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Abstract. In this article, I introduce xtsfkk as a new command for fitting panel
stochastic frontier models with endogeneity. The advantage of xtsfkk is that it can
control for the endogenous variables in the frontier and the inefficiency term in a
longitudinal setting. Hence, xtsfkk performs better than standard panel frontier
estimators such as xtfrontier that overlook endogeneity by design. Moreover,
xtsfkk uses Mata’s moptimize() functions for substantially faster execution and
completion speeds. I also present a set of Monte Carlo simulations and examples
demonstrating the performance and usage of xtsfkk.
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1 Introduction
It has been more than 40 years since Aigner, Lovell, and Schmidt (1977) and Meeusen
and van den Broeck (1977) introduced stochastic frontier models. These models are
composed of a deterministic part identifying the frontier goal, a stochastic part for the
two-sided error term, and a one-sided inefficiency error term identifying the distance
from the stochastic frontier. They can be used to study production, cost, revenue,
profit, or other goals within various industries. Over the years, these models have
become quite common in the literature as empirical researchers have applied them in
their research articles and theoretical researchers have modified them to address further
needs. Kumbhakar and Lovell (2000) review this literature and summarize numerous
applications of these models in many different industries, such as accounting, advertis-
ing, banks, education, financial markets, environment, hospitals, hotels, labor markets,
military, police, real estate, sports, transportation, and utilities.
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Stata provides the frontier command to estimate the parameters of a stochastic
frontier model. Petrin, Poi, and Levinsohn (2004) offer a new command called levpet
to estimate production functions using the econometric methodology of Levinsohn and
Petrin (2003). Yasar, Raciborski, and Poi (2008) offer another command called opreg to
estimate production functions with selection bias or simultaneity by implementing the
methodology of Olley and Pakes (1996). Amadou (2012) provides the frontierhtail
command to fit stochastic frontier models with fat tails as outlined by Gupta and
Nguyen (2010). Belotti et al. (2013) introduce a command called sfcross that mirrors
Stata’s frontier command with additional functionality, options, and models. Fé and
Hofler (2020) provide a new command called sfcount that fits cross-sectional stochastic
frontier models with a dependent count variable in the style of Fé and Hofler (2013).

However, the literature on stochastic frontier models, various commands, and the
estimator options in other general-purpose statistical software packages does not offer
a way to control for endogeneity that can exist in these models. If the determinants
of the frontier or the inefficiency term are correlated with the two-sided error term
of the model, then the outcomes of the standard estimators would be contaminated
by endogeneity. Intrigued by this shortage in the literature, Kutlu (2010) addresses
the endogeneity issue in stochastic frontier models in his article. Karakaplan and Kutlu
(2017a) develop a model to handle endogeneity due to the determinants of the frontier or
the inefficiency term, or both. Furthermore, Karakaplan (2017) offers a new command
called sfkk to make it easy for researchers to analyze empirical stochastic frontier models
with endogeneity. As a result of these efforts, many research articles such as Xu and
Chen (2018), Germeshausen, Panke, and Wetzel (2020), and Karakaplan and Kutlu
(2019) applied these methodologies and published various empirical findings.

Karakaplan and Kutlu (2017a) and the sfkk command of Karakaplan (2017) are
designed to be cross-sectional. Karakaplan and Kutlu (2017b), on the other hand, design
a stochastic frontier estimator that would resolve endogeneity issues in a panel setting.
The standard xtfrontier command of Stata and sfpanel command of Belotti et al.
(2013) fit panel stochastic frontier models but ignore the endogeneity issues identified by
Karakaplan and Kutlu (2017b). Therefore, in this article, I introduce a new command,
xtsfkk, for fitting panel stochastic frontier models with endogeneity in Stata.
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2 The model
Karakaplan and Kutlu (2017b) present the following panel stochastic frontier model
with endogenous explanatory variables in the frontier and inefficiency terms (for full
model, see Karakaplan and Kutlu [2017b]):

lnLi = lnLi,y|x + lnLi,x (1)
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where a vector of observations corresponding to the panel i is represented by a sub-
script i.; Ti is the number of time periods for panel i; s = 1 for cost functions or
s = −1 for production functions; yit is the logarithm of the production or cost of the
ith productive unit at time t; xyit is a vector of exogenous and endogenous variables;
xit is a vector of all endogenous explanatory variables; Zit = Ip

⊗
z′it where zit is a

vector of all exogenous variables; vit and εit are two-sided error terms; uit ≥ 0 is a
one-sided error term capturing inefficiency; hit = h(x′

uitϕu) > 0; xuit is a vector of
exogenous and endogenous variables excluding the constant; u∗

i is a producer-specific
random component independent from vit and εit; Ω is the variance–covariance matrix
of εit; σ2

v is the variance of vit; ρ is the vector representing correlation between ε̃it
and vit; wit = σv

√
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√
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independent from the regressors given xit and zit; Φ denote the standard normal cumu-
lative distribution function; u∗

i ∼ N+(µ, σ2
u) (N+ is standard notation for half-normal

distribution); and h2
it = exp(x′

uitϕu). Karakaplan and Kutlu (2017b) provide all the
details about assumptions and how they derived the estimator.

Furthermore, to predict efficiency, Effit = exp(−uit), Karakaplan and Kutlu (2017b)
give the following formula:
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where φ denotes the standard normal probability distribution function.

Finally, Karakaplan and Kutlu (2017b) offer a test for endogeneity based on a rea-
soning similar to that of the standard Durbin–Wu–Hausman test. The test here is
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conducted by looking at the joint significance of the components of the η term. If the
components of the η term are jointly significant, then that would tell us there is endo-
geneity in the model and a correction through (1) would be needed. If, on the other
hand, the joint significance of the components is rejected, then correction for endogene-
ity would not be needed and the model can be fit by traditional frontier models.

3 The xtsfkk command
Using Mata’s maximum-likelihood estimator tools (the moptimize() functions), and
the exceptional guidance provided by Gould, Pitblado, and Poi (2010) and Kumbhakar,
Wang, and Horncastle (2015), I programmed the xtsfkk command, which can calcu-
late (1) and (2). There are two files that are included in the xtsfkk command package:
xtsfkk.ado, containing the main estimation syntax and the evaluator subroutines that
xtsfkk calls behind the scenes, and xtsfkk.sthlp, containing helpful information about
the command, which users can access by typing help xtsfkk in Stata. All front-end
interaction with xtsfkk and most postestimation routines, including the output style,
efficiency prediction, and endogeneity tests, are carried by the xtsfkk.ado file. The
main evaluator subroutine runs with method d0, which calculates the overall log like-
lihood. Finally, the unabridged versions of the subsequent sections on syntax, options,
and stored results are available in the xtsfkk help file.

3.1 Estimation syntax and options

Below is an abridged list of the options provided by xtsfkk presenting the most impor-
tant features of the command. Users can type help xtsfkk in Stata for the full-length
documentation of the xtsfkk syntax, options, stored results, and other details.

3.1.1 Syntax

xtsfkk depvar
[

indepvars
] [

if
] [

in
] [

weight
] [

, options
]

pweights, aweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

3.1.2 Options

See the help file for a full list of options.

production specifies that the model be fit as a production frontier model. This option
is the default and thus may be omitted.

cost specifies that the model be fit as a cost frontier model.

endogenous(endovarlist) specifies that the variables in endovarlist be treated as en-
dogenous. By default, xtsfkk assumes that the model is exogenous.
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instruments(ivarlist) specifies that the variables in ivarlist be used as instrumental
variables (IVs) to handle endogeneity. By default, xtsfkk assumes that the model
is exogenous.

uhet(uvarlist
[

, noconstant
]
) specifies the inefficiency component is heteroskedastic,

with the variance function depending on a linear combination of uvarlist. Specifying
noconstant suppresses the constant term from the variance function.

whet(wvarlist) specifies that the idiosyncratic error component is heteroskedastic, with
the variance function depending on a linear combination of wvarlist.

header displays a summary of the model constraints in the beginning of the regression.
header provides a way to check the model specifications quickly while the estimation
is running or a guide to distinguish different regression results that are kept in a single
log file.

compare fits the specified model with the exogeneity assumption and displays the re-
gression results after displaying the endogenous model regression results.

efficiency(effvar
[

, replace
]
) generates the production or cost efficiency variable

effvar_EN once the estimation is completed and displays its summary statistics in
detail. Notice that the option automatically extends any specified variable name ef-
fvar with _EN. If the compare option is specified, the efficiency() option also gen-
erates effvar_EX, the production or cost efficiency variable of the exogenous model,
and displays its summary statistics. Specifying replace replaces the contents of
the existing effvar_EN and effvar_EX with the new efficiency values from the current
model.

test provides a method to test the endogeneity in the model. test tests the joint sig-
nificance of the components of the eta term and reports the findings after displaying
the regression results. For more information about test, see Karakaplan and Kutlu
(2017b).

nicely displays the regression results nicely in a single table. nicely uses estout, a
community-contributed command by Jann (2005), to format some parts of the ta-
ble, and xtsfkk table style resembles that of Karakaplan and Kutlu (2017b). The
nicely option checks whether the estout package is installed on Stata, and if not,
then the nicely option installs the package. If the compare option is specified along
with nicely, then the table displays the exogenous and endogenous models with
their corresponding equations and statistics side by side in a single table for easy
comparison. nicely estimates the production or cost efficiency and tests endogene-
ity, and reports them in the table even if the efficiency() or test option is not
specified.

Two unique functionalities that come with xtsfkk are save()/load() and beep:

save(filename) saves the current status of the estimation to the hard drive in every
iteration while the estimation is running. Saving is especially useful if the user
thinks that intentional breaks may be needed or unintentional interruptions (such
as a power outage) may happen while the estimation is running. The save() option
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allows stopping the estimation temporarily to release memory for other tasks, and
then continuing from where the estimation was left by using the load() option.
Even if the computer completely shuts down for some external reason, as long as
the save() option is specified, the estimation can continue from where it was with
use of the load() option.

load(filename) loads the estimation from a previously saved file to continue from where
the estimation was. The model specification with the load() option needs to be the
same as the specification in the saved file. The save() and load() options use
matin4-matout4 by Baum and Gould (2004).

beep
[

(#)
]
is useful for multitasking. beep produces a single beep when xtsfkk reports

all the findings. When beep(#) is specified with a positive number, it produces #
beeps when the results are ready. If # is a negative number, then beep acts like
an alarm and produces continuous beeps until the user stops them. With the beep
option, the user would not need to constantly monitor the Stata Results window
for the outcome. Instead, the user can do other things until the computer starts
beeping. This functionality is especially useful if the model is complicated and the
panel dataset is large so that the estimation may take hours to complete, and the
user wants to know when the outcome is ready.

4 Monte Carlo simulations
I implement Monte Carlo simulations to examine the performance of xtsfkk. I analyze
three simulation scenarios in three tables: table 1 is for the effects of different panel
data sizes; table 2 is for the effects of different IV strengths; and table 3 is for the effects
of different degrees of endogeneity. Without loss of generality, I set up the scenarios as
cost models, and put one endogenous variable (z1) in the frontier and one endogenous
variable (z2) in the cost inefficiency. The setting and the data-generation process are
summarized below:

y = βc1 + βx1x1 + βz1z1 + u+ v

σ2
u = exp (βc2 + βx2x2 + βz2z2)

u∗ ∼ N+(0, 1)

u = σuu
∗

where x1 and x2 are exogenous variables, and z1 and z2 are endogenous variables. In
the true model, all coefficients are set to 0.5, and all variables are generated randomly
from the normal distribution with a mean of 0 and a standard deviation of 1. I use
the gentrun command by Wang (1999) to create u∗. The endogeneity of z1 and z2 are
independently and randomly generated from the normal distribution with a mean of
v× % and a standard deviation of 1− %, where the degree of endogeneity increases with
the % parameter. The IVs iv1 and iv2 are also independently and randomly generated
from the normal distribution with a mean of z1 × δ and z2 × δ, respectively, and a
standard deviation of 1− δ, where the strength of IVs increases with the δ parameter.
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I use the psimulate2 parallel simulation command in the simulate2 package by
Ditzen (2019) to run the Monte Carlo simulations with 500 repetitions each. All tables
present average estimated coefficients, mean squared errors (MSE) of the estimated co-
efficients, mean and median cost efficiency scores, MSEs of the cost efficiency scores, and
Pearson and Spearman correlations between cost efficiency scores of the true model and
the analyzed model. Model EX is the model that ignores endogeneity, and model EN is
the model that handles endogeneity.

Table 1 presents the simulation results with different data sizes ranging from 500 to
200,000 observations. The number of individual productive units, N , ranges from 100
to 5,000, and the number of time periods, T , ranges from 5 to 40. Additionally, % and
δ are set to 0.9 (high endogeneity and strong IVs). Compared with model EX, model
EN’s average coefficient estimates are more similar to the true model in all columns of
table 1, and the coefficient MSEs of model EN are mostly smaller than that of model EX.
In terms of cost efficiency scores, model EN seems to perform better as the size of the
data increases. When T is too small (T < 8), Pearson and Spearman correlations of
model EN start dropping below that of model EX. However, the MSEs of the efficiency
scores are still smaller in model EN when T = 5. Table 1 provides an impression that,
with different sizes of data, model EN generally performs better than model EX.

In table 2, the simulation results are presented with different strengths of IVs, with
% set to 0.9 (high endogeneity), N set to 500, and T set to 20. This table demonstrates
that with stronger IVs (δ > 0.6), model EN performs better than model EX, but as the
strength of IVs decreases, the performance of model EN deteriorates. This situation is
clearly reflected in the misestimated coefficients of the endogenous variables, z1 and
z2, and their high MSEs in model EN. Hence, as expected, model EN works better with
stronger IVs.

Finally, table 3 reports the simulation results with different degrees of endogeneity,
with δ set to 0.9 (strong IVs). Again, N is set to 500, and T is set to 20. This table
shows that with higher endogeneity (% > 0.6), model EN performs better than model
EX, but as the degree of endogeneity decreases, the performance of model EX becomes
somewhat equivalent to that of model EN. Also, tables 2 and 3 jointly imply that if the
degree of endogeneity is very low, then it may be better to use model EX, because model
EN’s performance requires finding strong IVs.
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5 Empirical examples
In this section, I present three different examples to illustrate the usage of xtsfkk. In
all examples, eta endogeneity test results show that there are endogeneity problems in
the models, and the results that correct for the endogeneity are substantially different
than the results that ignore endogeneity.

5.1 Panel stochastic production frontier model with endogeneity

The first example analyzes a randomly generated longitudinal dataset in a production
setting. This dataset is for illustrative purposes and does not represent a particular
industry. The unbalanced panel dataset has a total of 2,000 observations of 140 firms
between 1991 and 2015. Production (y) is modeled by some frontier variables (x1, x2,
x3, and z1), and inefficiency is modeled by a different variable (z2). Two variables,
one in the frontier and one in the inefficiency function (z1 and z2), are assumed to be
endogenous, and two IVs (iv1 and iv2) are used to handle the endogeneity. To display
the model fully, the header option is added to the command line.

. use xtsfkkprod

. xtset firm year
Panel variable: firm (unbalanced)
Time variable: year, 1991 to 2015, but with gaps

Delta: 1 unit
. xtsfkk y x1 x2 x3 z1, production uhet(z2) endogenous(z1 z2)
> instruments(iv1 iv2) header efficiency(efv) test timer

7 Dec 2020 21:37:00

ENDOGENOUS PANEL STOCHASTIC PRODUCTION FRONTIER MODEL (MODEL EN)
Dependent Variable: y
Frontier Variables: Constant x1 x2 x3 z1
U Variables: Constant z2
W Variable: Constant
Endogenous Variables: z1 z2
Added Instruments: iv1 iv2
Exogenous Variables: iv1 iv2 x1 x2 x3
Panel Variable: firm
Time Variable: year

initial: Model EN log likelihood = -<inf> (could not be evaluated)
feasible: Model EN log likelihood = -14107.075
rescale: Model EN log likelihood = -11232.026
rescale eq: Model EN log likelihood = -1178.2399
Iteration 0: Model EN log likelihood = -1178.2399
Iteration 1: Model EN log likelihood = -1109.8613 (backed up)
Iteration 2: Model EN log likelihood = -1044.2072 (backed up)
Iteration 3: Model EN log likelihood = -409.48474 (backed up)

(output omitted )



654 Panel stochastic frontier models with endogeneity

Iteration 97: Model EN log likelihood = 5614.6132
Iteration 98: Model EN log likelihood = 5614.6133
Iteration 99: Model EN log likelihood = 5614.6133
Iteration 100: Model EN log likelihood = 5614.6133
Iteration 101: Model EN log likelihood = 5614.6133
Model converged!

Endogenous stochastic prod frontier model with normal/half-normal specification
Model EN log likelihood = 5614.6133 Number of obs = 2,000

Coefficient Std. err. z P>|z| [95% conf. interval]

frontier_y
x1 .0424713 .0156223 2.72 0.007 .0118521 .0730906
x2 -.275394 .1166701 -2.36 0.018 -.5040632 -.0467247
x3 -.1004069 .0500784 -2.00 0.045 -.1985588 -.0022551
z1 .461508 .1744954 2.64 0.008 .1195034 .8035127

_cons .703658 .0343724 20.47 0.000 .6362894 .7710266

lnsig2u
z2 2.468718 .2651657 9.31 0.000 1.949002 2.988433

_cons -7.598463 .2257404 -33.66 0.000 -8.040906 -7.15602

lnsig2w
_cons -9.052407 .034144 -265.12 0.000 -9.119328 -8.985486

ivr1_z1
iv1 -.2310554 .0832553 -2.78 0.006 -.3942328 -.0678781
iv2 .0356556 .0196424 1.82 0.069 -.0028428 .0741541
x1 -.0859004 .0099144 -8.66 0.000 -.1053323 -.0664686
x2 .653102 .0170333 38.34 0.000 .6197173 .6864868
x3 .2928773 .0153035 19.14 0.000 .262883 .3228717

_cons .3694245 .0690111 5.35 0.000 .2341653 .5046837

ivr2_z2
iv1 .5447541 .0566707 9.61 0.000 .4336816 .6558265
iv2 .9374176 .0402402 23.30 0.000 .8585482 1.016287
x1 -.0133303 .0067896 -1.96 0.050 -.0266377 -.0000229
x2 -.0270647 .0116898 -2.32 0.021 -.0499762 -.0041531
x3 -.0200798 .0106513 -1.89 0.059 -.0409559 .0007963

_cons -.1320416 .046939 -2.81 0.005 -.2240403 -.040043

/eta1_z1 -.4572485 .1745281 -2.62 0.009 -.7993173 -.1151797
/eta2_z2 .0227879 .0065443 3.48 0.000 .0099614 .0356144

/le1 .3203268 .0050652 63.24 0.000 .3103993 .3302543
/le2 -.010222 .0049013 -2.09 0.037 -.0198283 -.0006156
/le3 .2189846 .0034624 63.25 0.000 .2121984 .2257709

eta Endogeneity Test

Ho: Correction for endogeneity is not necessary.
Ha: There is endogeneity in the model and correction is needed.
( 1) [/]eta1_z1 = 0
( 2) [/]eta2_z2 = 0

chi2( 2) = 19.01
Prob > chi2 = 0.0001

Result: Reject Ho at 0.1% level.
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Summary of Model EN Tech Efficiency

Mean Efficiency .9718788
Median Efficiency .9721585
Minimum Efficiency .79962053
Maximum Efficiency .99961415
Standard Deviation .01449759
where
0 = Perfect tech inefficiency
1 = Perfect tech efficiency

(output omitted )
Completed in 6 seconds.

Raw estimation results are presented in the table; eta terms for z1 and z2 are both
statistically significant in the table. Also, because the test option was specified, eta
endogeneity test results are presented, showing that the null hypothesis is rejected at
the 0.1% level and correction for endogeneity is needed. Looking at the coefficients of
the endogenous variables, z1 and z2 are both positive and statistically significant. If the
compare option had been specified, the results from the exogenous comparison model
would show that the coefficients of z1 and z2 are substantially smaller than they are in
the displayed model corrected for endogeneity.

Because the efficiency() option was specified in the command line, technical ef-
ficiency scores are saved as a variable and this variable’s summary statistics are pre-
sented. In this model, mean technical efficiency is 0.9719 and median technical efficiency
is 0.9722. If the compare option had been specified, the efficiency() option would
also save the efficiency scores from the model that ignores endogeneity. A comparison
of technical efficiencies from these two models would indicate that some producers are
not as efficient in production as they would appear in a standard frontier model that
ignores endogeneity.

5.2 Panel stochastic cost frontier model with endogeneity

In this example, the longitudinal data include 85 individuals and a total of 300 obser-
vations between 2011 and 2015. This unbalanced dataset is for illustrative purposes
and does not characterize a certain sector. The cost (y) is modeled as a function of
two frontier variables (x1 and z1), and cost inefficiency is modeled as a function of a
variable (z2). Two IVs (iv1 and iv2) are used to handle the potential endogeneity of
two variables (z1 and z2) in the model. The header option displays the model fully.

. use xtsfkkcost, clear

. xtset id t
Panel variable: id (unbalanced)
Time variable: t, 2011 to 2015, but with gaps

Delta: 1 unit
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. xtsfkk y x1 z1, cost uhet(z2) endogenous(z1 z2) instruments(iv1 iv2) header
> compare nicely

13 Dec 2020 20:41:10

ENDOGENOUS PANEL STOCHASTIC COST FRONTIER MODEL (MODEL EN)
Dependent Variable: y
Frontier Variables: Constant x1 z1
U Variables: Constant z2
W Variable: Constant
Endogenous Variables: z1 z2
Added Instruments: iv1 iv2
Exogenous Variables: iv1 iv2 x1
Panel Variable: id
Time Variable: t

initial: Model EN log likelihood = -<inf> (could not be evaluated)
feasible: Model EN log likelihood = -1681.3015
rescale: Model EN log likelihood = -1280.7454
rescale eq: Model EN log likelihood = -1103.6189
Iteration 0: Model EN log likelihood = -1103.6189
Iteration 1: Model EN log likelihood = -1070.1485 (backed up)
Iteration 2: Model EN log likelihood = -1015.916 (backed up)
Iteration 3: Model EN log likelihood = -1002.332 (backed up)

(output omitted )
Iteration 29: Model EN log likelihood = -782.6236
Iteration 30: Model EN log likelihood = -782.62356
Iteration 31: Model EN log likelihood = -782.62356
Model converged!

Analyzing the exogenous model (Model EX)...
initial: Model EX log likelihood = -889.19726
alternative: Model EX log likelihood = -673.58288
rescale: Model EX log likelihood = -603.89561
rescale eq: Model EX log likelihood = -588.8592
Iteration 0: Model EX log likelihood = -588.8592
Iteration 1: Model EX log likelihood = -560.33106 (backed up)
Iteration 2: Model EX log likelihood = -452.58101 (backed up)
Iteration 3: Model EX log likelihood = -436.04682 (backed up)

(output omitted )
Iteration 18: Model EX log likelihood = -302.44416
Iteration 19: Model EX log likelihood = -302.44416
Iteration 20: Model EX log likelihood = -302.44416
Model converged!



M. U. Karakaplan 657

Table: Estimation Results

Model EX Model EN

Dep.var: y
Constant 0.391** (0.129) 0.295* (0.136)
x1 0.136* (0.068) 0.494*** (0.092)
z1 0.963*** (0.047) 0.746*** (0.097)

Dep.var: ln(σ²_u)
Constant -0.544* (0.251) -0.944*** (0.215)
z2 1.190*** (0.068) 1.131*** (0.063)

Dep.var: ln(σ²_v)
Constant -1.503*** (0.097)

Dep.var: ln(σ²_w)
Constant -1.918*** (0.094)

eta1 (z1) 0.421*** (0.109)
eta2 (z2) 0.568*** (0.055)

eta Endogeneity Test X2=138.67 p=0.000

Observations 300 300
Log Likelihood -302.44 -782.62
Mean Cost Efficiency 0.3625 0.4838
Median Cost Efficiency 0.3341 0.4976

Notes: Standard errors are in parentheses. Symbols indicate
significance at the 0.1% (***), 1% (**), 5% (*), and 10% (†)
levels.

(output omitted )

The output table above presents the estimation results. Because the compare and
nicely options were specified, there are two columns of results: model EX is the model
that ignores endogeneity, and model EN is the model that handles endogeneity. Individ-
ual eta terms for z1 and z2 are both statistically significant at the 0.1% level, and the
eta endogeneity test result rejects the null hypothesis at the 0.1% level, which indicates
that a correction for endogeneity in the model is necessary.

Statistical significance and magnitudes of coefficients are different in model EX and
model EN. The coefficients of z1 and z2 in model EX are positive and statistically
significant. In model EN, these coefficients are significant and positive but smaller.
Moreover, mean cost efficiency in model EX is 0.3625, while in model EN, the same
statistic is 0.4838. This tells us that individuals in the model with endogeneity are
more cost efficient than they would be in the model that overlooks endogeneity.

5.3 Example from the U.S. banking sector

In this last example, we examine a panel stochastic production frontier model with a
real dataset that comes from the U.S. banking sector. The main panel data are from the



658 Panel stochastic frontier models with endogeneity

Federal Financial Institutions Examination Council Central Data Repository. This main
panel dataset consists of 19,304 year-end observations of 4,408 U.S. banks from 2010 to
2016. We follow the model in Berger et al. (2017) and, for simplicity, design a simpler
loan production model where the dependent variable is the natural logarithm of total
small loans (loans). Production frontier variables include natural logarithms of core
deposits (cdep), other hot money (hotm), and gross total assets (gta). Also, the frontier
function includes bank return on equity (roe) and a dummy variable (big) that is equal
to 1 if the gross total assets of the bank is greater than $1 billion. Technical inefficiency
is modeled with a Herfindahl–Hirschman index (hhi) of market concentration ranging
between 0 and 1, with 1 indicating a monopoly setting. We control for the endogeneity
of loans and hhi by using the leading political party’s voter representation percentage
in a county.1

We specify the compare, nicely, header, save(), and load() options in this ex-
ample. Model EX, which does not handle endogeneity, is comparable with a standard
xtfrontier command estimation. The coefficient of hhi is expected to be negative.
Looking at the results, we see that the eta term of hhi is significant at the 0.1% level,
and the eta endogeneity test result tells us that correction for endogeneity is necessary.
As shown in the output table below, the coefficient of hhi is negative and significant
in model EX, but in model EN, the coefficient is substantially smaller (bigger negative
impact) and significant.

. use xtsfkkbank, clear

. xtset id year
Panel variable: id (unbalanced)
Time variable: year, 2010 to 2016, but with gaps

Delta: 1 unit
. xtsfkk loans cdep hotm gta roe big, uhet(hhi) endogenous(hhi) instruments(rep)
> iterate(5) save("banks.est")
initial: Model EN log likelihood = -<inf> (could not be evaluated)
feasible: Model EN log likelihood = -669859.93
rescale: Model EN log likelihood = -182739.03
rescale eq: Model EN log likelihood = -65950.66
Iteration 0: Model EN log likelihood = -65950.66
Iteration 1: Model EN log likelihood = -64617.692 (backed up)
Iteration 2: Model EN log likelihood = -61470.412 (backed up)
Iteration 3: Model EN log likelihood = -59672.694 (backed up)
Iteration 4: Model EN log likelihood = -59508.14 (backed up)
Iteration 5: Model EN log likelihood = -58708.949 (backed up)

(output omitted )

1. The election data come from the MIT Election Data and Science Lab.
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. xtsfkk loans cdep hotm gta roe big, uhet(hhi) endogenous(hhi) instruments(rep)
> header compare nicely timer beep(3) load("banks.est")

13 Dec 2020 20:08:42

ENDOGENOUS PANEL STOCHASTIC PRODUCTION FRONTIER MODEL (MODEL EN)
Dependent Variable: loans
Frontier Variables: Constant cdep hotm gta roe big
U Variables: Constant hhi
W Variable: Constant
Endogenous Variable: hhi
Added Instrument: rep
Exogenous Variables: rep cdep hotm gta roe big
Panel Variable: id
Time Variable: year

initial: Model EN log likelihood = -58708.949
rescale: Model EN log likelihood = -58708.949
rescale eq: Model EN log likelihood = -58708.949
Iteration 0: Model EN log likelihood = -58708.949
Iteration 1: Model EN log likelihood = -57945.227 (backed up)
Iteration 2: Model EN log likelihood = -54228.19 (backed up)

(output omitted )
Iteration 58: Model EN log likelihood = -7242.2345
Model converged!

Analyzing the exogenous model (Model EX)...
initial: Model EX log likelihood = -1156049.1
alternative: Model EX log likelihood = -657187.45
rescale: Model EX log likelihood = -71965.71
rescale eq: Model EX log likelihood = -16548.717
Iteration 0: Model EX log likelihood = -16548.717
Iteration 1: Model EX log likelihood = -16396.439 (backed up)
Iteration 2: Model EX log likelihood = -16291.778 (backed up)

(output omitted )
Iteration 29: Model EX log likelihood = -4805.2929
Model converged!
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Table: Estimation Results

Model EX Model EN

Dep.var: loans
Constant 1.210*** (0.076) 1.171*** (0.076)
cdep -0.015* (0.007) -0.017* (0.007)
hotm 0.010*** (0.002) 0.011*** (0.002)
gta 0.821*** (0.009) 0.825*** (0.009)
roe 0.049*** (0.007) 0.046*** (0.008)
big -0.019 (0.027) -0.020 (0.027)

Dep.var: ln(σ²_u)
Constant 0.486*** (0.027) 0.551*** (0.029)
hhi -0.310*** (0.034) -0.476*** (0.042)

Dep.var: ln(σ²_v)
Constant -3.136*** (0.012)

Dep.var: ln(σ²_w)
Constant -3.138*** (0.012)

eta1 (hhi) -0.141*** (0.021)

eta Endogeneity Test X2=45.50 p=0.000

Observations 19304 19304
Log Likelihood -4805.29 -7242.23
Mean Tech Efficiency 0.4729 0.4729
Median Tech Efficiency 0.4683 0.4669

Notes: Standard errors are in parentheses. Symbols indicate
significance at the 0.1% (***), 1% (**), 5% (*), and 10% (†)
levels.

(output omitted )
Completed in 28 seconds.

6 Conclusion
In this article, I offered a new command called xtsfkk to fit endogenous stochastic panel
frontier models, presented by Karakaplan and Kutlu (2017a). xtsfkk can control for the
endogenous variables in both the frontier and the inefficiency term. With some Monte
Carlo simulations and examples, I showed that xtsfkk outperforms the standard panel
frontier estimation methods that ignore endogeneity. Moreover, xtsfkk comes with
various options that can be useful in panel research settings.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0686 (to install program files, if available)

. net get st0686 (to install ancillary files, if available)
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