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Abstract. Ordinal responses can be generated, in a cross-sectional context, by
different unobserved classes of population or, in a time-series context, by differ-
ent latent regimes. We introduce a new command, swopit, that fits a mixture
of ordered probit models with exogenous or endogenous switching between two
latent classes (regimes). Switching is endogenous if unobservables in the class-
assignment model are correlated with unobservables in the outcome models. We
provide a battery of postestimation commands; assess via Monte Carlo experiments
the finite-sample performance of the maximum likelihood estimator of the param-
eters, probabilities, and their standard errors (both the asymptotic and bootstrap
ones); and apply the new command to model the monetary policy interest rates.

Keywords: st0683, swopit, swopit postestimation, swopitpredict, swopitprobabil-
ities, swopitmargins, swopitclassification, ordinal responses, ordered probit, finite
mixture model, latent class, regime switching, endogenous switching

1 Introduction
Ordinal responses can be generated, in a cross-sectional context, by different latent
classes of the population or, in a time-series context, by different latent regimes (states)
of the underlying process. We introduce a new command, swopit, that fits a mixture
of ordered probit (OP) models for ordinal outcomes with either exogenous or endoge-
nous switching between two latent classes (or regimes). The class-membership (regime-
switching) mechanism is represented by a binary probit model. The decision-making
process, which determines an outcome in each latent class, is represented by a sepa-
rate OP model. Endogenous regime switching implies that unobservables in the class-
membership model are correlated with unobservables in the outcome models. The three
latent equations from the class-membership model and two outcome models, each with
its own set of observables (control variables) and unobservables (disturbance terms), are
estimated simultaneously by full-information maximum likelihood (ML), providing the
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probabilities of both the discrete choices and the latent classes. In this way, observed
explanatory variables can have different marginal effects on the choice probabilities in
different classes.

The idea of endogenous switching can be traced to Roy’s (1951) discussion of earnings
distribution and self-selection between two professions. Numerous variants of endoge-
nous switching models are concerned with sample selection or treatment effects. In
the sample selection models (the first econometric implementations belong to Gronau
[1974], Heckman [1974], Lewis [1974], and Maddala and Nelson [1975]), which are sim-
ilar in structure to the regime-switching and mixture models, the outcomes from one
regime are never observed (not selected to the sample), whereas in the regime-switching
models, observed outcomes can be generated by any regime but the regimes may not
be known. A two-regime switching model can be thus viewed as two selection models
merged together.

The typical treatment-effects (or program-evaluation) models contain a selection-
into-treatment equation and a single outcome equation, which in addition to the control
variables also contains one or sometimes several dummy variables (treatment indicators).
The rest of the parameters in the outcome equation are the same for both treated and
untreated individuals, who are observed. In this literature, endogenous switching refers
to a possible correlation of treatment dummies with unobservables in the outcome equa-
tion. For example, Geweke, Gowrisankaran, and Town (2003) consider an unordered
multiple treatment and binary outcomes; Munkin and Trivedi (2008) consider an un-
ordered multiple treatment and multiple ordered outcomes; Miranda and Rabe-Hesketh
(2006) provide a “wrapper” program, ssm, that calls the Stata command gllamm to fit
the binary treatment (or selection) model for multiple ordered (or count) outcomes; and
the Stata command eoprobit fits an OP regression model with an endogenous treatment
assignment (or sample selection).

In contrast to the typical treatment-effects regression models, in the switching regres-
sion models (also known as the finite mixture models), the regimes may not be observed,
and the outcomes in each regime are handled separately with the regime-specific val-
ues of all parameters in each outcome model (see McLachlan, Lee, and Rathnayake
[2019] for a recent survey). In this literature, endogenous switching refers to possible
correlations between the unobservables in the class-membership model and the unob-
servables in the outcome models. The existing endogenous switching mixture models
deal mainly with continuous or binary outcomes. Models with ordinal or count outcomes
have received considerably less attention and are mostly limited to observed regimes or
known sample separation (for example, Carneiro, Hansen, and Heckman [2003]; Chib
and Hamilton [2000]; Gregory [2015]; Hasebe [2018]; Hill [1990]). In particular, Gre-
gory (2015) and Hasebe (2020) develop the commands switchoprobitsim and escount
that fit, respectively, a two-regime endogenous switching OP model and a Poisson (or
negative binomial) model separately for two observed classes of treated and untreated
individuals.
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The model for ordinal outcomes with endogenous switching between two latent
classes is proposed by Greene et al. (2008, 2014). It can be seen as a generalization
of the zero-inflated OP model of Harris and Zhao (2007), implemented in the command
ziop2 by Dale and Sirchenko (2021), in which the latent class membership is modeled
by a binary probit model, the outcomes in one latent class are modeled by an OP model,
and the outcomes in the other latent class have a density mass at a single point (a zero),
generating “inflated” zeros. The endogenous switching OP model in Greene et al. (2008)
allows all outcomes, not only the zeros, to be generated in two regimes.

A mixture of OP models with exogenous switching between latent classes, when the
unobservables in the class-membership and outcome models are independent of each
other, can also be fit by the Stata command for finite mixture models, fmm: oprobit.
In contrast to the commands with the fmm prefix, which use the multinomial logistic
distribution to model the probabilities of latent classes, the swopit command uses the
probit model. The fmm commands can fit mixtures of models for different types of
outcomes (censored, ordinal, count, categorical, zero inflated, etc.) but do not allow for
interdependence among the unobservables in the class-membership and outcome models
as the swopit command does.

In the next section, we describe the mixture of two OP models with endogenous
switching between two latent classes and its estimation via full-information ML and
discuss the identification issues. In section 3, we present the new command, swopit. In
section 4, we describe and report the results of the Monte Carlo experiments to assess
the finite-sample properties of the ML estimator of the parameters and probabilities
and to compare the asymptotic and bootstrap estimators of the standard errors. We
illustrate the new command in section 5 by modeling the policy interest rates. Section 6
concludes.

2 Model
We let i (i = 1, 2, . . . , N) be one of the available N observations and yi be an observed
dependent variable that can take on a finite number J of ordinal values coded by j
(j = 1, 2, . . . , J). We let the latent unobserved (or only partially observed) variables
be denoted by “∗”. The observed outcome yi can be generated in one of two states,
coded by an index r∗i = 1, 2 and interpreted as the latent classes of population in
the cross-sectional context or as the latent regimes in the time-series context. The
realized states are not observed. The latent state r∗i is determined by the observed
data zi and unobservables νi according to the class-membership model in the usual
binary probit fashion with an unobserved threshold µ. For each i, only one out of two
potential realizations (states) of yi is observed. The observed outcome yi is determined
conditionally on the regime r∗i = 1 (or r∗i = 2) by the observed data x1,i (or x2,i) and
unobservables ε1,i (or ε2,i) according to the OP outcome models in the usual ordered-
response fashion with the unobserved thresholds α1 (or α2). The unobservables in the
class-membership model can be correlated with those in each outcome model.
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The mixture of OP models with endogenous switching between two latent classes can
be summarized by the following system:

Class membership
(regime switching): r∗i =

{
1 if ziγ + νi ≤ µ
2 if µ < ziγ + νi

Outcome
models: yi =

{
j if r∗i = 1 and α1,j−1 < x1,iβ1 + ε1,i ≤ α1,j

j if r∗i = 2 and α2,j−1 < x2,iβ2 + ε2,i ≤ α2,j
(1)

Endogeneity or
exogeneity of class
membership:

[
νi
εs,i

]
i.i.d.∼ N

(
0
0

,

[
σ2 ρsσσs

ρsσσs σ2
s

])
, s = 1, 2

where j = 1, 2, . . . , J , −∞ = α1,0 ≤ α1,1 ≤ · · · ≤ α1,J = ∞; −∞ = α2,0 ≤ α2,1 ≤
· · · ≤ α2,J = ∞; γ, β1, and β2 are the column vectors of unknown slope parameters;
ρ1 and ρ2 are the correlation coefficients; and νi, ε1,i, and ε2,i are the error terms that
are independently and identically distributed (i.i.d.) across i according to the normal
distributions with the zero means and the variances σ2, σ2

1 , and σ2
2 , respectively.

Conditional on xall
i = (zi,x1,i,x2,i), the values of all independent variables in the

model, the probability of the choice j is given by

Pr(yi = j|xall
i )

=
s=2∑
s=1

Pr(r∗i = s and αs,j−1 < xs,iβs + εs,i ≤ αs,j |xall
i )

= Pr(νi ≤ µ− ziγ and α1,j−1 − x1,iβ1 < ε1,i ≤ α1,j − x1,iβ1|xall
i )

+ Pr(µ− ziγ < νi and α2,j−1 − x2,iβ2 < ε2,i ≤ α2,j − x2,iβ2|xall
i )

= Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)

+ Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)− Φ2(−µ+ ziγ;α2,j−1 − x2,iβ2;−ρ2) (2)

where Φ2(·) is the cumulative distribution function of the bivariate normal distribution.

More specifically, these probabilities can be computed for each choice as

Pr(yi = 1|xall
i ) = Φ2(µ− ziγ;α1,1 − x1,iβ1; ρ1) + Φ2(−µ+ ziγ;α2,1 − x2,iβ2;−ρ2)

Pr(yi = j|xall
i ) = Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)

+ Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)− Φ2(−µ+ ziγ;α2,j−1 − x2,iβ2;−ρ2)
for 1 < j < J

Pr(yi = J |xall
i ) = Φ2(µ− ziγ;−α1,J−1 + x1,iβ1;−ρ1)

+ Φ2(−µ+ ziγ;−α2,J−1 + x2,iβ2; ρ2)
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For exogenous class membership (when ρ1 = ρ2 = 0), these probabilities simplify to

Pr(yi = j|xall
i , ρ1 = ρ2 = 0) = Φ(µ− ziγ;σ

2){
Φ(α1,j − x1,iβ1;σ

2
1)− Φ(α1,j−1 − x1,iβ1;σ

2
1)
}

+
{
1− Φ(µ− ziγ;σ

2)
}{

Φ(α2,j − x2,iβ2;σ
2
2)− Φ(α2,j−1 − x2,iβ2;σ

2
2)
}

where Φ(·) is the cumulative distribution function of the normal distribution.

2.1 ML estimation and parameter identification

The simultaneous estimation of the regime-switching model and both outcome models
is performed using a full-information ML estimator that maximizes the log-likelihood
function l(θ):

max
θεΘ

l
(
θ|xall

i

)
= max

θεΘ

i=N∑
i=1

j=J∑
j=1

Iij ln
{
Pr
(
yi = j|xall

i ,θ
)}

where θ is a vector of all parameters, including γ, µ, β1,α1, β2, α2, ρ1, and ρ2; Θ is a
parameter space; and Iij is an indicator function such that Iij = 1 if yi = j, and Iij = 0

otherwise. The asymptotic standard errors of θ̂ are computed from the Hessian matrix.

In mixture models, the likelihood function may have multiple local maximums and
large flat regions. To avoid the locally optimal solutions, swopit performs several
estimation attempts with different initializations by randomly assigning observations to
each class. After each random initialization, the command obtains the starting values
(SV) for the slope and threshold parameters by using the independent estimations of a
binary probit class-membership model and OP outcome models. Further, in the case of
endogenous switching, the command obtains the SV for ρ1 and ρ2 by maximizing the
likelihood functions over a grid search from −0.95 to 0.95 in increments of 0.05, holding
the other parameters fixed at their estimates in the exogenous switching case (following
Sirchenko [2020]). Using these SV, the command then performs the ML estimation by
using at each attempt four optimization techniques—modified Newton–Raphson (NR),
Berndt–Hall–Hall–Hausman (BHHH), Davidson–Fletcher–Powell (DFP), and Broyden–
Fletcher–Goldfarb–Shanno (BFGS)—one after another, until convergence is achieved or
all four of them are used. The estimation results with the highest obtained likelihood
are reported. The Monte Carlo simulations show that the ML estimator arrives at the
global maximum and is consistent.

Occasionally, when the likelihood function is too flat with respect to the changes of
certain covariates (so the Hessian matrix is nearly singular), the function optimize(),
which is used for the numerical optimization of the likelihood, reports the missing stan-
dard errors for the estimated coefficients on those covariates (as is common for other
Stata commands because of, for example, collinearity or poorly scaled covariates). In
such cases, the implemented bootstrap estimator of the standard errors can be applied.
We provide an option of the nonparametric stratified bootstrap estimator of the stan-
dard errors for all parameters and probabilities. The bootstrap estimator can also be
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beneficial in small samples. We illustrate the performance of both the asymptotic and
the bootstrap estimators in section 4.

There are three issues with the identification of the parameters: the first issue is
typical for the models with limited dependent variables; the second issue is typical for
the simultaneous-equations models; and the third issue is typical in the estimation of
finite mixture models.

First, the parameters are identified only up to scale and location; that is, the slope
parameters in γ, β1, and β2, are identified only jointly with the variances σ2, σ2

1 , and
σ2
2 , respectively, and the intercept components in γ, β1, and β2 are identified only

jointly with the corresponding threshold parameters µ, α1, and α2 and variances σ2,
σ2
1 , and σ2

2 . Following the standard approach in the identification of discrete choice
models (see Long [1997, 122–123]), we fix the variances σ2, σ2

1 , and σ2
2 to 1 and the

intercept components of γ, β1, and β2 to 0. Importantly, the probabilities in (2) are
absolutely identifiable and invariant to these (arbitrary) identifying assumptions on the
parameters.

Second, we can actually identify all parameters in θ (again, up to scale and location)
because of the nonlinearity of OPmodels, that is, via the functional form (Heckman 1978;
Wilde 2000).1 However, the ML estimation may be subject to a weak identification
problem (a low precision of the estimates) if the class-membership model and outcome
models contain the same or similar sets of covariates. In this case, especially if the sample
size is small, the so-called exclusion restrictions (using different sets of covariates in the
class-membership and outcome models) may be necessary to improve the precision of
the estimates.

The third issue is a well-known label-switching phenomenon caused by the invariance
of the likelihood function with respect to the switching of the latent class labels (Redner
and Walker 1984; Jasra, Holmes, and Stephens 2005). Because labeling is arbitrary, if
both outcome models contain the same set of regressors (x1,i = x2,i), we can say neither
that β̂1 and α̂1 indeed estimate β1 and α1 (but not β2 and α2) nor that β̂2 and α̂2

estimate β2 and α2 (but not β1 and α1). The model has two identical likelihood
maximums because

Pr(yi = j|xall
i ,−γ,−µ,β2,α2,β1,α1,−ρ2,−ρ1)

= Φ2(−µ+ ziγ;α2,j − x2,iβ2;−ρ2)− Φ2(−µ+ ziγ;α2,j−1 − x2,iβ2;−ρ2)
+ Φ2(µ− ziγ;α1,j − x1,iβ1; ρ1)− Φ2(µ− ziγ;α1,j−1 − x1,iβ1; ρ1)

= Pr(yi = j|xall
i ,γ, µ,β1,α1,β2,α2, ρ1, ρ2)

1. We do not make the nonlinear assumptions for the sake of identification: our original outcome
models are already nonlinear.
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Hence, changing the signs of the parameters in the class-membership model and the
signs of the correlation coefficients switches the regime labels and results in two iden-
tical likelihood values. Thus, the correlation coefficients and the slope and threshold
parameters in the class-membership model are identified up to sign only, and the latent
class labels are interchangeable.

2.2 Partial effects

We assemble the partial effects (PE) of each covariate on the probability of each choice
into a matrix PEi, in which rows are linked with covariates and columns are linked with
choices.

The PE of a continuous-valued covariate on the choice j is computed as

PEk,j,i =

[
Φ

{
µ− ziγ − ρ1(α1,j−1 − x1,iβ1)√

1− ρ21

}
f(α1,j−1 − x1,iβ1)

− Φ

{
µ− ziγ − ρ1(α1,j − x1,iβ1)√

1− ρ21

}
f(α1,j − x1,iβ1)

]
βall
1,k

+

[
Φ

{
α1,j − x1,iβ1 − ρ1(µ− ziγ)√

1− ρ21

}

− Φ

{
α1,j−1 − x1,iβ1 − ρ1(µ− ziγ)√

1− ρ21

}]
f(µ− ziγ)γ

all
k

+

[
Φ

{
ziγ − µ+ ρ2(α2,j−1 − x2,iβ2)√

1− ρ22

}
f(α2,j−1 − x2,iβ2)

− Φ

{
ziγ − µ+ ρ2(α2,j − x2,iβ2)√

1− ρ22

}
f(α2,j − x2,iβ2)

]
βall
2,k

+

[
Φ

{
α2,j − x2,iβ2 + ρ2(ziγ − µ)√

1− ρ22

}

− Φ

{
α2,j−1 − x2,iβ2 + ρ2(ziγ − µ)√

1− ρ22

}]
f(ziγ − µ)γall

k

where f is the probability density function of the standard normal distribution and γall
k ,

βall
1,k, and βall

2,k are the coefficients on the kth covariate in xall
i in the class-membership

model, the outcome model conditional on r∗i = 1, and the outcome model conditional
on r∗i = 2, respectively (γall

k , βall
1,k, or βall

2,k is zero if the kth covariate in xall
t is not

included into the corresponding model).

For a discrete-valued covariate, the PE can be computed as the change in the prob-
abilities when this variable changes by one increment and all others are held fixed.
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The asymptotic standard error of PEk,j,i is computed using the delta method as a
square root of ∇θ(PEk,j,t)Var(θ)∇θ(PE′

k,j,i). The nonparametric stratified bootstrap
estimator of the standard errors is also implemented.

3 The swopit command
The accompanying software includes the swopit command, postestimation commands,
and supporting help files.

3.1 Syntax

The following command fits a mixture of OPmodels with either exogenous or endogenous
switching between two latent classes (regimes):

swopit depvar
[

indepvars
] [

if
] [

in
] [

, regindepvars(varlist)
outoneindepvars(varlist) outtwoindepvars(varlist) endogenous

guesses(scalar) limit(numlist) log maxiter(scalar) ptol(scalar)

vtol(scalar) nrtol(scalar) initial(numlist) change(scalar)

bootstrap(scalar) bootguesses(scalar) bootiter(scalar)
]

The dependent variable depvar may take on two or more discrete ordered values.
The independent variables listed in indepvars are, by default, included in each model.
The alternative (and possibly not the same) lists of independent variables to be included
in the class-membership model and each outcome model can be specified in the options.

3.2 Options

regindepvars(varlist) specifies the list of independent variables included in the class-
membership model. By default, it is equal to all independent variables listed in
indepvars.

outoneindepvars(varlist) specifies the list of independent variables included in the
first outcome model. By default, it is equal to all independent variables listed in
indepvars.

outtwoindepvars(varlist) specifies the list of independent variables included in the
second outcome model. By default, the list is the same as in indepvars.

endogenous specifies that the endogenous class membership (regime switching) is to be
used instead of the default exogenous switching.

guesses(scalar) specifies the number of estimation attempts to be performed by the
function optimize() with different initializations by randomly assigning observa-
tions to each class and obtaining SV for the slope and threshold parameters using
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the independent estimations of the binary probit regime-switching model and two
OP outcome models. Further, in the case of endogenous switching, the swopit com-
mand obtains the SV for ρ1 and ρ2 by maximizing the likelihood functions over a grid
search from −0.95 to 0.95 in increments of 0.05, holding the other parameters fixed
at their estimates in the exogenous switching case. At each attempt, the following
optimization techniques are applied one after another until convergence is achieved
or all four of them are used: NR, BHHH, DFP, and BFGS. The estimation output with
the highest likelihood is reported. The default is guesses(5).

limit(numlist) specifies a space-delimited list of the limits for the maximum absolute
value of each parameter in the following order: γ, µ, β1, α1, β2, α2, ρ1, and ρ2.
If only one value is specified, this limit applies to all parameters. By default, no
constraints on the parameters’ values are applied.

log shows the progress of the numerical optimization of the log likelihood: current
estimation attempt, optimization method, and convergence status. By default, the
log output is suppressed.

maxiter(scalar) specifies the maximum number of iterations before the optimization
algorithm quits and reports that the estimation of the model does not converge. The
default is maxiter(500).

ptol(scalar) specifies the tolerance for parameters. The default is ptol(1e-6).

vtol(scalar) specifies the tolerance for the log likelihood. The default is vtol(1e-7).

nrtol(scalar) specifies the tolerance for the scaled gradient. The default is nrtol(1e-
5).

initial(numlist) specifies a space-delimited list of the SV for the parameters in the
following order: γ, µ, β1, α1, β2, α2, ρ1, and ρ2. The elements of α1 and α2 should
be provided in ascending order.

change(scalar) specifies the interval for randomly selecting new SV for the next estima-
tion attempt if the user has specified the SV in initial(). The estimation is stopped
if all attempts specified in guesses() are performed. The SV for all coefficients, with
the exception of the correlation coefficients, are adjusted for each estimation attempt
according to the formula SV = SV+change()×U(−|SV|, |SV|), where U() represents
a uniformly distributed random variable. In the case of endogenous switching, the
SV for the correlation coefficients ρ1 and ρ2 are determined by maximizing the like-
lihood function over a grid search from −0.95 to 0.95 in increments of 0.05 holding
the other parameters fixed. The option is ignored if the initial() option is not
used. However, it is always applied in the bootstrap estimations if the bootstrap()
option is used. The default is change(0.5).

bootstrap(scalar) specifies the number of bootstrap replications to be performed to
estimate the standard errors. The default is bootstrap(0), and no bootstrapping
is performed.
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bootguesses(scalar) specifies the number of attempts with different SV of parameters to
be performed with each bootstrap sample. At the first attempt, the SV are the values
of the parameters estimated with the original sample. At each new attempt, the SV
are selected as described in change(). At each attempt, the following optimization
techniques are applied one after another until convergence is achieved or all four of
them are used: NR, BHHH, DFP, and BFGS. The estimation output with the highest
likelihood is reported. The default is bootguesses(3).

bootiter(scalar) specifies the maximum number of iterations in the bootstrap estima-
tions before the optimization algorithm quits. The default is bootiter(100).

3.3 Stored results

swopit stores the following in e():

Scalars
e(N) number of observations
e(k_cat) number of choices
e(k) number of parameters
e(df_m) model degrees of freedom
e(r2_p) McFadden pseudo-R2

e(ll) log likelihood
e(ll_0) log likelihood, constant-only model
e(aic) Akaike information criterion (AIC)
e(bic) Bayesian information criterion (BIC)
e(chi2) χ2 test statistic
e(p) p-value of χ2 test

Macros
e(cmd) swopit
e(depvar) name of dependent variable
e(vce) standard error method
e(vcetype) title used to label Std. err.
e(properties) b V
e(predict) swopitpredict
e(opt) optimization method
e(switching) type of regime switching

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(ll_obs) vector of observation-wise log likelihood
e(boot) coefficient vectors in the bootstrap samples

Function
e(sample) marks estimation sample
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4 Postestimation commands
The following postestimation commands are available after swopit.

4.1 The swopitpredict command

swopitpredict
[

, regimes output(string) name(varname) tabstat
]

This command provides the predicted probabilities of the observed choices (by de-
fault) or latent classes for each observation. The following options are available:

regimes calculates the predicted probabilities of the latent classes (regimes) instead of
the choice probabilities (by default).

output(string) specifies the different types of predictions. The possible options for
string are choice for reporting the predicted outcome (the choice or regime with the
largest predicted probability); mean for reporting the expected value of the dependent
variable computed as a summation of j×Pr(yi = j) across all choices j = 1, 2, . . . , J ;
and cum for predicting the cumulative choice probabilities such as Pr(yi <= 1),
Pr(yi <= 2), . . . , Pr(yi <= J). By default, the usual choice probabilities such as
Pr(yi = 1), Pr(yi = 2), . . . , Pr(yi = J) are predicted.

name(varname) creates the variables named varname_∗, where ∗ is the label of the ob-
served choice or latent class. varname can consist only of letters and underscores. If
an invalid name is given, an error message is displayed. By default, either the vari-
ables named swopit_r_∗ are created if the regimes option is used or the variables
named swopit_pr_∗ are created if the output() option is used.

tabstat displays a compact table of summary statistics for the variables created by
swopitpredict. If option name(varname) is used, the statistics are provided for all
available variables varname_∗. If name() is not specified, the statistics are provided
for all available variables swopit_r_∗ and swopit_pr_∗.

4.2 The swopitprobabilities command

swopitprobabilities
[

, at(string) regimes
]

This command provides the predicted probabilities of the observed choices (by de-
fault) or latent classes and their standard errors for the specified values of the indepen-
dent variables. The options at(string) and regimes are defined as follows:
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at(string) specifies the values of the independent variables at which the probabilities
are estimated. By default, the probabilities are computed at the median values
of the independent variables. The syntax of this option is varname=value for each
variable, separated by a blank space. varname is the name of the variable listed in
indepvars. If an independent variable from indepvars is excluded from this option,
the probabilities are estimated at the median value of this variable.

regimes calculates the predicted probabilities of the latent classes instead of the choice
probabilities (by default).

4.2.1 Stored results

swopitprobabilities stores the following in r():

Matrices
r(at) vector of the covariates’ values at which the probabilities are computed
r(pr) vector of the probabilities
r(se) vector of the standard errors of the probabilities
r(t) vector of the t statistics of the probabilities
r(pval) vector of the p-values of the t tests for the probabilities

4.3 The swopitmargins command

swopitmargins
[

, at(string) regimes
]

This command provides the PE on the predicted probabilities of the observed choices
(by default) or latent classes and their standard errors for the specified values of the
independent variables. The options at(string) and regimes are defined as follows:

at(string) specifies the values of the independent variables to estimate the PE. By
default, the PE are computed at the median values of the independent variables. The
syntax of this command is varname=value for each variable, separated by a blank
space. varname is the name of the variable listed in indepvars. If an independent
variable from indepvars is not included, the PE are estimated at the median value
of this variable.

regimes calculates the PE on the probabilities of the latent classes instead of the choice
probabilities (by default).
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4.3.1 Stored results

swopitmargins stores the following in r():

Matrices
r(at) vector of the covariates’ values, at which the PE are computed
r(me) matrix of the PE on the probabilities
r(se) matrix of the standard errors of the PE on the probabilities
r(t) matrix of the t statistics of the PE on the probabilities
r(pval) matrix of the p-values of the t tests for the PE

4.4 The swopitclassification command

swopitclassification

This command constructs a confusion matrix (classification table) for the dependent
variable. The classification table shows the observed choices in the rows and the pre-
dicted ones (the choices with the highest predicted probability) in the columns. The
diagonal elements give the numbers of correctly predicted choices. The command also
reports the accuracy (the percentage of correct predictions), the Brier (1950) probability
score, the ranked probability score (Epstein 1969), the precisions, the recalls, and the
adjusted noise-to-signal ratios (Kaminsky and Reinhart 1999).

5 Monte Carlo experiments
We have performed Monte Carlo experiments to assess the finite-sample performance
of the proposed full-information ML estimator of the parameters and the probabilities
of choices and latent classes as well as of their standard errors (both the asymptotic
and bootstrap ones). The performance is measured by the bias (the absolute difference
between the estimated and true values), the root mean squared error (RMSE), and the
coverage rate (the percentage of times the estimated 95% confidence intervals cover the
true values).

In brief, the results of the experiments show that, as the sample size grows, the
biases and the RMSEs decrease and the coverage rates approach the nominal level, sug-
gesting the consistency of the proposed ML estimator. The estimates of choice and class
probabilities in the exogenous switching case are quite reliable in small samples: at the
95% nominal level, the coverage rates are 85%–92% with 250 observations and 90%–94%
with 500 observations (with 10–11 parameters to estimate). In the case of endogenous
switching (with two extra parameters to estimate), the coverage rates are in the same
range for the regime probabilities but are only 79%–84% for the choice probabilities.
With 2,000 observations, the coverage rates for the regime probabilities for both types of
switching are 94%–95%; however, for the choice probabilities, they are 94%–95% in the
exogenous switching case but less than 86% with the endogenous switching case. The
bootstrap estimator of the standard errors for the correlation coefficients and the prob-
abilities can provide less biased estimates and better coverage rates than the asymptotic
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estimator (based on its performance with 250 and 500 observations). However, at the
same time, the bootstrap estimator of the standard errors for the parameters is much
more biased.

Of course, all Monte Carlo results are subject to a particular design of the exper-
iment: they may be better or worse under different specifications of the model and
different datasets. It seems clear, however, that to be reliable the estimation of endoge-
nous switching models requires much larger samples.

5.1 Monte Carlo design

We generated five independent variables gm
i.i.d.∼ 4 × N (0, 1), m ∈ {1, . . . , 5} and sim-

ulated the following three scenarios for the overlap among the covariates in the two
outcome models: “No overlap”, “Partial overlap”, and “Complete overlap”.

No overlap Partial overlap Complete overlap
Class-membership model g1 g1, g3 g1
Class 1: Outcome model g2, g3 g2, g3 g2, g3
Class 2: Outcome model g4, g5 g3, g4 g2, g3

In the “Partial overlap” case, there is a covariate that belongs to all three latent
equations. We simulated six data-generating processes according to system (1), using
three overlap scenarios and two types of class membership: exogenous (when ρ1 =
ρ2 = 0) and endogenous (when ρ1 = 0.3 and ρ2 = 0.5). The dependent variable
y was generated with three ordinal choices. The values of the parameters used in the
simulations are shown in table A1 of the Appendix. These values were calibrated so that
both latent classes have the same theoretical probability, and each of the three choices
is equally likely. The variances of the error terms were fixed to 1. The probabilities were
computed at the median values of the covariates, and 10,000 repeated samples with 250,
500, 1,000, and 2,000 observations were independently generated for each process and
estimated using its true specification.

In addition, to study the performance of the bootstrap estimator of the standard
errors, we simulated two processes with the “No overlap” specification, one with ex-
ogenous and the other with endogenous switching, and estimated the standard errors
of the parameters in each process using both the asymptotic and bootstrap estimators.
We generated 2,000 replications independently with 250 and 500 observations. For each
bootstrap sample, the observations were resampled separately for each choice, so the
number of observations of each choice in every bootstrap sample was the same as in
the original one. To compute the nonparametric stratified bootstrap estimates of the
standard errors, we drew with replacement 300 bootstrap samples for each Monte Carlo
iteration and computed the standard deviations of the estimates of parameters, correla-
tions coefficients, and choice and class probabilities. The “true” values of the standard
errors were calculated as the standard deviations of the corresponding estimates in the
2,000 Monte Carlo replications.
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5.2 Monte Carlo results

Table 1 summarizes the finite-sample performance of the estimator of the parameters.
We divided all parameters into three groups (slope parameters, threshold parameters,
and correlation coefficients) and computed the average statistics for each. The slope
parameters γ, β1, and β2 are estimated better than the threshold parameters µ, α1,
and α2 and much better than the correlation coefficients ρ1 and ρ2. As the sample sizes
increase 8 times from 250 to 2,000,

• the coverage rates move toward the nominal 95% level for the slope and threshold
parameters, from 87% to 94% in the endogenous switching models, and from 97%
to 95% in the exogenous switching ones, whereas for the correlation coefficients
they move from 28%–30% to 75%–79% only;

• for the slope parameters, the biases decrease 14–16 times and the RMSEs decrease
9–13 times;

• the biases of the slope parameter estimator relative to those of the threshold and
correlation estimators decrease, respectively, around 3 1/2 times and 9 times; and

• the RMSEs of the slope parameter estimator relative to those of the threshold esti-
mator decrease by 23%–33% in the exogenous switching models and by 6%–13% in
the endogenous switching ones, and the RMSEs relative to those of the correlation
coefficient estimator decrease around 4 times.
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Table 1. The finite-sample performance of the estimator of parameters

Sample Class membership: Exogenous Endogenous

size Covariates’ overlap: None Partial Complete None Partial Complete

Slope parameters γ, β1, and β2

250

Absolute bias, ×10

5.5 5.6 5.4 4.8 4.5 4.7
500 1.7 1.7 1.7 1.6 1.6 1.6
1000 0.8 0.7 0.8 0.7 0.7 0.7
2000 0.3 0.3 0.3 0.3 0.3 0.3

250

RMSE, ×10

18.2 18.6 16.6 13.3 12.0 12.9
500 4.6 4.3 4.6 4.3 4.1 4.4
1000 2.3 2.2 2.3 2.3 2.2 2.3
2000 1.5 1.4 1.5 1.4 1.4 1.5

250 97.3 97.3 97.4 87.6 86.1 87.2
500 Coverage rate 96.3 96.5 96.4 89.9 87.9 89.8
1000 (at 95% level), % 95.5 95.6 95.4 92.3 90.9 92.6
2000 95.3 95.3 95.4 94.3 93.7 94.1

Threshold parameters µ, α1, and α2

250 Absolute bias, ×10 26.7 25.0 27.1 22.4 21.5 23.0
500 13.3 12.7 13.2 12.6 11.7 12.3
1000 8.4 8.2 8.3 8.2 7.9 8.2
2000 5.7 5.5 5.6 5.7 5.5 5.7

250

RMSE, ×10

27.7 27.0 26.6 24.2 22.8 25.5
500 9.3 8.4 9.0 8.8 8.3 8.9
1000 4.9 4.7 4.8 4.8 4.7 4.8
2000 3.1 3.0 3.0 3.0 3.0 3.0

250 97.2 97.0 97.4 86.0 87.5 85.3
500 Coverage rate 96.2 95.9 96.3 88.2 88.4 88.1
1000 (at 95% level), % 95.6 95.3 95.4 91.4 91.0 91.6
2000 95.2 95.1 95.3 94.0 93.5 93.6

Continued on next page
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Sample Class membership: Exogenous Endogenous

size Covariates’ overlap: None Partial Complete None Partial Complete

Correlation coefficients ρ1 and ρ2

250

Absolute bias, ×10

8.4 9.3 8.8
500 6.9 6.7 7.1
1000 6.5 6.5 6.9
2000 5.4 5.4 5.7

250

RMSE, ×10

8.8 8.9 8.7
500 7.4 7.5 7.3
1000 5.6 5.8 5.6
2000 3.9 4.0 3.9

250 28.2 28.1 32.4
500 Coverage rate 43.4 40.2 46.1
1000 (at 95% level), % 60.9 58.9 64.5
2000 75.0 72.8 78.6
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Table 2 reports the finite-sample performance of the estimator of the probabilities
of choices and latent classes. In the endogenous switching models, the estimator of
class probabilities demonstrates better accuracy and certainty than the estimator of
choice probabilities, while in the exogenous switching models, the estimator of class
probabilities provides better accuracy but slightly less certainty than the estimator of
choice probabilities. As the sample sizes grow from 250 to 2,000,

• the coverage rates of the class probability estimator move toward the nominal
95% level from 86%–92% to 94%–95%, whereas those of the choice probability
estimator move from 86%–90% to 94%–95% in the exogenous switching models but
only slightly move in the interval 80%–85% in the endogenous switching models;

• the biases of the class probability estimator are smaller by 44%–99% than those
of the choice probabilities for all overlap scenarios, all sample sizes, and both
switching types;

• the RMSEs of the class probability estimator are smaller by 23%–56% than those
of the choice probability estimator in the endogenous switching models but are
more or less similar in the exogenous switching models;

• the biases of the class probability estimator relative to those of the choice probabil-
ity estimator change in different directions for different overlap scenarios, sample
sizes, and types of switching, and no clear patterns are observed;

• the RMSEs of the class probability estimator relative to those of the choice prob-
ability estimator decrease slightly by 1%–15% in the exogenous switching models
and more substantially by 34%–37% in the endogenous switching ones; and

• the delta-method estimator of standard errors is downward biased for all proba-
bilities but also consistent: The biases become smaller than 4% in the exogenous
switching models and smaller than 3% for the class probabilities, but they are up
to 40% for the choice probabilities in the endogenous switching models.



J. Huismans, J. W. Nijenhuis, and A. Sirchenko 575

Table 2. The finite-sample performance of the estimator of probabilities

Sample Class membership: Exogenous Endogenous

size Covariates’ overlap: None Partial Complete None Partial Complete
Probabilities of choices

250 9.79 3.25 11.12 36.20 47.56 35.95
500 Absolute bias, 4.57 3.06 6.04 13.13 24.71 13.74

1000 ×1000 3.15 1.78 2.76 5.77 6.58 5.31
2000 1.19 0.53 1.34 9.65 3.49 8.01

250 1.57 1.63 1.25 2.01 2.06 2.00
500 RMSE, ×10 1.04 1.04 0.77 1.64 1.65 1.67

1000 0.73 0.69 0.51 1.27 1.24 1.30
2000 0.50 0.47 0.35 0.88 0.85 0.90

250 85.6 86.9 89.7 82.5 82.9 80.9
500 Coverage rate 90.5 91.5 92.9 80.4 84.2 79.4

1000 (at 95% level), % 92.5 93.6 94.0 77.3 83.2 78.7
2000 94.0 94.3 94.8 80.7 85.3 84.0

Probabilities of latent classes

250 2.93 0.97 1.68 1.29 8.60 6.58
500 Absolute bias, 0.76 0.68 0.27 0.30 5.80 2.07

1000 ×1000 0.21 0.83 0.28 0.48 3.05 1.01
2000 0.67 0.18 0.04 0.02 0.86 0.34

250 1.45 2.10 1.45 1.43 1.59 1.41
500 RMSE, ×10 0.87 1.34 0.87 0.87 0.97 0.87

1000 0.58 0.88 0.58 0.58 0.63 0.58
2000 0.39 0.61 0.40 0.39 0.43 0.40

250 91.3 85.6 91.8 90.2 88.7 89.9
500 Coverage rate 94.2 91.3 94.1 93.2 92.7 93.1

1000 (at 95% level), % 94.6 93.4 94.3 94.1 93.9 94.1
2000 94.9 94.0 94.8 94.8 94.1 94.2
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Table 3 reports the finite-sample performance of the bootstrap estimator of the
standard errors in comparison with the estimator of the asymptotic ones. The coverage
rates with asymptotic errors for the slope and threshold parameters in the exogenous
switching case are above the nominal level (96%–97%), whereas in the endogenous
switching case, they are 85%–90%, which is below the nominal level. The estimated
errors for the slope and threshold parameters do not benefit from bootstrapping, at least
in the exogenous switching case. The bootstrap estimator overestimates the parameters’
standard errors with both types of switching (the coverage rates are 98.3%–99.5%). The
bootstrap standard errors for the class parameters are overestimated far more than those
of the outcome model parameters: for example, with 250 observations, the bootstrap
errors for the class model parameters are 13 times as large as the true values of the errors
for both types of switching, whereas the bootstrap errors for the outcome parameters
are larger by only 20%–60%. The bootstrap standard errors for the class parameters
are inflated by a small fraction of large estimates of the parameters in the bootstrap
samples. The large values of the parameters in the regime-switching model imply the
more certain estimations of the latent classes: all estimated class probabilities become
close to either 1 or 0. The variability of parameters’ estimates in the outcome models in
the bootstrap samples is less affected, and their bootstrap standard errors are inflated
far less.
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Table 3. The finite-sample performance of the bootstrap estimators of standard errors

Class membership: Exogenous Endogenous

Sample size: 250 500 250 500

Class-membership parameters γ and µ
Coverage rate Asymptotic 96.5 95.9 93.8 94.8
(at 95% level), % Bootstrap 99.5 98.3 98.9 98.5
Bootstrap s.e. / true s.e. 13.2 6.2 13.0 2.9

Outcome parameters β1, α1, β2, and α2

Coverage rate Asymptotic 97.2 96.4 84.4 86.8
(at 95% level), % Bootstrap 98.8 99.3 98.8 98.9
Bootstrap s.e. / true s.e. 1.6 1.6 1.2 1.3

Correlation coefficients ρ1 and ρ2
Coverage rate Asymptotic 28.0 42.0
(at 95% level), % Bootstrap 88.6 88.1
Bootstrap s.e. / true s.e. 0.86 0.86

Latent class probabilities
Coverage rate Asymptotic 91.2 93.3 90.5 92.0
(at 95% level), % Bootstrap 93.2 95.3 91.3 94.6
Bootstrap s.e. / true s.e. 1.05 1.03 0.94 0.99

Choice probabilities
Coverage rate Asymptotic 85.5 90.2 82.8 80.3
(at 95% level), % Bootstrap 89.9 92.0 86.4 90.5
Bootstrap s.e. / true s.e. 0.99 0.98 0.84 0.87

However, the estimates of correlation coefficients do benefit from bootstrapping: the
coverage rates move toward the nominal level (from 28% and 42% to 88% for both
sample sizes); the bootstrap standard errors are still underestimated but not as much
as the asymptotic ones. More importantly, the probabilities’ estimates seem to clearly
benefit from bootstrapping: the coverage rates move closer to the nominal level by
1–3 percentage points for class probabilities and by 2–10 percentage points for choice
probabilities. The bootstrap standard-error estimates differ from the true ones by no
more than 5% in the exogenous case and no more than 16% in the endogenous case.

The simulations suggest that, with 250 and 500 observations, the bootstrap estima-
tor of the standard errors for the correlation coefficients, the choice probabilities, and
the class probabilities can provide less biased estimates and better coverage rates than
the asymptotic estimator, despite the fact that the latter can simultaneously demon-
strate less biased estimates and better coverage rates for the parameters. However, the
simulation results depend on a particular design: we do not know whether our con-
clusions are valid for other sample sizes, other specifications of the covariates in the
regime-switching and outcome models, and other true values of the parameters.
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6 Empirical example
Estimations of monetary policy rules have been historically implemented using models
for a continuous dependent variable. During the last three decades, most major central
banks began changing their policy rates by discrete amounts, typically by multiples of
25 basis points (BP). It motivated the use of discrete choice approaches such as the OP
models (for example, Gerlach [2007]; Sirchenko [2008]; Vanderhart [2000]). However, a
single-equation OP model does not allow for oscillating switches in monetary policy—
following a regime-switching approach widely used in macroeconomic modeling and built
on the seminal work of Hamilton (1989), policy rates are better modeled as stochastic
and repeated fluctuations among two or more regimes (see, among others, Assenmacher-
Wesche [2006]).

We apply both the standard and the switching OP models to the decisions of the
U.S. Federal Open Market Committee (FOMC) on the federal funds rate target, made
at both scheduled and unscheduled meetings from 2/1989 to 9/2019. The FOMC pre-
viously changed its target in multiples of 6.25 BP, but since 10/1989 it changed the
rate in multiples of 25 BP only. The frequencies of original changes to the target rate
are shown below (data source: Archival Federal Reserve Economic Data, available at
https://alfred.stlouisfed.org):

Change, BP −75 −50 −31.25 −25 0 6.25 12.5 18.75 25 43.75 50 75

Frequency 3 16 1 35 180 1 1 1 35 1 4 1

For further analysis, we consolidated these FOMC decisions into three categories:
“Decrease”, “No change”, and “Increase”.2

y Decrease (−1) No change (0) Increase (1)

Frequency 55 181 43

In the sample of 279 observations, the FOMC decisions are matched with the values
of the following independent variables as they were observed at the previous day:

house (the Greenbook projection of the total number of new privately owned hous-
ing units started for the current quarter; data source: Real-Time Data Set for Macroe-
conomists, available at https://www.philadelphiafed.org);

gdp (the Greenbook projection of quarterly growth in the nominal gross domestic
[before 1992: national] product for the current quarter, annualized percentage points;
data source: Real-Time Data Set for Macroeconomists);

2. A single 6.25 BP change is included in the “No change” category: such a small change is viewed as
a technical adjustment and typically combined with the no-change decisions in the literature (see,
for example, Hamilton and Jordà [2002]).

https://alfred.stlouisfed.org
https://www.philadelphiafed.org
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spread (the difference between the one-year treasury constant maturity rate and the
effective federal funds rate, three-business-day moving average; data source: Archival
Federal Reserve Economic Data);

bias (the indicator that we constructed from the “policy bias” and “balance-of-
risks” statements made at the previous FOMC meeting: it equals 1 if the statement was
asymmetric toward tightening, 0 if the statement was symmetric, and −1 if the state-
ment was asymmetric toward easing; data source: the FOMC statements and minutes,
available at https://www.federalreserve.gov).

The summary statistics of the variables used are shown below:

. use policy_rate

. summarize
Variable Obs Mean Std. dev. Min Max

y 279 -.0430108 .5921667 -1 1
bias 279 -.1397849 .8036526 -1 1
house 279 1.293154 .3728651 .4 2.15
gdp 279 4.36905 1.977448 -4.3 9.4

spread 279 .026129 .4995737 -1.48 1.713333

First, we fit the standard OP model using the oprobit command:

. set seed 3

. oprobit y house gdp bias spread, nolog
Ordered probit regression Number of obs = 279

LR chi2(4) = 189.38
Prob > chi2 = 0.0000

Log likelihood = -153.35319 Pseudo R2 = 0.3818

y Coefficient Std. err. z P>|z| [95% conf. interval]

house .7062818 .2644774 2.67 0.008 .1879157 1.224648
gdp .1737146 .0457331 3.80 0.000 .0840793 .2633499
bias .5146708 .1300754 3.96 0.000 .2597277 .7696138

spread 1.906444 .2110997 9.03 0.000 1.492697 2.320192

/cut1 .2311623 .3433395 -.4417708 .9040954
/cut2 3.422302 .4426521 2.55472 4.289884

. estat ic
Akaike's information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 279 -248.0452 -153.3532 6 318.7064 340.4937

Note: BIC uses N = number of observations. See [R] BIC note.

The OP model suggests that the larger or smaller the value of any explanatory
variable, the more likely that the FOMC will hike or cut the rate (holding the other
variables fixed).

https://www.federalreserve.gov
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6.1 Exogenous switching model

Next, we let the outcomes be generated in two latent regimes and fit a mixture of two
OP models with exogenous switching using the swopit command:

. set seed 3

. swopit y house gdp bias spread, regindepvars(house gdp)
> outoneindepvars(bias spread) outtwoindepvars(bias spread) log
Finding regime starting values
Finding outcome starting values
Attempt #1 with method: nr
Trying again with different method: bhhh
Trying again with different method: dfp
convergence (32 iterations)
Finding regime starting values
Finding outcome starting values
Attempt #2 with method: nr
convergence with likelihood improvement (24 iterations)
Finding regime starting values
Finding outcome starting values
Attempt #3 with method: nr
convergence without likelihood improvement
Finding regime starting values
Finding outcome starting values
Attempt #4 with method: nr
convergence without likelihood improvement
Finding regime starting values
Finding outcome starting values
Attempt #5 with method: nr
convergence without likelihood improvement
Printing converged estimation with highest likelihood:
A mixture of ordered probit models with two latent classes
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Latent class switching = Exogenous
SE method = OIM
Optimization method = Newton Raphson
Number of observations = 279
Log likelihood = -132.6306
McFadden pseudo R2 = 0.4653
LR chi2( 9) = 230.8291
Prob > chi2 = 0.0000
AIC = 287.2612
BIC = 327.2046

y Coefficient Std. err. z P>|z| [95% conf. interval]

Class membe~l
house 4.911729 1.386313 3.54 0.000 2.194606 7.628852

gdp .6790068 .202835 3.35 0.001 .2814574 1.076556
/cut1 11.96884 2.980525 4.02 0.000 6.127117 17.81056

Outcome mo~1)
bias .6798781 .1525716 4.46 0.000 .3808433 .9789129

spread 1.819521 .240331 7.57 0.000 1.348481 2.290561
/cut1 -1.251123 .1463508 -8.55 0.000 -1.537965 -.9642805
/cut2 2.318764 .2520935 9.20 0.000 1.82467 2.812858

Outcome mo~2)
bias 3.954417 1.183389 3.34 0.001 1.635017 6.273817

spread 14.12324 3.432332 4.11 0.000 7.395996 20.85049
/cut1 -16.28826 4.240216 -3.84 0.000 -24.59893 -7.977591
/cut2 1.448369 .6057136 2.39 0.017 .2611923 2.635546

An identical value of the likelihood can be obtained with the opposite signs of the
parameters in the regime-switching model and the switched labels of the latent regimes.
The variances of error terms are fixed to 1, and the intercept parameters are fixed
to 0 because the parameters are identified only up to scale and location. Nevertheless,
the regime and choice probabilities are absolutely identified regardless of the above
assumptions.

By default, five estimation attempts are executed. At each attempt, the observa-
tions are randomly assigned to one of the latent classes. The reported value of the log
likelihood is obtained at the second attempt by the NR method (after 24 iterations). At
the first attempt, the NR method does not converge, whereas the DFP method converges
but with a lower value of the likelihood than that obtained at the second attempt by
the NR method. At the next three attempts, the NR method converges with the same
value of the likelihood as at the second attempt.3

The switching OP model suggests that the FOMC decisions are generated in two
different regimes. In both regimes, the larger or smaller the value of spread or bias,
the more likely that the FOMC will hike or cut the rate (all other things equal). However,
in one of the two regimes, the FOMC reactions to the values of spread and bias are
much stronger than in the other one: the coefficients on spread and bias in the outcome

3. To reproduce the exact log output and estimation results, one should run programs using computers
with the same operating system, processor type, and Stata version.



582 A mixture of ordered probit models

model of regime 2 are, respectively, eight and six times as large as in the outcome model
of regime 1. Besides, the larger or smaller the value of house or gdp, the higher or smaller
the likelihood of the more aggressive regime 2. The empirical evidence in favor of regime
switching is convincing: the switching OP model substantially improves the likelihood
and is clearly preferred to the standard OP model according to both AIC and BIC.

Given our sample size of 279, as suggested by the Monte Carlo experiments, we could
suspect that the parameters’ estimates are not accurate enough and the coverage rate
of the 95% confidence intervals could be higher than 97%. The simulations suggest that
increasing sample size from 250 to 500 could lead to a threefold decrease of the biases
of the slope parameters’ estimates and a twofold decrease of those of the threshold esti-
mates as well as to a sevenfold reduction of the biases of the standard errors’ estimates
for all parameters.

6.2 Postestimation analysis

Next, we report the selected output of the postestimation commands. The predicted
choice probabilities at the specified values of the independent variables can be estimated
using the swopitprobabilities command:

. swopitprobabilities, at(house=1.5 gdp=8.9 bias=1 spread=-0.0633333)
Evaluated at:

house gdp bias spread
1.5000 8.9000 1.0000 -0.0633

Predicted probabilities of different outcomes
Pr(y=-1) Pr(y=0) Pr(y=1)

0.0026 0.1186 0.8788
Delta-method standard errors of probabilities

Pr(y=-1) Pr(y=0) Pr(y=1)
0.0034 0.1241 0.1260

In contrast, Pr(y = −1), Pr(y = 0), and Pr(y = 1) from the standard OP model are
rather different—0.0028, 0.6610, and 0.3362, respectively:

. quietly oprobit y house gdp bias spread

. predict pr*, p

. display pr1[2], pr2[2], pr3[2]

.00281791 .66099417 .3361879

According to the standard OP model, the predicted choice (that with the largest
predicted probability) for the second observation (house = 1.5, gdp = 8.9, bias = 1,
spread = −0.0633333) is 0, that is, “no change”.

The predicted choices for each observation can be computed for the switching OP
model using the command swopitpredict with the option output(choice). In par-
ticular, the predicted choice for the second observation (as well as the observed choice)
is 1, that is, an “increase”:
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. swopitpredict, output(choice)

. display swopit_pr[2]
1

The predicted probabilities of two latent regimes for each observation can be esti-
mated using the command swopitpredict with the option regimes:

. swopitpredict, regimes tabstat
Variable N Mean SD Variance Max Min

swopit_pr 279 -.003584 .5124 .2626 1 -1
swopit_r_0 279 .8363 .2967 .08801 1 .0000455
swopit_r_1 279 .1637 .2967 .08801 1 0

The average predicted probabilities of two latent regimes in the sample are 0.84 and
0.16. For the second observation, the predicted probabilities of two latent regimes are

. display swopit_r_0[2], swopit_r_1[2]

.07466314 .92533686

The marginal effects of the covariates on the choice probabilities at the specified
values of the covariates can be estimated using the swopitmargins command:

. swopitmargins, at(house=1.56 gdp=5.9 bias=1 spread=-0.41)
Evaluated at:

house gdp bias spread
1.5600 5.9000 1.0000 -0.4100

Marginal effects of all variables on the probabilities of different outcomes
Pr(y=-1) Pr(y=0) Pr(y=1)

house -0.2210 0.2361 -0.0150
gdp -0.0306 0.0326 -0.0021

bias -0.0831 0.0706 0.0125
spread -0.2223 0.1864 0.0359

Delta-method standard errors of marginal effects
Pr(y=-1) Pr(y=0) Pr(y=1)

house 0.1140 0.1137 0.0143
gdp 0.0163 0.0163 0.0020

bias 0.0198 0.0228 0.0130
spread 0.0899 0.0994 0.0390
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The marginal effects computed for the same values of the covariates (the 120th
observation) in the standard OP model are also rather different:

. quietly oprobit y house gdp bias spread

. margins, dydx(house gdp bias spread)
> at(house=(1.56) gdp=(5.9) bias=(1) spread=(-0.41))
Conditional marginal effects Number of obs = 279
Model VCE: OIM
dy/dx wrt: house gdp bias spread
1._predict: Pr(y==-1), predict(pr outcome(-1))
2._predict: Pr(y==0), predict(pr outcome(0))
3._predict: Pr(y==1), predict(pr outcome(1))
At: house = 1.56

gdp = 5.9
bias = 1
spread = -.41

Delta-method
dy/dx std. err. z P>|z| [95% conf. interval]

house
_predict

1 -.0748088 .0375775 -1.99 0.047 -.1484593 -.0011584
2 -.008311 .047125 -0.18 0.860 -.1006743 .0840524
3 .0831198 .0368925 2.25 0.024 .0108119 .1554277

gdp
_predict

1 -.0183997 .0076835 -2.39 0.017 -.033459 -.0033404
2 -.0020441 .0116896 -0.17 0.861 -.0249553 .0208671
3 .0204439 .0087203 2.34 0.019 .0033523 .0375354

bias
_predict

1 -.0545135 .014821 -3.68 0.000 -.0835621 -.025465
2 -.0060563 .0353416 -0.17 0.864 -.0753245 .063212
3 .0605698 .0288366 2.10 0.036 .004051 .1170885

spread
_predict

1 -.2019291 .0842712 -2.40 0.017 -.3670976 -.0367607
2 -.0224336 .1259947 -0.18 0.859 -.2693786 .2245115
3 .2243627 .0575838 3.90 0.000 .1115005 .337225
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In particular, the marginal effects on the probabilities of no change [Pr(y = 0)]
for all four covariates are negative in the OP model but positive in the switching OP
model. Besides, the marginal effects of house and gdp on the probabilities of an increase
[Pr(y = 1)] also have the opposite signs in the two models. A flexible two-regime
structure of the switching OP model, in which the regimes are driven by the covariates,
allows the sign of the marginal effect on the choice probabilities to change more than once
from the lowest choice to the highest one. Thus, the marginal effects on the probabilities
of an increase and a decrease may have the same sign, as we can see above for house
and gdp. In contrast, the marginal effects in the standard OP model are subject to the
single crossing property—the sign of the marginal effects changes once (and only once),
so the marginal effects on the probabilities of an increase and a decrease always have
the opposite signs.

The swopitclassification command computes the different measures of the ac-
curacy of probabilistic predictions:

. swopitclassification
Precision Recall Adj. noise-to-signal

y=-1 0.7568 0.5091 0.0789
y=0 0.7961 0.9061 0.4730
y=1 0.7778 0.6512 0.0521

Accuracy = 0.7885
Brier score = 0.2952
Ranked probability score = 0.1483
Confusion Matrix

True y=-1 y=0 y=1

Predicted
y=-1 28 9 0
y=0 27 164 15
y=1 0 8 28
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6.3 Bootstrap standard errors

The bootstrap standard errors can be computed by the swopit command using option
bootstrap():

. set seed 3

. swopit y house gdp bias spread, regindepvars(house gdp)
> outoneindepvars(bias spread) outtwoindepvars(bias spread)
> bootstrap(900) bootguesses(2) bootiter(100) change(0.25)
Printing converged estimation with highest likelihood:
A mixture of ordered probit models with two latent classes
Latent class switching = Exogenous
SE method = Bootstrap
Optimization method = Newton Raphson
Number of observations = 279
Log likelihood = -132.6306
McFadden pseudo R2 = 0.4653
LR chi2( 9) = 230.8291
Prob > chi2 = 0.0000
AIC = 287.2612
BIC = 327.2046

Bootstrap
y Coefficient std. err. z P>|z| [95% conf. interval]

Class membe~l
house 4.911729 78.09906 0.06 0.950 -148.1596 157.9831

gdp .6790069 5.2538 0.13 0.897 -9.618252 10.97627
/cut1 11.96884 147.6617 0.08 0.935 -277.4428 301.3805

Outcome mo~1)
bias .6798781 .1458387 4.66 0.000 .3940395 .9657168

spread 1.819521 .4057917 4.48 0.000 1.024184 2.614858
/cut1 -1.251123 .1551393 -8.06 0.000 -1.55519 -.9470553
/cut2 2.318764 1.282352 1.81 0.071 -.1946006 4.832128

Outcome mo~2)
bias 3.954418 3.150888 1.26 0.209 -2.22121 10.13005

spread 14.12324 12.6574 1.12 0.265 -10.68481 38.9313
/cut1 -16.28826 11.28786 -1.44 0.149 -38.41207 5.835542
/cut2 1.448369 1.476572 0.98 0.327 -1.445659 4.342398

The bootstrap standard errors for the parameters are larger than the asymptotic
ones—by 47 times on average for the regime-switching parameters and by 2.8 times
on average for the outcome parameters. These results are in accordance with those
in the Monte Carlo simulations with 250 observations: the bootstrap errors for the
regime-switching parameters are larger than the asymptotic ones by 61 times and for
the outcome parameters—by 2.7 times. In the simulations, the coverage rates with
the asymptotic standard errors are above the nominal 95% level, so with the bootstrap
errors they are even higher (around 99%) than with the asymptotic ones.

Table 4 reports the summary statistics of the estimated parameters in the bootstrap
replications and the bootstrap estimates of the standard errors along with the values of
the parameters estimated in the original sample and their asymptotic standard errors.
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Interestingly, the median values of the bootstrap parameters’ estimates are almost the
same as the values of the parameters observed in the sample. However, the distributions
of the slope parameters’ estimates in the bootstrap replications are highly skewed: the
coefficients of skewness are from 7 to 27. The distributions of the threshold parameters
are also severely skewed. Therefore, in compliance with the Monte Carlo experiments,
the bootstrap estimator of standard errors of the parameters are likely to be much
more biased than the asymptotic ones, especially for the regime-switching parameters
(in the simulations, the bias is 60% for the outcome parameters but 1200% for the
regime-switching ones).

Table 4. Summary statistics of the bootstrap estimates of parameters

Original sample Bootstrapped samples

Coeff. Std. error Mean Median Min Max Skewness Std. dev.

Class-membership model

house 4.9 1.4 12.7 5.0 −1.4 1896.7 17.6 81.8
gdp 0.7 0.2 1.3 0.7 −0.1 105.7 13.7 5.8
/cut1 12.0 3.0 27.3 12.1 −1.8 3496.4 16.6 155.4

Class 1: Outcome model

bias 0.7 0.2 0.7 0.7 0.3 18.3 27.3 0.6
spread 1.8 0.2 2.0 1.9 0.8 15.3 12.3 0.6
/cut1 −1.3 0.1 −1.3 −1.3 −2.4 −0.8 −1.2 0.2
/cut2 2.3 0.3 2.7 2.4 1.8 15.5 5.9 1.4

Class 2: Outcome model

bias 4.0 1.2 4.3 3.9 0.4 37.0 6.9 2.2
spread 14.1 3.4 16.5 15.1 −0.7 292.7 17.1 11.3
/cut1 −16.3 4.2 −18.5 −17.3 −279.2 −3.0 −15.4 10.9
/cut2 1.4 0.6 1.8 1.7 −1.8 16.6 5.9 1.0

The bootstrap standard errors for predicted choice probabilities, estimated using
the command swopitprobabilities, are larger than the asymptotic ones by 11% on
average:

. swopitprobabilities, at(house=1.5 gdp=8.9 bias=1 spread=-0.0633333)
Evaluated at:

house gdp bias spread
1.5000 8.9000 1.0000 -0.0633

Predicted probabilities of different outcomes
Pr(y=-1) Pr(y=0) Pr(y=1)

0.0026 0.1186 0.8788
Bootstrap standard errors of probabilities

Pr(y=-1) Pr(y=0) Pr(y=1)
0.0035 0.1897 0.1907
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It is also in accordance with the simulations with 250 observations, in which the
bootstrap standard errors for probabilities are larger than the asymptotic ones by 37%
on average. The coverage rates with asymptotic standard errors in the simulations are
below the nominal level with both types of errors, but the bootstrap coverage rates are
closer to the nominal level. Therefore, the bootstrap estimator of standard errors of the
probabilities are likely to be less biased than the asymptotic one with our sample size
(in the simulations the bias is only 1%). The summary statistics of the estimated choice
probabilities in the bootstrap replications, reported in table 5, show that the bootstrap
estimates of the probabilities are much less skewed than the estimates of parameters.

Table 5. Summary statistics of the bootstrap estimates of choice probabilities

Original sample Bootstrapped samples

Estimate Std. error Mean Median Min Max Skewness Std. dev.

Pr(y = −1) 0.00 0.00 0.00 0.00 0.00 0.05 4.32 0.00
Pr(y = 0) 0.12 0.12 0.23 0.17 0.00 0.90 1.20 0.19
Pr(y = 1) 0.88 0.13 0.77 0.82 0.09 1.00 −1.19 0.19

6.4 Endogenous switching model

Following Hamilton (1989), switching macroeconomic regimes are usually modeled as
latent states driven by a stochastic exogenous Markov chain process, which has the con-
stant probabilities of transition from one state to another and which does not depend
on the endogenous economic variables. In the context of monetary policy, it is intuitive
to assume that central banks’ actions are systematically related to the economic con-
ditions. Therefore, regime switches should be endogenous to the state of the economy.
We let the unobservables in the regime-switching model be correlated with the unob-
servables in the outcome models. The swopit command with endogenous switching
yields the following results:4

4. To quickly replicate these results, run

. set seed 3

. swopit y house gdp bias spread, regindepvars(house gdp)
> outoneindepvars(bias spread) outtwoindepvars(bias spread)
> endogenous initial(-4.804481 -.6180356 -11.48333 3.389238 12.40146 -14.70939
> 1.092362 .6495292 1.771607 -1.199481 2.316013 .4467007 .4063919) guesses(1)
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. set seed 3

. swopit y house gdp bias spread, regindepvars(house gdp)
> outoneindepvars(bias spread) outtwoindepvars(bias spread)
> endogenous guesses(25)
Printing converged estimation with highest likelihood:
A mixture of ordered probit models with two latent classes
Latent class switching = Endogenous
SE method = OIM
Optimization method = Newton Raphson
Number of observations = 279
Log likelihood = -132.2678
McFadden pseudo R2 = 0.4668
LR chi2(11) = 231.5549
Prob > chi2 = 0.0000
AIC = 290.5355
BIC = 337.7413

y Coefficient Std. err. z P>|z| [95% conf. interval]

Class membe~l
house -4.80448 1.412799 -3.40 0.001 -7.573515 -2.035445

gdp -.6180355 .1823019 -3.39 0.001 -.9753406 -.2607305
/cut1 -11.48333 2.989086 -3.84 0.000 -17.34183 -5.62483

Outcome mo~1)
bias 3.389238 1.504427 2.25 0.024 .4406152 6.33786

spread 12.40146 4.226846 2.93 0.003 4.116996 20.68593
/cut1 -14.70939 4.592181 -3.20 0.001 -23.7099 -5.708883
/cut2 1.092362 1.044298 1.05 0.296 -.9544248 3.139148

Outcome mo~2)
bias .6495292 .1555853 4.17 0.000 .3445876 .9544708

spread 1.771607 .2478854 7.15 0.000 1.28576 2.257453
/cut1 -1.199481 .1591711 -7.54 0.000 -1.511451 -.8875114
/cut2 2.316013 .2597258 8.92 0.000 1.80696 2.825067

Correlations
rho1 .4467012 1.151496 0.39 0.698 -1.810189 2.703591
rho2 .4063918 .5008056 0.81 0.417 -.5751693 1.387953

The estimates of the correlation coefficients have the expected positive signs but are
not significant.5 Both the AIC and the BIC favor exogenous switching. A simultane-
ous ML estimation of three latent equations with correlated disturbances requires more
observations: in the Monte Carlo simulations, the biases of the choice and class prob-
abilities’ estimator in the endogenous switching case are three to four times as large
as those in the exogenous switching case. In the sample, there are on average fewer
than 22 observations per parameter. With a larger sample in hand, it would be feasible
to estimate the parameters and probabilities more accurately, to include more control
variables, and to obtain a stronger empirical evidence in favor of endogenous switching.
In the simulations, when the sample size is increased from 250 to 500 (1,000), the biases

5. An identical value of the likelihood can be obtained with the opposite signs of the correlation
coefficients and of the parameters in the regime-switching model and the switched labels of the
latent regimes.
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of the choice and class probabilities’ estimator are reduced threefold (six times), and
the RMSE are smaller by 17%–35% (38%–59%).

7 Conclusions
Certain important classifications of the cross-sectional data or the states of a time-
series process are often not observed. These latent classes or states can distort the
inference in a traditional single-equation model. Finite mixture or regime-switching
models surmount the problem of unobserved heterogeneity or clustering through their
flexible form. The available Stata command for a finite mixture of OP models, fmm:
oprobit, does not allow for endogenous switching when the unobservables in the latent
class-switching model are correlated with the unobservables in the outcome models.
This article described the ML estimation of the switching OP model with exogenous or
endogenous switching between two latent regimes (or classes) using the new command
swopit.
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0683 (to install program files, if available)

. net get st0683 (to install ancillary files, if available)

Alternatively, the package can be downloaded manually from GitHub (https: //
github.com/janwillemnijenhuis/swopit).

https://github.com/janwillemnijenhuis/swopit
https://github.com/janwillemnijenhuis/swopit
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Appendix

Table A1. The true values of parameters in the Monte Carlo
experiments

Overlap among covariates

Parameters No overlap Partial overlap Complete overlap

γ1 2 2 2
γ3 1
µ 0.2 0.2 0.2

β1,2 2 2 2
β1,3 1 1 1
α1,1 −3.83 −5.23 −3.83
α1,2 3.76 2.46 3.81
β2,2 1
β2,3 −2 −2
β2,4 1 1
β2,5 −2
α2,1 −3.97 −6.17 −3.83
α2,2 3.97 0.97 3.93
ρ1 0.3 0.3 0.3
ρ2 0.5 0.5 0.5

note: The variances σ2, σ2
1 , and σ2

2 are fixed to 1 in all simulations.
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Table A2. The average estimated values of parameters in the Monte Carlo experiments
with exogenous switching

Overlap among covariates

No overlap Partial overlap Complete overlap

Sample
size 250 500 1,000 2,000 250 500 1,000 2,000 250 500 1,000 2,000

γ1 2.78 2.19 2.08 2.04 2.96 2.26 2.10 2.05 2.70 2.19 2.09 2.04

γ3 1.48 1.13 1.05 1.02

µ 0.29 0.22 0.21 0.20 0.33 0.22 0.21 0.20 0.27 0.22 0.21 0.20

β1,2 2.63 2.22 2.10 2.04 2.64 2.21 2.10 2.04 2.64 2.22 2.10 2.04

β1,3 1.31 1.11 1.05 1.02 1.32 1.10 1.05 1.02 1.32 1.11 1.05 1.02

α1,1 −5.03 −4.25 −4.01 −3.91 −6.89 −5.78 −5.48 −5.34 −5.06 −4.25 −4.01 −3.91

α1,2 4.93 4.17 3.94 3.84 3.24 2.71 2.58 2.51 5.02 4.23 3.99 3.89

β2,2 1.34 1.12 1.05 1.02

β2,3 −2.63 −2.21 −2.09 −2.04 −2.68 −2.23 −2.10 −2.05

β2,4 1.34 1.12 1.05 1.02 1.31 1.11 1.05 1.02

β2,5 −2.69 −2.23 −2.10 −2.04

α2,1 −5.32 −4.43 −4.17 −4.06 −8.09 −6.83 −6.46 −6.29 −5.13 −4.27 −4.02 −3.92

α2,2 5.32 4.42 4.17 4.06 1.27 1.07 1.02 0.99 5.26 4.39 4.12 4.02
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Table A3. The average estimated values of parameters in the Monte Carlo experiments
with endogenous switching

Overlap among covariates

No overlap Partial overlap Complete overlap

Sample
size 250 500 1000 2000 250 500 1000 2000 250 500 1000 2000

γ1 2.59 2.16 2.07 2.03 2.67 2.23 2.09 2.05 2.53 2.17 2.07 2.03

γ3 1.33 1.11 1.05 1.02

µ 0.25 0.22 0.21 0.20 0.27 0.23 0.21 0.20 0.25 0.22 0.21 0.20

β1,2 2.60 2.20 2.09 2.04 2.58 2.20 2.09 2.04 2.60 2.21 2.09 2.04

β1,3 1.30 1.10 1.05 1.02 1.29 1.10 1.05 1.02 1.30 1.11 1.05 1.02

α1,1 −4.96 −4.21 −4.00 −3.91 −6.72 −5.74 −5.46 −5.34 −4.96 −4.22 −4.00 −3.91

α1,2 4.91 4.15 3.94 3.84 3.21 2.72 2.57 2.51 4.97 4.22 3.99 3.89

β2,2 1.31 1.11 1.05 1.02

β2,3 −2.56 −2.20 −2.09 −2.04 −2.62 −2.22 −2.09 −2.04

β2,4 1.30 1.11 1.05 1.02 1.28 1.10 1.04 1.02

β2,5 −2.60 −2.21 −2.09 −2.04

α2,1 −5.17 −4.41 −4.16 −4.06 −7.90 −6.81 −6.45 −6.29 −5.03 −4.26 −4.01 −3.92

α2,2 5.12 4.37 4.15 4.05 1.22 1.05 1.01 0.99 5.12 4.35 4.11 4.02

ρ1 −0.03 0.14 0.25 0.29 -0.10 0.10 0.22 0.29 0.01 0.15 0.24 0.29

ρ2 0.38 0.40 0.47 0.50 0.42 0.43 0.47 0.50 0.39 0.41 0.46 0.50




