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Abstract. In this article, I show how to calculate consistent marginal effects
on the original scale of the outcome variable in Stata after estimating a linear
regression with a dependent variable that has been transformed by the inverse
hyperbolic sine function. The method uses a nonparametric retransformation of
the error term and accounts for any scaling of the dependent variable. The inverse
hyperbolic sine function is not invariant to scaling, which is known to shift marginal
effects between those from an untransformed dependent variable to those of a log-
transformed dependent variable, when all observations are positive.
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1 Introduction
The inverse hyperbolic sine function is widely used in empirical research to transform
the dependent variable. The motivation to use this transformation is that it allows for
nonpositive values and can reduce the influence of outliers in a right-skewed distribution.
The natural logarithm transformation is often used for skewed distributions, but ln(y)
is not defined when y is zero or negative. Linear regression can be used for dependent
variables that span the entire real line, but the results can be greatly influenced by
outliers if the distribution of y is skewed. The inverse hyperbolic sine transformation
is one alternative to untransformed linear regression that can potentially solve both
problems.

However, the inverse hyperbolic sine transformation creates additional challenges.
The first is that in a linear regression with an inverse hyperbolic sine-transformed de-
pendent variable, the estimated coefficients have no intrinsic meaning. It is necessary
to retransform the predicted values back to the original scale to calculate quantities of
interest, which are typically marginal effects. The retransformation back to the original
scale of the outcome variable is not trivial (Manning 1998). In this article, I show how
to estimate marginal effects on the original scale in Stata after retransforming results
from a linear regression with an inverse hyperbolic sine-transformed dependent variable.
I apply Duan’s (1983) nonparametric smearing estimate to the inverse hyperbolic sine
retransformation to get both marginal effects and predicted values on the original scale.
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The second challenge is that the inverse hyperbolic sine is not invariant to scal-
ing (Aihounton and Henningsen 2021). In contrast, linear regression with an untrans-
formed dependent variable is invariant to scaling, meaning that changing the units of
the dependent variable between, say, dollars, pennies, euros, pounds, and yuans will
not change the final interpretation. The regression coefficients adjust predictably. Un-
like linear regression with an untransformed dependent variable, an inverse hyperbolic
sine-transformed dependent variable is sensitive to scaling. The marginal effects on the
original scale will change if that dependent variable is rescaled (for example, from dollars
to pennies). The two scaling extremes—dividing or multiplying the dependent variable
by a large number before applying the inverse hyperbolic sine transformation—will re-
produce marginal effects on the original scale that are either equal to marginal effects
from a linear regression with an untransformed dependent variable or equal to marginal
effects from a log-transformed model, when all observations are positive.

I show how to estimate marginal effects on the original scale of the outcome variable
for the inverse hyperbolic sine model over a wide range of scaling factors in Stata and
compare the results. Although the inverse hyperbolic sine transformation can also be
used for an explanatory variable, such transformations are beyond the scope of this
study (see Bellemare, Barrett, and Just [2013] for one example).

2 Inverse hyperbolic sine
The inverse hyperbolic sine function, also known as the area hyperbolic sine function
(denoted asinh()), is the natural logarithm of y plus an additional term equal to the
square root of y2 plus 1. The inverse hyperbolic sine function is

sinh−1(y) = ln
(
y +

√
y2 + 1

)
The inverse hyperbolic sine function has several nice properties. It passes through

the origin because, when y = 0, then ln(1) = 0. The inverse hyperbolic sine function
is symmetric around 0, meaning that sinh−1(y) = − sinh−1(−y). For large values of y,
sinh−1(y) is approximately equal to ln(y) plus a constant [ln(2) ≈ 0.693].

For y � 0 : sinh−1(y) ≈ ln(2y) = ln(y) + ln(2)

The derivative of the inverse hyperbolic sine function shows where that function is
similar in slope to the identity and log transform functions. The derivative of sinh−1(y)

with respect to y is the inverse of
√
y2 + 1.

d

dy

{
ln
(
y +

√
y2 + 1

)}
=

1√
y2 + 1

The graph of sinh−1(y) against y has three distinct regions, as shown in figure 1. As
y gets large, the derivative of sinh−1(y) approaches 1/y, which is the derivative of ln(y).
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As y approaches 0, the derivative of sinh−1(y) approaches 1, which is the slope of the
untransformed line. When y is negative, sinh−1(y) is equal in magnitude and opposite
in sign to sinh−1(|y|). Therefore, when y is large, the marginal effects for the inverse
hyperbolic sine and log transformations will be nearly the same, and when y is small,
the marginal effects for the inverse hyperbolic sine and identity transformations will be
nearly the same (Aihounton and Henningsen 2021).

y

sinh-1(y)

ln(y)

Domain of y where
slope of sinh-1(y)
≅ slope of ln(y)

Domain of y where
slope of sinh-1(y) ≅ 1

≅ln(2)
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Figure 1. Three transformations of y (identity, inverse hyperbolic sine, and natural log)
and the domain of y over which the slopes of the transformations are nearly identical

Suppose that you have a continuous outcome that has both positive and negative
values and has a right-skewed distribution. Perhaps it is a financial variable like net
income or wealth. One could estimate a linear regression with an inverse hyperbolic
sine-transformed dependent variable. Let y be a continuous outcome determined by
a vector of covariates x with a corresponding vector β of unknown parameters to be
estimated. Let i denote individual observations, and let the error term be ε.

sinh−1(yi) = x′
iβ + εi

If the goal is to estimate marginal effects on the original scale, then how should one
proceed? One alternative is to compute elasticities. Bellemare and Wichman (2020)
derive the elasticities for cases where the dependent variable y, the independent variables
x, or both y and x are transformed by the inverse hyperbolic sine function.

Another alternative is to fit the model using generalized method of moments (GMM).
The advantage of GMM is that it avoids retransformation. Mullahy (2021) shows how
to fit a GMM model with an inverse hyperbolic sine-transformed dependent variable.
Unfortunately, Stata has trouble fitting inverse hyperbolic sine models with GMM when
y is large—above, say, 50. For typical financial data, fitting a GMM model in Stata
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requires rescaling by dividing by a large number. But this returns results that are
essentially the same as the untransformed model.

If the dependent variable has only positive values, then the inverse hyperbolic sine
transformation is not necessary. There are well-established methods that use either the
log-transformation or generalized linear models with one of several possible transforma-
tions, including the log (Manning 1998; Manning and Mullahy 2001; Deb, Norton, and
Manning 2017).

Most applied econometricians are interested in estimating conditional marginal ef-
fects, so I will show how to do that next for an inverse hyperbolic sine-transformed
dependent variable.

3 Duan’s smearing estimate for inverse hyperbolic sine
After estimating a linear regression with an inverse hyperbolic sine-transformed de-
pendent variable, how should one interpret the results? In particular, how can one
calculate marginal effects of covariates? The coefficients are not directly interpretable
as marginal effects, as they are for an untransformed linear regression. Nor are the co-
efficients semielasticities, as they are for a log-transform regression. I will show how to
retransform the results using the hyperbolic sine function and applying Duan’s (1983)
smearing estimate.

The hyperbolic sine function—the inverse of the inverse hyperbolic sine function—is
half the difference of two exponential terms.

sinh(x) =
ex − e−x

2
(1)

Substitute x′β+ ε for x in (1), and take expectations to derive the following expres-
sion for the expected value of y on the original scale, given x.

E(y|x) = E {sinh(x′β + ε)|x} (2)

Duan (1983) showed how to calculate a consistent estimate of the expected value of
the outcome on the original scale after fitting a linear regression model with a trans-
formed dependent variable. His method has been widely applied to the natural logarithm
transformation (Manning 1998; Manning and Mullahy 2001). Duan’s proof applies not
only to log transformations but also to any smooth distribution. Specifically, the key
assumption for the consistency of Duan’s smearing estimate is that the retransformation
function is continuously differentiable, which sinh(·) is.

Following Duan (1983), instead of integrating over the unknown distribution of the
error term, use the empirical cumulative distribution function by averaging (2) over the
estimated residuals, and substitute the least-squares estimates of the parameters β̂. Let
the sample size be N .
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Ê(y|x) = 1

N

N∑
i=1

sinh
(
x′β̂ + ε̂

)
=

1

2N

N∑
i=1

(
ex

′β̂eε̂i − e−x′β̂e−ε̂i
)

In practice, this is done in two steps. First, let D = E(eε). Although D is unknown
because ε has an unknown distribution, the population mean of D can be estimated by
the sample mean.

D̂ =
1

N

N∑
i=1

eε̂i

Second, substitute D̂ into (2), and rearrange terms to get Duan’s smearing estimate
for the retransformation of the inverse hyperbolic sine-transformed linear regression.

Ê(y|x) = 1

2

(
ex

′β̂D̂ − e−x′β̂D̂−1
)

(3)

The marginal effect of a change in a continuous variable x1 with a corresponding
coefficient β1 is the derivative of (3) and is always positive (notice that the two terms
are now added, not subtracted).

dÊ(y|x)
dx1

=
1

2

(
β̂1e

x′β̂D̂ + β̂−1
1 e−x′β̂D̂−1

)
One advantage to Duan’s approach is that it is easy to estimate in Stata, as shown

in the next section. A limitation is that it assumes that the variance is homoskedas-
tic. Manning (1998) discusses how to adjust Duan’s smearing estimate when there is
heteroskedasticity by group.

4 Code for marginal effects
This section shows example code to estimate marginal effects on the original scale after
estimating a linear regression with an inverse hyperbolic sine-transformed dependent
variable, using Duan’s (1983) smearing estimate. Stata refers to the inverse hyperbolic
sine function as asinh(). The example code assumes that the dependent variable is y
and that there are three covariates (x1, x2, and x3); those would be changed by the
user. In addition to marginal effects, the code also calculates predicted values of y by
generating a new variable, yhat_ihs, that is also based on retransformed results with
Duan’s smearing estimate.
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* Example code to fit IHS model and retransformed marginal effects
generate y_ihs = asinh(y) // replace y with outcome
regress y_ihs x1 x2 x3, vce(robust) // replace x1-x3 with covariates
predict xbhat_ihs, xb
predict double ehat, residual
egen duan = mean(exp(ehat))
margins, dydx(*) expression(.5*(exp(xb())*duan - (1/(exp(xb())*duan))))
generate yhat_ihs = .5*(exp(xbhat_ihs)*duan - (1/(exp(xbhat_ihs)*duan)))

5 Code for multiple scaling factors
Next I show how to incorporate scaling into the marginal effects calculations. It is well
known that inverse hyperbolic sine is sensitive to scaling because the inverse hyperbolic
sine transformation is not scale invariant (Aihounton and Henningsen 2021). It is best
to think of the scale factor as one additional parameter to the model. Aihounton and
Henningsen (2021) discuss ways to choose the optimal scaling parameter.

The example code below is similar to the example code for the basic inverse hyper-
bolic sine retransformation but also allows for a scaling factor.

* Example code to fit scaled IHS model and retransformed marginal effects
scalar scale = .001 // replace scaling factor
generate y_ihs_scale = asinh(scale*y)
(code omitted)
margins, dydx(*) expression(.5*(exp(xb())*duan - (1/(exp(xb())*duan)))/scale)
generate yhat_ihs = .5*(exp(xbhat_ihs)*duan - (1/(exp(xbhat_ihs)*duan)))/scale

One way to compare results across different scaling factors is to fit several models and
then compare the marginal effects and their standard errors using estimates table.
The following program allows for such comparisons.

* Example program to fit IHS models with several scale
* factors and to compare the marginal effects
* Must have declared $y and $xvars as global variables
capture program drop ihs
program define ihs

args scale name
tempvar ihs_y ehat duan
generate `ihs_y' = asinh(`scale'*$y)
regress `ihs_y' $xvars, vce(robust)
predict `ehat', residual
egen `duan' = mean(exp(`ehat'))
margins, dydx(*) expression(.5*(exp(xb())*`duan' ///

- (1/(exp(xb())*`duan')))/`scale') post
estimates store `name'

end
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After defining the program ihs, one can use it to compare models with different
scaling factors by specifying both the scaling factor and a name for stored results, as
shown below in example code.

* Example use of ihs; arguments are scale and name
ihs .000001 mil_th
ihs .001 thou_th
ihs 1 one
ihs 100 hundred
estimates table mil_th thou_th one hundred, b(%7.2f) se(%7.2f)

The example code in this section, slightly modified, was used for the empirical ex-
ample using Medical Expenditure Panel Survey (MEPS) in the next section.

6 Example using MEPS data
This empirical example predicts family income for a sample of 115,009 persons in the
2008–2014 MEPS, a national survey on the financing and use of medical care in the
United States. Family income ranges from −182,078 to 556,128, has a median value
of $47,439, and is right-skewed (see figure 2). Therefore, it is reasonable to consider
transforming family income by the inverse hyperbolic sine function.

Min = -$182,078

56 obs. < 0

2,717 obs. = 0

Median = $47,439

Max = $556,128

0
20

00
40

00
60

00

-200000 0 200000 400000 600000
Family income ($)

Histogram of family income, MEPS data (2008–2014)

Figure 2. The histogram of family income shows a skewed distribution of positive values,
with many values of zero and some negative values
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The sample includes persons aged 25–65. For illustrative purposes, the simple model
specification is a function of just age, gender, and the highest level of education achieved
(four categorical values). The mean age is 44, more than half are women, a quarter did
not complete high school, and half have a high school diploma as their highest level of
education.

. summarize $y ihs_y ln_y age female i.education
Variable Obs Mean Std. dev. Min Max

faminc 115,009 62304.58 55366.43 -182078 556128
ihs_y 115,009 11.10619 2.027033 -12.80534 13.9219
ln_y 112,236 10.6924 .9615114 1.098612 13.22875
age 115,009 44.08338 11.48955 25 65

female 115,009 .5392274 .498461 0 1

education
No HS deg 115,009 .2642315 .4409251 0 1
HS degree 115,009 .5012303 .5000007 0 1

College deg 115,009 .1567269 .3635446 0 1
Grad. deg 115,009 .0778113 .2678756 0 1

The results compare the estimated marginal effects on the original scale for lin-
ear regressions with either an inverse hyperbolic sine-transformed dependent variable
(me_ihs) or an untransformed dependent variable (me_y). The estimated coefficients of
the inverse hyperbolic sine model are in the first column for completeness. The marginal
effects of the inverse hyperbolic sine model are roughly half again to double the size,
in absolute value, compared with those for the untransformed ordinary least-squares
model. The marginal effects should be similar only if the dependent variable has been
rescaled by multiplying by a tiny number, which it has not.

. * Results comparing IHS betas and marginal effects with untransformed OLS

. estimates table beta_ihs me_ihs me_y, b(%10.3f) se(%10.3f)

Variable beta_ihs me_ihs me_y

age 0.009 615.570 450.733
0.001 35.395 12.872

female
Female=1 -0.232 -15797.450 -6239.074

0.012 795.524 301.452

education
HS degree 0.437 20005.268 11635.094

0.016 680.604 311.280
College deg 1.133 76784.804 45697.617

0.017 1327.375 528.542
Grad. deg 1.436 116905.241 71019.401

0.019 2072.207 839.017

_cons 10.322
0.027

Legend: b/se
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Next are comparisons for five different rescaled inverse hyperbolic sine models along
with both an untransformed model and a log-transformed model. Because ln(y) is not
defined for nonpositive values of y, I dropped the 2,773 observations with nonpositive
values of family income.1 The new sample has 112,236 observations. Other than drop-
ping the left tail of the family income distribution, the other summary statistics did
not change appreciably. However, dropping the 2.5% of observations with the lowest
values of the dependent variable does change the average marginal effects. The marginal
effects from the two different samples cannot be compared.

The five scaling factors are 0.000000001 (“trillionth”), 0.000001 (“millionth”), 0.001
(“thousandth”), 0.1 (“tenth”), and 10 (“ten”). For this dataset and model specification,
these five scaling factors give marginal effects that span from untransformed y to ln(y).
The results show that scaling by one trillionth yields marginal effects and standard errors
that are identical (to a few digits) to those of the untransformed model (see left two
columns of the results table). Moving to the right side of the table, we see that scaling
by multiplying by 10 yields marginal effects and standard errors that are identical to
those of the ln(y) model.

. * Compare marginal effects across models

. estimates table me_y tril_th mil_th thou_th tenth ten me_lny, b(%7.1f)
> se(%7.1f)

Variable me_y tril_th mil_th thou_th tenth ten

age 452.2 452.2 450.2 450.0 448.5 448.4
13.0 13.0 12.9 15.3 15.8 15.8

female
Female=1 -5978.9 -5978.9 -5964.8 -8866.0 -8972.8 -8975.8

304.1 304.1 301.7 342.2 350.9 351.2

education
HS degree 11222.0 11222.0 11209.9 13478.2 13461.1 13458.9

315.7 315.7 313.7 314.9 322.3 322.5
College deg 44788.2 44788.2 44634.1 53359.8 53445.9 53443.5

530.7 530.7 526.5 627.9 647.0 647.7
Grad. deg 69924.0 69924.0 69595.4 82569.2 82848.8 82852.6

839.5 839.5 831.4 1039.9 1065.1 1065.8

Legend: b/se

1. This is done to allow only for direct comparisons across the different models including ln(y); one of
the motivations for inverse hyperbolic sine is the ability to include zero and negative values of y.
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Variable me_lny

age 448.4
15.8

female
Female=1 -8975.8

351.2

education
HS degree 13458.9

322.5
College deg 53443.5

647.7
Grad. deg 82852.6

1065.8

Legend: b/se

The marginal effects for age do not change appreciably with changes in scaling.
However, the other marginal effects change considerably with different scaling. For a
real research article, instead of this illustration, it would be important to compare the
fit of the various models as a function of the scaling parameter and make an informed
choice about which model specification is best (Aihounton and Henningsen 2021). Any
comparison, however, of log likelihoods of models with different dependent variables
would need to add the Jacobian term relevant for the transformation to its respective
log likelihood (Bellemare and Wichman 2020).

The code and data are available from the author upon request.

7 Conclusions
The inverse hyperbolic sine transformation is gaining popularity because it is easy to
estimate with linear regression and allows for a skewed dependent variable that takes
on zero and negative values.

In practice, it can be hard to estimate the marginal effects on the original scale.
The estimated coefficients are not marginal effects, nor are they semielasticities like
ln(y). As has been known for years, if your dependent variable has been transformed
but you want to interpret on the original scale, then you must retransform the results
using Duan’s smearing estimate. Also note that the inverse hyperbolic sine function is
not scale invariant. Scaling from low values (multiply by tiny positive number) to high
values (multiply by large number) changes the marginal effects at the extremes from
ordinary least squares to ln(y).

In this article, I showed how to retransform in Stata the inverse hyperbolic sine model
results and calculate marginal effects and their confidence intervals on the original scale.
I also showed how to compare results across multiple scaling factors.
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