measure = explained variance Number of folds = 5
Best grid index = 1 Optimal tree depth = 2
Training accuracy = .71966095 Testing accuracy = .4605888
Std. err. test accuracy = .35495267

Validation results

MSE = mean squared error MAPE = mean absolute percentage
> error
Training MSE = 24.584194 Testing MSE = 31.301179
Training MAPE % = 19.328019 Testing MAPE % = 20.389068
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The optimal tree depth is 2, and this corresponds to a testing accuracy of 46%
and a MAPE of 20%. As expected, this out-of-sample fit is better than in the previous
cases. The use of option graph_cv allows one to obtain a graphical representation of
the optimal solution. This is visible in figure 4, where the optimal index equal to 1
corresponds to a tree depth of 2 (because Python starts to count from 0, not from 1).
The graph clearly shows the in-sample overfitting of our tree regression.
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Figure 4. CV graph for a tree regression

Finally, we can easily access the main returns of this command:

. ereturn list
scalars:

e(OPT_DEPTH) = 2
e(TEST_ACCURACY) = .4605887984894846
e(TRAIN_ACCURACY) = .7196609472314439

e(BEST_INDEX) = 1
e(SE_TEST_ACCURACY) = .3549526699233333

e(N_FOLDS) = 5
e(Train_mse) = 24.58419420227465
e(Train_mape) = 19.32801854899268

e(Test_mse) = 31.30117890699467
e(Test_mape) = 20.38906820177442
e(N_features) = 12
e(N_train_all) = 405
e(N_test_all) = 101

e(N_train_used) = 405
e(N_test_used) = 101

macros:
e(dep_var) : "medv"
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5 Application 2: ML classification
In this application, I use the popular iris.dta to perform a classification exercise
with c_ml_stata_cv. The dataset contains four features (length and width of sepals
and petals) of 150 observations of three species of Iris (Iris setosa, Iris virginica, and
Iris versicolor). The dataset is often used in data mining, classification and clustering
examples, and to test ML algorithms.

I want to classify the three species of Iris based on the four available features. For this
purpose, I compare a tree classification and a cross-validated random forest algorithm.
I first load the initial dataset and generate the training and testing datasets (using 80%
of observations for the former, and 20% of them for the latter):

. * Load initial dataset

. webuse iris, clear
(Iris data)
. * Form the train and test datasets
. get_train_test, dataname("iris") split(0.80 0.20) split_var(svar) rseed(101)
. * Form the target and the features
. global y "iris"
. global X "seplen sepwid petlen petwid"

Then, I run a cross-validated tree classification as follows:

. * Run tree classification

. capture rm cv.dta

. use iris_train, clear
(Iris data)
. c_ml_stata_cv $y $X,
> mlmodel(tree) data_test("iris_test")
> prediction("pred") tree_depth(1 2 3 4 5 6 7 8 9) cross_validation("cv")
> n_folds(5) seed(10)

(output omitted )

Learner: Tree classification

Dataset information

Target variable = "iris" Number of features = 4
N. of training units = 120 N. of testing units = 30
N. of used training units = 120 N. of used testing units = 30

Cross-validation results

Accuracy measure = rate correct matches Number of folds = 5
Best grid index = 5 Optimal tree depth = 3
Training accuracy = .99345238 Testing accuracy = .93333333
Std. err. test accuracy = .05651942
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Validation results

CER = classification error rate Training CER = .03333333
Testing CER = .03333333

Results suggest that the optimal tree depth is 3, which generates a testing accuracy
of 93% with a standard error (over the five iterations) of 0.06. This signals a good
performance of this method.

Next, I fit a cross-validated random forest. The three parameters to tune are num-
ber of bootstrapped trees (n_estimators()), depth of each tree (tree_depth()), and
maximum number of features to split on (max_features()), which are randomly drawn
at each split.

. * Run random forest classification

. capture rm cv.dta

. use iris_train, clear
(Iris data)
. c_ml_stata_cv $y $X, mlmodel(randomforest) data_test("iris_test")
> tree_depth(2 4 6 8) n_estimators(50 100 150) max_features(3 6)
> prediction("pred") cross_validation("cv") n_folds(5) seed(10)

(output omitted )

Learner: Random Forest classification

Dataset information

Target variable = "iris" Number of features = 4
N. of training units = 120 N. of testing units = 30
N. of used training units = 120 N. of used testing units = 30

Cross-validation results

Accuracy measure = rate correct matches Number of folds = 5
Best grid index = 13 Optimal tree depth = 4
Optimal n. of splitting features = 3 Optimal n. of trees = 50
Training accuracy = .99930556 Testing accuracy = .95
Std. err. test accuracy = .04859127

Validation results

CER = classification error rate Training CER = 0
Testing CER = .06666667
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Over the five folds, the average test accuracy rate is 95%, around two percentage
points larger than the tree classification. The standard error is also comparable. The
improvement is not an extraordinary one but nonetheless signals a greater ability of
the random forest to predict the outcome. The validation results are also comparable,
with the tree classifier unexpectedly doing slightly better. This is probably due to the
too-small sample size of the validation dataset.

Finally, we can easily access all the stored results:

. ereturn list
scalars:

e(OPT_MAX_DEPTH) = 4
e(OPT_MAX_FEATURES) = 3
e(OPT_N_ESTIMATORS) = 50

e(TEST_ACCURACY) = .95
e(TRAIN_ACCURACY) = .9993055555555556

e(BEST_INDEX) = 13
e(SE_TEST_ACCURACY) = .0485912657903775

e(N_FOLDS) = 5
e(Train_err) = 0
e(Test_err) = .0666666666666667

e(N_features) = 4
e(N_train_all) = 120
e(N_test_all) = 30

e(N_train_used) = 120
e(N_test_used) = 30

macros:
e(dep_var) : "iris"

6 Application 3: ML classification of handwritten numer-
als

In this application, I focus on the classification of handwritten numerals, a task that can
be encompassed within the larger set of image recognition studies. To this purpose, I
use the popular Modified National Institute of Standards and Technology dataset. This
database has been widely used to test and compare several ML classification algorithms
(LeCun et al. 1998).

I use two datasets for training and then testing the ML algorithms implemented by
c_ml_stata_cv: mnist_train.dta, containing 60,000 images of numerals from 0 to 9,
and mnist_test.dta, containing 10,000 of these images. The dimension of each image
is 28× 28, implying a total number of pixels per image equal to 784. I stack the image
pixels horizontally so that a single image is a row of the dataset represented by 784
values. Consequently, I have 784 variables, from v1 to v784.9

9. Interested readers can access https: // nbalov.github.io / index.html, the webpage of Nikolay H.
Balov, where he introduces a community-contributed command, mlp2, for specifying and learning
a type of neural network, the multilayer perceptron, with two hidden layers. Balov performs an
application of mlp2 to the Modified National Institute of Standards and Technology dataset.

https://nbalov.github.io/index.html
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To speed up computation, and just for illustrative purposes, I consider only 1,000
images randomly drawn from the training dataset, and I compare all the classifiers
available through c_ml_stata_cv at their default parameters. The overall estimation
procedure takes less than one minute.

The following code implements all the necessary steps to compare the accuracy of
these classifiers. Results in terms of accuracy in the test dataset are stored in the matrix
M generated as empty at the beginning of the code and listed at the end. The code also
plots and saves, for the images of the training dataset, the conditional probabilities
that image i is the numeral j, that is, Prob(yi = j|xi), i = 1, . . . , N . The plots of
these probabilities provide us with a visual inspection of the quality of each numeral’s
classification. The entire code is set out below:

. * Load the dataset

. use mnist_train, clear
(Training MNIST: 28x28 images with stacked pixel values v* in [0,1] range)
. * Consider only a (random) subsample of the training dataset
. set seed 1010
. generate u=runiform()
. sort u
. keep in 1/1000
(59,000 observations deleted)
. save mnist_train2, replace
(file mnist_train2.dta not found)
file mnist_train2.dta saved
. * Set the "target" (y) and the "features" (X)
. global y "y"
. global X "v1-v784"
. * Set the learners to compare
. global LEARNERS tree randomforest boost regmult
> nearestneighbor neuralnet naivebayes svm multinomial
. * Set a matrix M that will contain the testing accuracy of each ML method
. global M: word count $LEARNERS
. matrix M=J($M,1,.)
. * Run the loop estimating the models and storing the testing accuracy
. local j=1
. foreach L of global LEARNERS {

2. capture rm cv.dta
3. preserve
4. use mnist_train2, clear
5. c_ml_stata_cv $y $X, mlmodel(`L') data_test("mnist_test")

> prediction("pred_`L'") default seed(10)
6. matrix M[`j',1]=1-e(Test_err)
7. keep pred_`L' _train_index y
8. save pred_`L', replace
9. local j=`j'+1
10. restore
11. }
(output omitted )
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. * Rename rows of M by learner

. matrix rownames M = $LEARNERS

. * Rename the column of M

. matrix colnames M = Accuracy

. * List matrix M (accuracy by learner)

. matlist M
Accuracy

tree .6702
randomforest .8944

boost .3805
regmult .8682

nearestnei~r .8692
neuralnet .888
naivebayes .6047

svm .9146
multinomial .8554

The best accuracy is reached by the SVM (with an accuracy of 91%), followed by
random forest and neural network (both with an accuracy of 89%). Surprisingly, the
multinomial logit also performs rather well with an accuracy of 85%.

Figure 5 displays the estimation of Prob(yi = j|xi), i = 1, . . . , N , in the training
sample using the SVM algorithm, where I indicate a training image with i and a numeral
(from 0 to 9) with j.
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Figure 5. Classification of handwritten numerals; estimation of Prob(yi = j|xi),
i = 1, . . . , N , in the training sample using the SVM algorithm.
note: i = training image; j = numeral.
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The more the upper part of each figure is spread over all the numerals, the worse
the quality of classification. For example, the numeral “0” seems very well classified
compared with the numeral “9”.

To better appreciate this, figures 6 and 7 illustrate the jitter plots, respectively, for
the numerals “0” and “9”. In figure 6, the probability that the numeral is correctly
classified as a “0” is rather high compared with the probability that “0” is classified
incorrectly.
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Figure 6. Classification of handwritten numerals. Estimation of Prob(yi = 0|xi),
i = 1, . . . , N , in the training sample using the SVM algorithm.

However, when we look at figure 7, we see a different situation. Although the
probability of correctly classifying a “9” is high, the probability is also quite high of
classifying it as a “4” or, to a lesser extent, as a “7”. These results are reasonable;
it seems probable that one can write a “9” and a “4” similarly, thus making correct
classification more uncertain. A larger training sample might mitigate, though not
eliminate, events like these.
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Figure 7. Classification of handwritten numerals. Estimation of Prob(yi = 9|xi),
i = 1, . . . , N , in the training sample using the SVM algorithm.

7 Application 4: Estimating CATEs
In the previous applications, I used ML algorithms for predictive purposes. The same
algorithms, however, can be used to estimate causal effects. In this application, I will
show how to estimate the CATE with the ML methods implemented via r_ml_stata_cv.

I use the popular LaLonde (1986) dataset jtrain2.dta, used by Dehejia and Wahba
(1999) to evaluate various propensity-score matching methods. I am interested in esti-
mating the effect of attending a job training administrated in 1976 (measured by the
binary variable train, taking value 1 for treated and 0 for untreated) on real earnings
in 1978 (variable re78) of a set of individuals in the United States. The dataset is made
of 445 total observations, 185 treated and 260 untreated people.

Following the specification of Dehejia and Wahba (1999), our control variables are
age, age in years; agesq, age squared; educ, years of schooling; black, an indicator
variable for Black people; hisp, an indicator variable for being Hispanic; married,
an indicator variable for marital status; nodegr, an indicator variable for high school
diploma; re74, real earnings in 1974; re74sq, real earnings in 1974 squared; re75, real
earnings in 1975; unemp74, an indicator variable for being unemployed in 1974; unemp75,
an indicator variable for being unemployed in 1975; and u74hisp, an interaction between
unemp74 and hisp.
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Under the assumption of unconfoundedness (also known as conditional indepen-
dence), it is well known (Cerulli 2015) that the CATE takes on this form:

CATE(xi) = m1(xi)−m0(xi)

where m1(xi) = E(yi|xi, Ti = 1) and m0(xi) = E(yi|xi, Ti = 0) are two conditional
expectations that can be estimated by either parametric or nonparametric methods,
including any supervised ML method. Notice that, when y is binary, the CATE becomes
the difference between two probabilities:

CATE(xi) = Prob(yi = 1|xi, Ti = 1)− Prob(yi = 1|xi, Ti = 0)

As known, the CATE is not identified by observation because the counterfactual treat-
ment status of any observation is itself unidentified. To make this point clearer, table 2
sets out an example of an estimation of the CATE under unconfoundedness. The poten-
tial outcomes, y1 and y0, are not fully observed. More precisely, y1 is known only for
the treated and y0 only for the untreated units. Similarly, m1(x) is estimated in-sample
only for the treated units, and m0(x) is estimated in-sample only for the untreated
units. Under unconfoundedness, however, one can impute the missing observations of
m1(x) and m0(x) by taking the out-of-sample predicted values over the opposite group.
This type of imputation of the missing counterfactual is called regression adjustment.
Once m1(x) and m0(x) are all imputed, the CATE is obtained as their difference. In
table 2, as a consequence, the symbol “.” indicates a pure missing value, the symbol “x”
indicates a value imputed in-sample by regression adjustment under unconfoundedness,
and the symbol “*” indicates a value imputed out-of-sample by regression adjustment
under unconfoundedness.

Table 2. Example of an estimation of the CATE based
on unconfoundedness

ID T x y y1 y0 m1(x) m0(x) CATE

1 1 34 22 22 . x * *
2 1 65 45 45 . x * *
3 1 45 89 89 . x * *

4 0 78 50 . 50 * x *
5 0 16 55 . 55 * x *
6 0 30 45 . 45 * x *

note: . = missing value; x = value imputed in-sample by re-
gression adjustment under unconfoundedness; * = value imputed
out-of-sample by regression adjustment under unconfoundedness



804 Machine learning using Stata/Python

The imputation of the values * and x can be carried out by ML. In theory, every
method implemented by c_ml_stata_cv or r_ml_stata_cv is suitable for this end. The
estimation procedure follows these steps:

1. Imputation of m1(x):

a. Run a regression (or classification) of y on x using only the treated sample,
and impute in-sample the values with symbol x.

b. Using the previous fit, impute out-of-sample the values of the untreated sam-
ple with symbol *, thus obtaining m1(x) wholly filled in.

2. Imputation of m0(x):

a. Run a regression (or classification) of y on x using only the untreated sample,
and impute in-sample the values with symbol x.

b. Using the previous fit, impute out-of-sample the values of the treated sample
with symbol *, thus obtaining m0(x) wholly filled in.

3. Estimate CATE as the difference between the imputed m1(x) and the imputed
m0(x).

Because our target variable (re78) is numerical and continuous, we are in a regression
setting, which requires us to use the learners available through r_ml_stata_cv. The
following code implements the learner-by-learner CATE estimation procedure outlined
above and provides graphical representation of the main results:

. * Load the dataset

. sysuse jtrain2, clear

. * Set the main inputs

. global y "re78" // outcome

. global w "train" // binary treatment variable

. global X age agesq educ educsq married nodegree black
> hisp re74 re74sq re75 unem74 unem75 u74hisp // controls
. global LEARNERS "ols elasticnet tree randomforest boost nearestneighbor
> neuralnet svm"
. * Look at "teffects ra" result on ATE (it should match the ATE of OLS)
. teffects ra ($y $X) ($w), ate

(output omitted )
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. foreach L of global LEARNERS{
2. * Load the dataset

. sysuse jtrain2, clear
3. * Create the train and test datasets (treated = training dataset)

. preserve
4. keep if $w==1
5. save train_w11, replace
6. restore
7. preserve
8. keep if $w==0
9. save test_w10, replace
10. restore
11. * Load the training dataset and generate the predictions to obtain m1(x)
. use train_w11, clear
12. r_ml_stata_cv $y $X, mlmodel(`L') data_test("test_w10")
> prediction("m1") default seed(10)
13. * Save m1(x) in a dataset named "m1"
. preserve
14. keep _train_index m1
15. save m1, replace
16. restore
17. * Create the train and test datasets (untreated = training dataset)
. preserve
18. keep if $w==0
19. save train_w00, replace
20. restore
21. preserve
22. keep if $w==1
23. save test_w01, replace
24. restore
25. * Load the training dataset and generate the predictions to obtain m0(x)
. use train_w00, clear
26. r_ml_stata_cv $y $X, mlmodel(`L') data_test("test_w01")
> prediction("m0") default seed(10)
27. * Flip test and train datasets
. preserve
28. keep if $w==0
29. save top, replace
30. restore
31. preserve
32. keep if $w==1
33. save down, replace
34. restore
35. * Set the correct order of the training and testing observations
. clear
36. append using down top
37. * Save m0(x) in a dataset named "m0"
. keep _train_index m0
38. save m0, replace
39. * Merge m0 and m1
. merge 1:1 _n using m1
40. * Generate CATE (by learner)
. generate CATE_`L' = m1 - m0
41. * Save CATEs in dedicated datasets (by learner)
. keep CATE*
42. save cate_`L', replace
43. }
(output omitted )
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. * Load "cate_ols" and merge it with all the other CATEs datasets

. use cate_ols, clear

. foreach L of global LEARNERS{
2. capture drop _merge
3. merge 1:1 _n using cate_`L'
4. capture drop _merge
5. }
(output omitted )

. * Generate the mean of CATEs

. generate CATE_mean=0

. foreach L of global LEARNERS{
2. replace CATE_mean= CATE_mean + CATE_`L'
3. }
(output omitted )

. replace CATE_mean=CATE_mean/8
(445 real changes made)
. sum CATE_mean

(output omitted )
. global m_cate=round(r(mean),0.01)
. * Plot jointly the distributions of CATEs
. twoway (kdensity CATE_mean, xline($m_cate, lp(dash))),
> xtitle("Average of CATEs over learners") ytitle("")
. graph export r_ml_stata_cv8.pdf, replace
file r_ml_stata_cv8.pdf saved as PDF format
. * Generate a dot plot of the results
. collapse CATE*
. xpose, clear varname
. rename v1 CATE
. rename _varname learner
. graph dot CATE, over(learner, sort(1)) ytitle("ATE")
> yline($m_cate,lp(dash) lc(black)) note(Average ATE = $m_cate)

The main outcomes of the previous code are illustrated in figures 8 and 9. Figure 8
shows the distribution of the average CATE obtained over all the eight learners. Looking
at the plot, one can immediately see that the shape of the distributions of CATE is bell-
shaped and centered to a value of 1.76.

Figure 9 sets out the average treatment effect (ATE) by sorting it according to the
learner type. We can see that all the learners, except tree, SVM, and neural network,
provide similar values of ATE. On average over the various learners, the ATE is equal to
1.76, which means that a treated individual in 1976 earns in 1978 $1,760 more than an
untreated individual, signaling a positive effect of the policy in question.
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Figure 8. Estimation of the distribution of the CATEs using the ML methods imple-
mented via c_ml_stata_cv; dashed vertical line indicates the ATE
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8 Conclusion
In the last two decades, advances in statistical learning and computation have radically
improved the prediction performance of targeted outcomes in nearly all scientific do-
mains, including engineering, robotics, and artificial intelligence. ML has emerged as
a new scientific paradigm to model outcomes and design pragmatic architectures for
reasoned decision making in uncertain environments.

Thanks to the recent Stata/Python integration platform introduced within Stata 16,
producing Stata routines to fit ML regression and classification has become relatively
straightforward.

By exploiting this opportunity, I presented two related commands, r_ml_stata_cv
and c_ml_stata_cv, for fitting popular ML models in both a regression and a classifi-
cation setting. These commands provide hyperparameters’ optimal tuning via K-fold
CV using grid search, by wrapping the Python Scikit-learn API to perform CV and
outcome/label prediction.

Compared with other popular statistical software, Stata has the advantage of being
highly user-friendly and powerful for complex data management. Unfortunately, Stata
has not yet embedded a built-in ML package, except for the lasso (which also includes
the elastic net).

The commands presented herein thus aim to partly fill this gap by providing Stata
users with two simple but powerful commands for fitting various ML methods. Fur-
ther development of this work may include providing deep-learning Stata routines by
wrapping into Stata the Python platforms Keras and TensorFlow.
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10 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-4

. net install pr0076 (to install program files, if available)

. net get pr0076 (to install ancillary files, if available)

The r_ml_stata_cv command is also available on the Statistical Software Compo-
nents archive and can be installed directly in Stata by typing the command

. ssc install r_ml_stata_cv
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