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Abstract. Eight multigroup segregation indices are decomposable into a between
and a within term. They are two versions of 1) the mutual information index,
2) the symmetric Atkinson index, 3) the relative diversity index, and 4) Theil’s H
index. In this article, we present the command dseg, which obtains all of them.
It contributes to the stock of segregation commands in Stata by 1) implement-
ing the decomposition in a single call, 2) providing the weights and local indices
used in the computation of the within term, 3) facilitating the deployment of the
decomposability properties of the eight indices in complex scenarios that demand
tailor-made solutions, and 4) leveraging sample data with bootstrapping and ap-
proximate randomization tests. We analyze 2017 census data of public schools in
the United States to illustrate the use of dseg. The subject topic is school racial
segregation.

Keywords: st0682, dseg, Atkinson, decomposability, multigroup, mutual informa-
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1 Introduction

A classic concern for social scientists is the degree of association between membership
in a group—defined by, say, race—ethnicity, gender, or religion—and assignment to an
organizational unit—such as an occupation, a neighborhood, or a school. Most indices
of segregation measure differences in the proportions of each group in organizational
units (hereafter “units”). If each group is represented in each unit as it is in the overall
population, indices report no segregation. As the groups’ proportions in the units depart
from perfect representation, indices become positive. When groups are perfectly split
into distinct units, indices reach their maximums.

Traditional indices of segregation, such as Duncan and Duncan’s dissimilarity index
(Duncan and Duncan 1955) or the Gini index (Fliickiger and Silber 1999) model this
basic setup appropriately when 1) group belonging is dichotomous, for example, men
versus women or whites versus blacks; and 2) the data lack any multilevel structure.
However, these indices are inappropriate when conditions 1 and 2 do not hold, that is,
when there are more than two groups and segregation has a multilevel structure. In this
article, we introduce the command dseg (Mora 2014) for computing all known indices
of segregation that can be used when this is the case.
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Think of multiracial segregation in schools located within districts. Races are sim-
ply one of many sources of identity and affiliation (Akerlof and Kranton 2010) that are
not necessarily binary. Native language, income, or religion are other possible sources
of nonbinary identity that may be consequential to segregation and that violate con-
dition 1. Another source of complexity is that the dimensions of segregation are often
multilayered, which is a situation that violates condition 2. For example, in the United
States, students who self-classify to a race category other than non-Hispanic white be-
long to a “minority”. In this context, it is naturally appealing to decompose the overall
measure of multigroup segregation and determine what chunk of it is due to what ag-
gregation layer (Reardon, Yun, and Eitle 2000); one layer distinguishes non-Hispanic
whites (“whites” for short hereafter) from minorities, and the other compares a variety
of minority groups among themselves. Multigroup indices that satisfy a group decom-
posability property can partition the original groups into supergroups and perform a
decomposition of the index into, on one hand, a between term that captures the segre-
gation among the supergroups and, on the other hand, a within term that captures the
contribution made by the groups.

On other occasions, segregation stems from different levels of social organization
(Mora and Ruiz-Castillo 2011). School racial segregation is a telling illustration. Con-
sider two cities, X and Y, with K districts and N schools each. Schools in X and Y
may be completely segregated, even though the segregating mechanism may arise from
different racial compositions 1) in their K districts, 2) in their N schools, or 3) at both
levels. To see this, suppose that all districts in city X share the city’s overall racial mix.
However, schools are completely segregated. Instead, in city Y districts are completely
segregated to begin with. Moreover, because in each of its K districts there are students
from only one race, this occurs in every single school in town. In city X, one can confi-
dently state that the segregation captured by the indices of racial segregation in schools
is effectively race segregation that arises in schools. By contrast, race segregation in the
schools of city Y mirrors the racial composition of its districts. Hence, in this city the
measure of race segregation in schools confounds segregation in schools with segregation
in districts.

The property of unit decomposability is useful to address this and similar situations.
It allows partitioning units into distinct sets or clusters—based on, for example, districts’
boundaries, schools’ ownership, or religion—and identifying the contributions to overall
segregation made by, on one hand, clusters and, on the other, the final organizational
units. With regards to our example, this means that measures of segregation that
satisfy unit decomposability can discriminate between the tendency of racial groups to
be found in different 1) districts on one hand and 2) schools on the other.

In this article, we introduce the command dseg for computing eight indices of multi-
group segregation. As explained in detail in section 3.3, these are 1) the mutual infor-
mation index, M, and a normalized version, N M, that rescales segregation as a propor-
tion of maximum segregation (we refer to this as “weak normalization”; see Mora and
Ruiz-Castillo [2011]); 2) one version of the symmetric Atkinson’s index that is group
decomposable and one that is unit decomposable; 3) one version of the relative diversity
index that is group decomposable and one that is unit decomposable; and 4) one ver-
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sion of Theil’s H index that is group decomposable and one that is unit decomposable.
These are the only multigroup segregation indices that satisfy the group decomposability
property, the unit decomposability property, or both.

Finally, there might be research settings that call for decomposing a segregation
measure along two or more levels in the group and unit dimensions. Joining together
the two examples above, suppose we are interested in the segregation in schools among
minorities, controlling for the segregation that 1) there is between minorities and whites
and that 2) arises from the varying racial mix of school districts, rather than from schools
themselves. Then we should conduct the analysis with M because it is the only index
that is decomposable along both the group and unit dimensions.

The rest of the article is set out as follows. First, we review the existing commands
for calculating multigroup segregation indices. Then, we put forward two notions of
segregation and four additive decomposability properties. Based on these, we define the
eight segregation indices that dseg computes. Afterward, we introduce the dseg com-
mand itself. Its use is illustrated with an analysis of the U.S. census of the 45,277,593
students enrolled in the 93,443 public schools of the country in 2017. The presentation
of dseg is organized in three levels: basic, intermediate, and advanced. In it, we pro-
gressively show how dseg facilitates the deployment of the decomposability properties
of the eight indices in complex scenarios that demand tailor-made analyses. Moreover,
we emphasize two novelties that dseg brings to the stock of segregation commands in
Stata: it 1) provides the weights and local indices for each of the clusters or super-
groups in the decomposition and 2) tackles the problems caused by small sample sizes
with bootstrapping and approximate randomization tests.

2 Existing commands for measuring decomposable or
multigroup segregation

Four community-contributed commands compute measures of segregation in settings
with only two groups. Commands duncan and duncan2 (Jann 2004) compute the dis-
similarity index using individual-level data. Package dissim (Cox 1999) calculates
dissimilarity index from aggregate data. In a multigroup situation, the three commands
calculate the dissimilarity index for all pairwise comparisons of groups. However, they
do not provide a unique measure of multigroup segregation. Moreover, the dissimilar-
ity index is neither unit nor group decomposable. Command hutchens (Jenkins 2006)
computes the unit-decomposable version of the Atkinson index in the two-group case,
also known as the square root index H (not to be confused with Theil’s H). For any
partition of the units into clusters, the square root index H is unit decomposable. Al-
though hutchens provides the decomposition for any partition into clusters, it does not
give the weights and local indices for each of the clusters in the decomposition.

Regarding multigroup indices, two community-contributed commands are available.
seg (Reardon and Townsend 1999) calculates eight multigroup diversity and segregation
indices. None of them are group decomposable. Moreover, even though seg includes
the unit-decomposable versions of Theil’s H and the relative diversity index, it does not
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compute the decomposition of the units into clusters. The command dicseg (Gradin
2011) calculates several dichotomous indices of segregation, including the applications
of M and the unit-decomposable version of Theil’s H to the dichotomous case.

Moreover, localseg (Gradin 2011) computes measures of what Alonso-Villar and
del Rio (2010) define as “local segregation”. In a study including multiple groups, these
measures gauge the level of isolation of any given group.

3 Two notions of segregation, four additive decompos-
ability properties, and eight segregation indices

3.1 Two notions of segregation

Imagine a situation where each individual is assigned to one organizational unit n,
where n € {1,..., N}, and belongs to one group g, where g € {1,...,G}. As James and
Taeuber (1985, 24) note, this bivariate distribution of two discrete random variables is
typically represented in two-way tables in which the rows correspond to the n units and
the columns to the g groups, given that often V > G.

In this scenario, many classic articles in the field start by posing the question, What
is the meaning of stating that there is more or less “segregation”? (James and Taeuber
1985; Flickiger and Silber 1999; Frankel and Volij 2011; Massey and Denton 1988).
The first step toward an answer requires choosing what type of frequencies to use.
Chakravarty and Silber (1994) propose measures of segregation that are functions of
counts or absolute frequencies. However, the great majority of indices, including the
ones computed by dseg, are built upon the so-called relative view of segregation, that
is, one that is based on proportions or relative frequencies.

Given this baseline, let us introduce more notation. Lowercase p denotes a propor-
tion, and uppercase P denotes a collection of proportions. Moreover, let p,, represent
the joint proportion of individuals who are in unit n and belong to group g. These are
sometimes called “cell proportions”. Then Pynit, group refers to the joint distribution of
the discrete random variables unit and group, indexed by the mute variables n and g,

. N G
respectively: Punit, group = {P11: P12 - - - s Png, - - - ,PNG }, Where » " 2921 Png = 1. In-
dices of segregation that are only a function of Py, group Satisfy the property known as
size or scale invariance (James and Taeuber 1985; Frankel and Volij 2011): multiplica-
tion of absolute frequencies by a constant affects neither the proportions nor, therefore,
these indices.

In addition, let p,e = Z;;:l Dng be the proportion of individuals in unit n that is
obtained by summing the cell proportions in different columns. Hence, Py, is the array
containing the overall or marginal distribution of individuals across units, re%fardless of
the value of their group: Punit = {P1e;D2e:- -1 Pner---,PNe}- Let Dag = > | Png be
the proportion of individuals who belong to group g. Equivalently, Pyroup is the array
made of the overall or marginal distribution of individuals across groups, regardless of
the value of their unit: Pyroup = {Pe1;De2; - - -;Degs - - - > PG }-
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Finally, let Pyroupjunit = Punit, group/Punit be the array of group shares in each unit
n. Given the tabular arrangement mentioned earlier, there are N such row collections,
each containing G columns. Likewise, let Punit‘gmup = Punit, group/ Peroup be the array
of unit proportions conditional on group g. There are G such arrays, each having N
conditional proportions.

Most indices, including the popular dissimilarity index in the two-group case, mea-
sure the extent of differences between Pgroup|unit and Pgroup- They address the question
of how the group shares in the units (Pyoup|unit) differ from the group shares in the
overall population (Pgroup). Otherwise put, To what extent does the group mixture in
the units diverge from the group composition of the population under study? As James
and Taeuber (1985) put it, such indices of segregation are “distributional” or “disper-
sion” measures around the marginal distribution of groups, Peroup. We label this “axis
of measurement” (Denton and Massey 1988) the Pyoupjunit otion of segregation. In
this article, we express it in natural language with the expression “group segregation in
units”, for example, “race segregation in schools”.

Nevertheless, just as logically, one could develop an alternative “axis of measure-
ment” for gauging dispersion around the marginal distribution of units, Pyyi;. An index
lying on this axis would measure the extent of differences between Pyyitjgroup and Punit-
We label it the Pypit|group Notion of segregation. Now the question posed is, How do the
unit shares of each group differ from the unit shares in the overall population? Oth-
erwise put, To what extent does the groups’ distribution across units diverge from the
analogous distribution of the overall population?’ In natural language, we convey this
notion with the expression “unit segregation by group”, as in “school segregation by
race”.

3.2 Four additive decomposability properties

Suppose that there is a partition of the set of N organizational units {1,2,..., N} into a
set of K major organizational units or clusters k € {1,..., K} with K < N. Let Tyroup,k
be the collection of the groups’ absolute frequencies in each cluster k. Following Frankel
and Volij (2011), we state that a segregation index WU is weakly unit decomposable
(WuD) if and only if

K
= T 3 0 (Toup) P4 (R) (1)
k=1

where UX is called the “between term” and results from computing the index using the
K clusters as organizational units, ¥¥(k) is the local index of segregation in the orga-
nizational units of cluster k, and w (Tgroup,x) > 0 is a weighting factor that is a function
of the groups’ sizes in each cluster. The so-called within term of the decomposition,
Zszl W (Tgroup,k) Y (k), is a linear combination of the k local indices that there are,

1. In their study of residential segregation with two groups only, Massey and Denton (1988) consider
five alternative views or dimensions of segregation. The first two views, evenness and exposure,
are related to the Pypqyp|unit @nd Pynig|group DOtions of segregation. The last three, concentration,
clustering, and centralization, relate to spatial data.
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one for each cluster. The linear combination is said to be convex when the weights
add up to unity: Zszl W (Tgroup,k) = 1. Then the index is strongly unit decomposable
(SUD). If segregation changes by the same amount A in all clusters, an index that is SUD
has the desirable property of changing its within term by A (see Mora and Ruiz-Castillo
[2011] for a more detailed discussion of the advantages of SUD over WUD indices in the
context of entropy-based indices).

Unit-decomposable indices identify different sources of segregation when the units
can be organized into a multilevel structure. Returning to the example of race segre-
gation in the schools of a city with K districts, we note the between term ¥* captures
district racial segregation: segregation that arises from the different race mix of dis-
tricts (which corresponds to the Pgyoupjunit notion of segregation explained earlier or,
in words, “race segregation in districts”); or, viewed otherwise, from the varying distri-
bution of races across districts (Pyunit|group NOtion of segregation or, in words, “district

segregation by race”). The within term ZkK:l w (Tgroup,k) Y¥ (k) measures school racial
segregation per se, controlling for district racial segregation. From the standpoint of the
Pgroup|unit nOtion of segregation, it captures the reduction in race segregation in schools
that would occur if the group shares in all the schools of any district k£ were made equal
to the district’s overall group shares. From the standpoint of the Pyyit|group notion of
segregation, it captures the reduction in school segregation by race that would occur if
the distribution of each group across the schools of any district k£ were made equal to

the school distribution of the overall student population of the district.

Likewise, it is possible to define the properties of weak group decomposability and
strong group decomposability in the context of a partition of the groups into L super-
groups I € {1,...,L} with L < G. For example, following Reardon, Yun, and Eitle
(2000), we might be interested in weighing the part of race segregation in schools that is
fostered by the segregation of whites from minority students compared with the segrega-
tion generated by school differences among the miscellaneous minority groups (Asians,
blacks, Hispanics, etc.). Then whites and minority students are two supergroups, and
a segregation index W is weakly group decomposable (WGD) if and only if

L
U =05+ w (Tunie) O9(1) (2)
=1

where U~ is the segregation computed among the L supergroups (the so-called between
term); W9(1) is the segregation among the groups making up each supergroup I (which
amounts to 0 in the case of supergroups composed of only one group, as is the case of
the white supergroup); and w (Tunit,;) > 0 is a weighting factor that is a function of the
units’ sizes for each group, Tynit,;. The so-called within term of the decomposition is
the term Zlel W (Tunit,t) W9(1); that is, it is a linear combination of the indices defined
for each supergroup. If all the weights in the decomposition add up to unity, that is,
ZzL:1 w (Tynit,) = 1, then the index is strongly group decomposable (SGD).
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3.3 Eight segregation indices

The eight indices computed by dseg are multigroup and satisfy at least one decompos-
ability property. To our knowledge, there does not exist any other index of segregation
that is both multigroup and additively decomposable. Six of the eight indices have
been proposed before. These are 1) the mutual information index using, without loss
of generality, natural logarithms, M; 2) its weak normalization, NM; 3) the symmetric
Atkinson index that is based on the Pyyit|group nNOtion of segregation, Aupitjgroup; 4) a
version of Theil’s H index that is a normalization of M based on the Pyoupjunic nOtion
of segregation, Hyroup|unit; ) @ version of Theil’s H index that is a normalization of M
based on the Pypit|group NOtion of segregation, Hpit|group; and 6) the relative diversity
index that is based on the Pyoupjunit n0tion of segregation, Ryroup|unit-

We define in this article for the first time 1) the symmetric Atkinson index that is
based on the Pyyoupjunit Notion of segregation, Agyoupjunit; and 2) the relative diversity
index that is based on the Ppit|group notion of segregation, Rypnitjgroup- Table 1 presents
formulas and the decomposability properties of the eight indices. Frankel and Volij
(2011) characterize axiomatically M and Aypit|group- Reardon and Firebaugh (2002)
study the properties of Hyroupfunit @nd Rgroup|unit (as well as those of other multigroup
indices that are not decomposable). Mora and Ruiz-Castillo (2011) discuss the decom-
posability and normalization properties of all the entropy-based multigroup indices: M,
NM, ngoup|unit7 and Hunit|group~
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4 Introducing the dseg command: An application to U.S.
school racial segregation in 2017

As mentioned in the introduction, decomposable indices are valuable for multigroup
and multilevel studies of segregation. In this section, we substantiate this claim and
showcase the use of dseg by applying it to the measurement of school racial segregation
in the United States.

There are three reasons for choosing this example. First, it illustrates unit and
group decompositions that are of import to classic yet contemporary scientific and
public debates in the United States (Coleman et al. 1966) and elsewhere (Casey 2016).
Second, these debates motivated the development of two of the segregation indices, M
and Theil’s H (Theil and Finizza 1971), that can be computed with dseg. Additionally,
they relate to the topics of income and class segregation in schools (Gutiérrez, Jerrim,
and Torres 2020) and racial residential segregation (Duncan and Duncan 1955; Massey
and Denton 1994). Possibly only the study of occupational segregation, initiated by
Gross (1968), takes a similarly prominent place in the academic and public conversation
on segregation. The third reason for explaining the use of dseg with the topic of school
segregation in the United States is that results are reproducible thanks to publicly
available data.

4.1 The data: A census of the U.S. student enrollment body in public
schools

We use data from the 2017 Common Core of Data (CCD) Local Education Agency
Universe Survey, which is publicly available from the National Center for Education
Statistics.? The CCD are a census of U.S. public schools. They record 1) all the schools
and agencies (and their locations) providing free and public elementary and secondary
education in the United States and its jurisdictions; and 2) the sex and race of all
students enrolled in them.

The original 2017 ¢CD includes 95,219 schools or agencies. There are 93,443 schools
with students in elementary and secondary education. The data are originally aggre-
gated by sex, race, grade, school, school district, and state. The variable student_count
contains the count of students in each cell. In our analyses, we leave aside sex and grades.
In total, there are 45,277,593 students. They are grouped into the seven categories of the
original string variable race_ethnicity. We generate a numeric version of this variable
named race to show dseg’s ability to handle both character and numeric variables.

2. Accessed on June 10, 2020, at https: //nces.ed.gov /ccd / files.asp#Fiscal:2,Levelld:7,School Yearld:
32,Page:1.
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. use ccd2017_sjdseg

. tabulate race_ethnicity [fweight=student_count], sort missing

Race or Ethnicity Freq. Percent Cum.

White 21,675,558 47.87 47.87

Hispanic/Latino 12,059,119 26.63 74.51

Black or African American 6,856,017 15.14 89.65

Asian 2,366,659 5.23 94.88

Two or more races 1,710,347 3.78 98.65

American Indian/Alaska Native 442,643 0.98 99.63

Native Hawaiian/Other Pacific Islander 167,250 0.37 100.00
Total 45,277,593 100.00

In the ensuing analyses, we decompose various measures of segregation by geograph-
ical level. The original CCD identifies the 16,768 school districts and 51 states (including
Washington, DC) where each school is located in. The corresponding variables are the
following:

e district for the district identifier;
e state for the state identifier;

e schid and school for the school identifier (the first variable corresponds to the
original variable in string format; the second is a numeric version that we gener-
ate).

In some examples, we also use the core-based statistical area (CBSA) of each school.
CBSA is a geographical classification by the U.S. Office of Management and Budget that
splits the country into 934 areas. These are either 1) micropolitan areas of 10,000 to
50,000 people, 2) larger metropolitan areas, or 3) rural areas. Only 2,502,368 students
are enrolled in schools located in rural areas. Although CBSA information is not available
in the original dataset, the National Center for Education Statistics facilitates each
school’s CBSA (variable cbsa) in a separate file,®> and both sets can be merged thanks
to the school identification code (variable schid).

4.2 Speaking dseg: Command syntax

We explain the use of the command dseg via the study of school racial segregation in the
United States with the 2017 cCD. In Stata, dseg implements the computation of the only
eight multigroup segregation indices that also satisfy decomposability properties. They
gauge the association between individuals’ group of belonging and a set of organizational
units (schools, school districts, CBSAs, and states in our example).

The command dseg contributes to the stock of commands on segregation by 1) com-
puting decompositions directly and 2) providing the elements that make up the within
terms of the decomposition: w (Tygroup,k) and WY (k) for clusters k in unit partitions and
W (Tunit,1) and W9 (1) for supergroups [ in group partitions.

3. Accessed on June 10, 2020, at https: //nces.ed.gov / programs/edge / Geographic / SchoolLocations.
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Its syntax is the following:

dseg indexr varlistl [zf] [m] [weight], given(varlisw) [gddindex(namelz’st)
by (varlist) Hithin(varlz’st[, components}) missing fast
bootstraps(#[, opt]) random(#) rseed(#) clear saving(ﬁlename[, opt])

prefix(name) nolist iormat(%fmt)]
fweights are allowed; see [U] 11.1.6 weight.

At its simplest, dseg requires only that the user specify which index to compute,
what notion of segregation to follow, the groups, and the units. The specification for
index requires an index name: atkinson, diversity, mutual, n_mutual (for NM),
theil, alt_atkinson, alt_diversity, or alt_theil. The user chooses the under-
standing of segregation built around Pyoupjunit by identifying 1) the groups of interest
in the varlist! and 2) the organizational units along which groups segregate from each
other in the varlist2, that is, within the required option given().

However, with dseg it is easy to transpose the axis of measurement and follow
instead the Pypit|group NOtion of segregation. It suffices that the user lists unit-related
variables in warlistl and group-related variables in varlist2. Recall that, as explained
earlier, only the M index is invariant to the notion chosen.

varlist] and varlist2 accept string and numeric variables. For variable lists of length
two or larger, dseg internally generates a temporal variable with the Cartesian product
of the categories of the variables listed. For example, if in varlist! we include a numeric
variable race categorizing observations into seven racial groups and a string variable
sex distinguishing boys from girls, dseg temporarily creates an internal, auxiliary, and
numeric variable with the 7 x 2 = 14 categories that the combination of race and
sex produces. As shown later, this internal data manipulation ensures that the index
decomposition is implemented correctly in all contexts.

With this minimum information—an index name, a notion of segregation, a list
of group variables, and another list of unit variables—dseg returns the desired index.
The command accepts the standard Stata if and in qualifiers for, respectively, logical
conditions and observation ranges. In aggregated data, frequency weights indicate the
number of duplicated observations.

4.3 Options

given (wvarlist2) specifies the units in groups-given-units indices and the groups in units-
given-groups indices. given() is required.
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addindex (namelist) is a list of additional indices to be computed. Any of the eight in-
dices that dseg computes can be included in namelist. The notion of segregation is
set with varlist! and varlist2. Any index following the alternative notion can be com-
puted by adding the prefix alt_ to the index name: alt_atkinson, alt_diversity,
or alt_theil.

by (varlist) identifies the subsamples over which the index is to be calculated. It is useful
for computing the same index and its decomposition for different years, countries,
etc. For example, with by (state), dseg outputs 51 indices. With by(cbsa), dseg
outputs 934 indices. With by (state cbsa), dseg outputs 1,055 indices. The reason
why is that dseg considers all existing combinations in the data of the variables’
categories. In this example, there are 867 CBSAs that belong to a single state, and
57 CBSAs are split into 2 states, 7 into 3 states, and 2 into 4 states. Finally, the
residual category of the cbsa variable for rural area is found in 45 states. Hence, the
867 4+ 57 x 24+ 7 x 3+ 2 x 4+ 45 = 1055 categories in the geographical classification
of CBSAs and states, and for each of them dseg with the option by(cbsa state)
computes one index.

within(varlist| , components |) specifies the clusters or supergroups that partition the
units or groups, thereby defining the decomposition of the index into a between and
a within term. For the unit-decomposable index Ayt |group, it identifies the clusters
defined as the combinations of varlist! and varlist. For the group-decomposable in-
dex Agroup|unit, it identifies the supergroups defined as the combinations of varlist1
and varlist. For the unit-decomposable indices Hgoup|unit a0d Rgroup|unit, it identifies
the clusters as the combinations of varlist2 and varlist. For the group-decomposable
indices Hypit|group and Runit|group, it identifies the supergroups defined as the com-
binations of warlist2 and warlist. Finally, for M, which is both SUD and SGD, it
identifies the clusters or supergroups defined by the combinations of varlist2 and
varlist. In summary, by specifying this option, dseg computes either the decom-
position in (1) or the decomposition in (2). It all depends on the index chosen
and the variables included in wvarlist! and varlist2. For example, there are schools
(units) within districts (clusters). For Theil’s H, setting race in wvarlistl, school in
varlist2, and district in within() decomposes the unit-decomposable index of seg-
regation Hgyoup|unis iNt0 a between term that measures race segregation in districts
and a within term that captures race segregation in schools within districts. To
carry out an analogous unit decomposition with the unit-decomposable symmetric
Atkinson index Aypit|group; We should include school in warlistl, race in warlist2,
and district in within(). With the components suboption, dseg additionally
provides the weights and the local segregation indices from either (1) or (2).

missing treats missing values as valid values. By default, dseg assumes missing values
are instances of random incomplete information. Hence, all observations with miss-
ing values in at least one of warlist1, varlist2, the variables in by (), or the variables
in within() are dropped before the calculations are made. The missing option
reverts this behavior and forces dseg to interpret missing values as categories. For
example, missing observations in race would be interpreted as representing students
from the same “missing race”.
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fast uses the community-contributed command ftools (Correia 2016) to speed up
computing time with big data. Install ftools with ssc install ftools. This
option can only be used with numeric variables.

bootstraps(#[ , opt] ) sets the number of bootstrap samples. This option invokes the
bsample command to generate a bootstrap sample with replacement with the same
number of observations as the original sample. Bootstrap options are passed through
by opt; see help bsample. The bootstraps() option cannot be used with weights
or simultaneously with random(). It results in a new dataset with index values
for each of the # bootstrap samples. In the new dataset, the bootstrap samples are
identified with variable bsn, the bootstrap sample number. The new dataset includes
an additional observation with the indices calculated with the original dataset. This
observation is identified with bsn = 0. The new dataset replaces the current dataset
in memory when the clear option is used. It is saved when the saving() option
is used. If none of these two options are used, dseg stops and displays an error
message before doing the bootstrap.

random(#) computes the index with # samples simulated under the assumption of no
segregation as suggested by Boisso et al. (1994). Each simulated sample is obtained
after randomly reshuffling values of varlist1. Otherwise, random() closely follows the
behavior of the option bootstraps(): 1) it cannot be directly used with weighted
data or simultaneously with bootstraps(); 2) the output is a new dataset that
includes index values for all simulated samples; and 3) the new dataset must replace
the current dataset or be saved.

rseed (#) sets the seed for the random-number generator.

clear replaces data in memory with data containing index values. During execution, the
command dseg internally creates a temporary dataset with the results. By default,
dseg lists the index values and stores them in return matrix r(S) (in addition to the
number of observations, the command name, the names of the indices, and the notion
of segregation defined by varlist! and varlist2). There are three cases in which matrix
r(S) is not returned: 1) when either bootstraps() or random() is used, 2) when
the resulting matrix is too large, and 3) in the presence of a string variable in the
option by () or if components is used as in within(wvarlist, components). In cases
2 and 3, a warning message is displayed. It may be useful to have the index values
in a Stata dataset. We can achieve this with the options clear and saving(). The
clear option replaces the data in memory with the index values. The structure of
the replacing dataset depends on what additional options are included in the call.
At its simplest, the new dataset contains only one observation with the index value
stored in one variable. Adding the by () option enlarges the new dataset to contain
as many observations as categories that are defined by the combination of variables
in the by () option. For example, in the analysis of race segregation in schools, the
options clear and by(state) generate a new dataset with 51 observations (one for
each state) and one variable that stores the index values. Option within(district)
adds two additional variables to this dataset, one with the between term and another
with the within term of the decomposition. However, if we use within(district,
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components), the new dataset has 16,768 observations, that is, the number of school
districts, and two new variables: one for the weight and another for the local index
of each school district. The overall index and the between and within terms are
constant across the districts of the same state because these variables contain the
index decomposition for the whole state.

saving(ﬁlename[ , opt]) saves the data file filename with the index values. Saving
options are passed through by opt; see help save. The structure of the saved
dataset follows the same conventions described above for the clear option.

prefix(name) attaches name in front of the default name for each index, each be-
tween and within term, and each local weight in the new dataset. This option
is useful in the presence of conflicting names in the new dataset. There are four
types of variable names in the new dataset: 1) the indices’ names; 2) the variable
names in the list of by (varlist) if by (varlist) is used; 3) the variable names in the
list of within(warlist, components) if components is used; and 4) bsn and ssn if
bootstraps() or random() is used. For the index versions implicit in the notion
of segregation defined by wvarlist! and varlist2, the default names are A, H, M, and
R. For the alternative versions of A, H, and R, the names are A1tA, A1tH, and AltR,
respectively. For the normalized mutual information, the default name is NM. When
the within() option is used, postfixes _B and _W are added after the default name
for the between and the within term, respectively. If the components suboption is
used, postfixes _w and _1 are used to name the weights and the local segregation
indices. In case of a conflicting name, dseg stops and issues an error message.

nolist prevents the extended output display. This behavior may be desirable when the
by () or the within() option is used because, by default, dseg lists all index values.
Option nolist suppresses this listing but keeps all other output messages from dseg.
Thus, nolist is preferable to using quietly with dseg when the user wishes to read
output messages other than index values. When nolist is used together with clear,
a description of the new dataset is displayed. Options bootstraps() and random()
call the option nolist implicitly.

format (%fmt) sets the output format of the index. The default is format (%9.4£); see
help format.

4.4 Basic usage of dseg

The simplest call to dseg specifies an index name and a notion of segregation. For exam-
ple, if we transform the aggregated 2017 CCD into an individual-level dataset where each
row is a student (N = 45,277,593), we can ask for the standard Theil’s H, Hgpoup|unit, tO
measure race segregation in schools (with string variables race_ethnicity and schid)
as follows:



D. Guinea-Martin and R. Mora 535

. preserve

. expand student_count
(44,367,820 observations created)

. dseg theil race_ethnicity, given(schid)
Decomposable Multigroup Segregation Indexes

Differences in race_ethnicity given schid
Index: Theil's H

H
0.3505

We can use the addindex () option to also compute, in one call, the other four indices
that follow the same notion of segregation. Moreover, with the fast option, the com-
putation of the index speeds up by using the community-contributed command ftools,
which accepts numeric variables only (race and school). Finally, we use the format ()
option to obtain a more precise display of results.

. dseg theil race, given(school) addindex(mutual n_mutual diversity atkinson)
> format (%7.6f) fast

Decomposable Multigroup Segregation Indexes

Differences in race given school
Indexes:
Theil's H, Mutual Information, Normalized Mutual Information,
Relative Diversity, Symmetric Atkinson

H M NM R A
0.350479  0.467817  0.240410 0.351159 1.000000

These results provide alternative quantitative answers to the following question: To
what extent does the race share of a random public school differ from the racial compo-
sition of the whole student enrollment body of the U.S. public schooling system? The
answers are measures of race segregation in schools.

Strictly speaking, these segregation indices cannot be compared with each other.
Entropy-based indices are nonetheless related. The value of NM simply indicates that
M is 0.4678/{log(7)} x 100 = 24% of its maximum. The ratio between M and H, or
Hgrouplunit, is the entropy of race, 0.467817/0.350479 ~ 1.33. Also, note the value of 1
for A, or Agroup|unit, Which, recall, is introduced in this article for the first time. In this
context, such an index proves to be a poor choice: whenever a race group is absent from
one school, it contributes with its maximum (1/G) to segregation. Because no race is
present in every single school, the index reaches its maximum value of 1.

If we revert the placement of the variables and write instead school, given(race),
then dseg computes the five indices that follow the Picooljrace nOtion of segregation.
We do so in the next example, which also showcases the use of the frequency weights
(student_count) available in the 2017 CCD aggregated data. With such data, the fast
option is no longer necessary.



536 Computing decomposable multigroup indices of segregation

. restore

. dseg theil school [fw=student_count], given(race)
> addindex(mutual n_mutual diversity atkinson) format(%9.6f)

Decomposable Multigroup Segregation Indexes

Differences in school given race
Indexes:
Theil's H, Mutual Information, Normalized Mutual Information,
Relative Diversity, Symmetric Atkinson

H M NM R A
0.042076  0.467817  0.240410 0.000024 0.735506

These indices give a quantitative answer to the following question: To what extent does
the distribution across schools of each race group differ from the school distribution
of all the students taken together? Their answers are measures of school segregation
by race. Moreover, with the exception of the M index and its normalized version NM,
which follow the two notions of segregation simultaneously, their values differ from those
whose computation follow the Pr,ce|school NOtiON.

We appreciate that no two values are equal. Note the comparatively large value
of Ajnit|group, the comparatively small values of Hpit|group, and especially Rynit|group-
The large value of Ayyitjgroup (0.735506) reflects that the seven racial categories in the
2017 CCD are simultaneously present in only 22.83% of U.S. schools. This index would
obtain a value of 1, as Agrouplunit does, were we to ignore these most racially diverse
schools. In short, both Atkinson indices are sensitive to zeros, a concern that Frankel
and Volij (2011) originally raised with regard to the standard A yit|group-

As for Hpit|group and Rypit|group, their lower value with respect to Hgyouplunit and
Rgroupunit Teflects that they are normalized by the entropy and diversity functions
for schools, rather than by the entropy and diversity functions for races, which are
unsurprisingly smaller.

All indices obtained so far are direct measures of segregation. However, the object
of study, school racial segregation, has a multilevel nature; this entails that alternative
sources of segregation may mix up in the segregation that the direct measures capture.

4.5 Intermediate usage: One-way unit decompositions

Often, policymakers and academics debate the relative merits of local- or district-level
policies for ameliorating school racial segregation. Rivkin (1994) argues that local poli-
cies can achieve little because they are capped by the upper bound set by race segrega-
tion in school districts. Allison (1978) and Reardon and Firebaugh (2002) warn of the
dangers of using nondecomposable indices in this context. One such danger is the con-
struction of statistical artifacts leading to misleading results. For example, if we were to
directly measure school racial segregation at the national level with a nondecomposable
index, we may record that it grows over time. Nevertheless, we may also simultane-
ously find that the school racial segregation of all districts declines. Such an outcome
is possible whenever increases in district racial segregation are sufficiently large.



D. Guinea-Martin and R. Mora 537

To address this type of concern, we partition the units of analysis (schools) into
clusters (districts). In this sort of setting, where units are nested within clusters, the
two levels have a hierarchical relationship and, using the Mora and Ruiz-Castillo (2003)
expression, indices can be decomposed only one way: from the segregation fueled by
the broader clusters to the segregation stemming from the final organizational units. In
the terms of our example, with decomposable indices, we can evaluate the impact of
policies targeted to race segregation in schools per se, net of the segregation brought
about by the geographical location of the schools, be it districtwise or otherwise.

Using (1) on page 525 as a template, let school districts be the clusters and schools
the units. Next we present dseg’s syntax for computing the three terms in the equation
for the following Pyroup|unit indices: M (which is SUD), NM (which is SUD in this example
because G < N), and Hgpoupjunit (Which is WUD).

. dseg mutual race [fw=student_count], given(school)
> addindex(n_mutual theil) within(district)

Decomposable Multigroup Segregation Indexes

Differences in race given school

Indexes:

Mutual Information, Normalized Mutual Information, Theil's H
Between/Within district decomposition

M M_B M_W NM NM_B NM_W H H_B H_W
0.4678 0.3836 0.0842 0.2404 0.1971 0.0433 0.3505 0.2874 0.0631

In this decomposition, the total of each index is equal to the direct measurement
of race segregation in the units already computed (see the output on page 535). As
mentioned above, the point of the decomposition is to assess what amount of the original
direct measurement originates from 1) the broader level within which units are nested
(captured by the between term, stored in the variables with the _B suffix) and 2) the
units per se (captured by the within term, stored in the variables with the _W suffix).
As fractions of the overall index, the between and within components are equivalent
because NM and Hgoup|unit are normalizations of M: 38.36/46.78 = 19.71/24.04 =
28.74/35.05 = 0.82 and 8.42/46.78 = 4.33/24.04 = 6.31/35.05 = 0.18. In other words,
only 18% of the value produced by the naive measurement of school racial segregation
can be unambiguously attributed to the racial segregation in schools. Otherwise put,
the majority of the initial measurement captures race segregation in districts.

We can also obtain the decomposition for the P,jtjgroup indices that are unit de-
composable: M and Aypit|group (Which is WUD).

. dseg mutual race [fw=student_count], given(school)
> addindex(alt_atkinson) within(district)

Decomposable Multigroup Segregation Indexes

Differences in race given school
Index: Mutual Information

Differences in school given race
Index: Symmetric Atkinson

Between/Within district decomposition

M M_B M_W AltA AltA_B  AltA_W
0.4678 0.3836 0.0842 0.7355 0.5006 0.2349
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Two things are worth noting. First, Aunitjgroup 15 Atkinson’s unit-decomposable
index. Given that we set the Pgoupjunit notion of segregation by choosing race in
varlist! and school in wvarlist2, we need to use alt_atkinson in option addindex()
to compute it. Second, the within-term amounts to almost 32% of the total, a greater
share arguably due to this index’s sensitivity to zeros.

4.6 Intermediate usage: Two-way unit decompositions

In contrast to the one-way setting described above, there are occasions when the vari-
ables defining the clusters and the units can interchange their roles because they have a
nonhierarchical relationship. Then the index can be decomposed in two ways, depend-
ing on which variable plays what role. The variables state and cbsa provide a case in
point. We can first partition schools into CBSAs; then we can further partition CBSAs
into states. In this partitioning sequence, CBSAs are the units that lie within or inside
states, the clusters. However, recall that, as explained in the data section, some CBSAs
include multiple states. One example is the Washington, DC Metropolitan Area, which
includes the federal district of Washington, DC, and parts of the states of Maryland,
Virginia, and West Virginia. Hence, it is possible to first partition schools into states
and then states into CBSAs. In this partitioning sequence, states are the units that lie
within CBSAs, the clusters.

When the sources of segregation on the unit dimension can interchange roles, the
unit space over which segregation is measured comprises all combinations of clusters and
units. In our example, the overall mensurable concept of segregation is not segregation
in either the 867 CBSAs or the 51 states, depending on which way we perform the
decomposition. Instead, in both decompositions the final units are the 1,055 areas that
are defined by their CBSA and state in the 2017 CCD.

A user who was aware of this nuance in the data could manually generate a variable
for all CBSA and state combinations. The user could then call dseg, or any other
suitable Stata command, on the new variable. With dseg, the user could simply enter
the original variables in varlist2, and the command would internally and automatically
combine their categories. For Hgyoupunit:

. dseg theil race [fw=student_count], given(state cbsa)
Decomposable Multigroup Segregation Indexes

Differences in race given state cbsa
Index: Theil's H

H
0.1695

Moreover, the command dseg with the within() option internally computes the Carte-
sian product of the categories of the variables 1) in warlist2 and 2) in the within()
option, that is, defining the clusters. Hence, the decomposition where CBSAs are the
units that lie within states can be implemented as follows:
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. dseg theil race [fw=student_count], given(cbsa) within(state)
Decomposable Multigroup Segregation Indexes

Differences in race given cbsa
Index: Theil's H
Between/Within state decomposition

H H_B H_W
0.1695 0.1128 0.0568

Denoting states by ¢, we can write the three terms in the decomposition carried out by
dseg above as follows from left to right:

Hrace\CBSAXstate = Hrace|state + E thrace|CBSA(t)
t

H.ace|0BSA xstate Stands for the segregation construct being measured, race segregation
in states and CBSAs. Of its value (0.1695), only 0.0568, or 0.0568,/0.1695 x 100 = 33.51%
can be attributed to race segregation in CBSAs, net of the effect of states.

What proportion of H,,ce|cBSA xstate Can be attributed to race segregation in states,
net of CBSAs? To answer this question, (3) shows the alternative within-CBSAs decom-
position:

Hrace\CBSAXstate = Hrace\CBSA + Z wcHrace|state (C) (3)
c
Implementing (3) in dseg is simply a matter of specifying state in varlist2 and cbsa
as the clusters within which race segregation in states is measured:

. dseg theil race [fw=student_count], given(state) within(cbsa)
Decomposable Multigroup Segregation Indexes

Differences in race given state
Index: Theil's H
Between/Within cbsa decomposition

H H_B H_W
0.1695 0.1574 0.0121

The between term in this decomposition, 0.1574, captures only race segregation in
CBSAs and underestimates the real amount of total segregation that there is in the
1,055 areas that are defined by their CBSA and state. The within term, 0.0121, captures
race segregation in states net of CBSAs. It stands in stark contrast to the value of 0.1128
for race segregation in states reported as term H_B in the decomposition where states
are the clusters.

Moreover, we can now conclude that, net of CBSAs, states generate only 100 X
(0.0121/0.1695) = 7.14% of H,ace|cBSA xstate- Interestingly, the sum of the net contri-
butions of states and CBSAs does not equal the value of Hyaco|cBSA xstate- Lhis topic is
discussed in subsection 4.9.3.

4.7 Intermediate usage: One-way group decompositions

Instead of partitioning units into clusters, suppose we are interested in a partition of
G demographic groups into L supergroups. For example, we could partition the seven
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races in the 2017 CCD into whites and minority students. In this way, we could inquire
into what is the contribution to overall school segregation by race of 1) the segregation
between white and minority students and 2) the segregation among minorities. With
the 2017 ccD, four indices can be decomposed along these lines: Agroup|unit; Hunit|group:
Runit|group (because they are WGD), and the M index (because it is SGD). For brevity,
we focus on the last in the example below.

We have shown that the value of the M index of school segregation by race is
0.467817. Let us denote by 1) Mmincrity versus white 0 gohool segregation between mi-

school .
nority and white students and by 2) MJnotties the school segregation among the six
minority groups. Note that in this example, there is one supergroup that consists of
only one group, whites. By necessity, school segregation by race among whites is zero.

Hence, we can do without this case in the ensuing notation of the within term in (4):

_ minority versus white minorities
M = Mschool + p°min0FityMschool (4)

Deminority 1S the minority share in the population. After we create a new dummy variable
for minority race group (mrg), the following use of dseg will produce the intended
output: wvarlist! includes the variables that define the units (school), varlist2 consists
of the variables that define the groups (race), and the within() option contains the
supergroup variable (mrg).

. recode race (1/6=1) (7=2), generate(mrg)
(829207 differences between race and mrg)

. dseg mutual school [fw=student_count], given(race) within(mrg)
Decomposable Multigroup Segregation Indexes

Differences in school given race
Index: Mutual Information
Between/Within mrg decomposition

M M_B M_W
0.4678 0.2372 0.2306

Interestingly, only about half (0.2372) of school racial segregation (0.4678) comes down
to the segregation of whites from minority students. The other half (0.2306) originates
from segregation among the races in the minority category.

Note that using the command below does not yield the desired outcome:

. dseg mutual race [fw=student_count], given(school) within(mrg)
Decomposable Multigroup Segregation Indexes

Differences in race given school
Index: Mutual Information
Between/Within mrg decomposition

M M_B M_W
0.9229 0.6922  0.2306

This syntax creates a unit space, that is, organizational units, made of all the combi-
nations of school and mrg: it splits schools into minority-only and white-only schools
and measures race segregation in those two types of schools. Given that the population
shares of whites and minorities are close to 50% and we are using the mutual infor-
mation index, by construction the between term reports almost maximum segregation
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between whites and minorities: 0.6922 versus log(2) ~ 0.6931. The within term remains
unchanged, 0.2306, because it still measures segregation among the races in the minority
category only.

4.8 The suboption components: Your way to weights and local in-
dices

As mentioned already, with the within() option, the user specifies the clusters or
supergroups within which the user wishes to measure segregation. One of the novelties
that the dseg command brings to the stock of segregation commands in Stata is the
reporting of the components (that is, the weights and the indices) that make up the
within term. The suboption components asks dseg to report the weighting factor and
the index of segregation for each cluster or supergroup. The following example illustrates
its use with Aypit|group, Atkinson’s unit-decomposable index. We focus on the first five
states (by alphabetical order) to simplify the illustration. The goal is to show how
unit-decomposable indices measure school segregation by race controlling for states.
With this example, we also illustrate the options for 1) replacing the current dataset
in memory with a new dataset storing the new variables (clear) and 2) not displaying
results on the screen (nolist).

. preserve

. keep if (state==1) | (state==2) | (state==4) | (state==5) | (state==6)
(754,866 observations deleted)

. dseg atkinson school [fw=student_count], given(race)
> within(state, components) clear nolist

(output omitted )

With this syntax, dseg replaces the original dataset with a new one that contains as
many observations as there are clusters, that is, the five states of this example.

The data are automatically sorted by the cluster-defining variable (state in the
example). Next we display the resulting five observations in the current file:

. list, abbreviate(20)

state A A_B AW A_w Al

Alabama 0.6381
Alaska 0.6381
Arizona 0.6381
Arkansas 0.6381
California 0.6381

.1738 0.4643 0.0471  0.7793
.1738 0.4643 0.0220 0.3858
.1738  0.4643 0.1150 0.4991
.1738 0.4643 0.0412 0.7597
.1738 0.4643 0.6009 0.5499

G WN -
[elNeNeNeoNe]

The variables A, A_B, and A_W are constants. They correspond to the total amount
of school segregation by race (A4); the between-state term or state segregation by race
(A_B), which is a measure of how differently the seven races distribute across states; and
the within-state term (A_W), which is the states’ weighted average of school segregation
by race. The components suboption additionally generates two variables. First, the
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variable A_w with the weights for the weighted average in the within term. Second, the
variable A_1, with the local index of school segregation by race in each state. Following
(2), the weighted average of A_1 using A_w as weights results in A_W:

0.4643 = 0.0471 x 0.7793 + 0.0220 x 0.3858 + 0.1150 x 0.4991 + 0.0412 x 0.7597
-+ 0.6009 x 0.5499

4.9 Advanced usage: The fine points

Thus far, we have covered single calls to the command dseg with an increasing level of
complexity. Nevertheless, with this command, we can also design a strategy of multiple
calls to achieve an assortment of results that may deepen the analysis of segregation.

4.9.1 Chained decomposition along the unit dimension

Imagine we wished to resume Rivkin’s (1994) argument as follows: analogous to segre-
gation in school districts that caps the amount of segregation that can possibly exist
in schools per se, it is reasonable to expect in turn that the differential distribution of
races across states caps segregation in school districts.

With decomposable indices, we can control for the effect of multiple levels of geo-
graphical aggregation on school racial segregation, our ultimate object of interest. Using
the relative diversity Rgoupjunit index as an example, we can decompose race segrega-
tion in schools, controlling for districts and states, into 1) a between-state term, STATE,
that measures the level of segregation in states; 2) a within-state term, DISTRICT, that
gauges the average level of segregation in school districts that is not mixed up with
segregation in states; and 3) a within-districts term, SCHOOL, that gauges the average
level of segregation in schools that is mixed up with neither segregation in states nor
segregation in school districts:

Rrace\school = STATE + DISTRICT + SCHOOL (5)

To reach decomposition (5), and denoting states by ¢ and districts by d, consider the
following one-way unit decompositions of the Ry ace|school a1d Rrace|district indices:

Rrace|school = Rrace|district + § wdRrace|sch001(d) (6)
d
Rrace|district = Rrace|state + E thrace\district (t) (7)

t

Rrace‘state captures race segregation in states, Rrace|school(t) captures race segregation
in the schools of state ¢, and Ry ace|school (d) captures race segregation in the schools of
district d. Equation (5) follows from replacing Ryace|district it (6) with the right term in
(7). Then we observe that 1) STATE is equivalent to Ryace[state; 2) DISTRICT is equiva-
lent to Zt thrace\district (t) = Rrace\district - Rrace|state; and 3) SCHOOL is equivalent to

Zd wdRracc\school(d) = Rracc|school - Rracc|district-
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We know the values of all the terms in (5) with two calls to dseg. Ryace|school 18
the total in the second call; STATE is the between term in the first call; DISTRICT is the
within term in the first call; finally, SCHOOL is the within term in the second call:

. restore
. dseg diversity race [fw=student_count], given(district) within(state)
Decomposable Multigroup Segregation Indexes

Differences in race given district
Index: Relative Diversity
Between/Within state decomposition

R R_B R_W
0.2882 0.1087 0.1795

. dseg diversity race [fw=student_count], given(school) within(district)
Decomposable Multigroup Segregation Indexes

Differences in race given school
Index: Relative Diversity
Between/Within district decomposition

R R_B R_W
0.3512 0.2882 0.0630

Hence,

Riace|school = STATE + DISTRICT + SCHOOL (8)
0.3512 = 0.1087 + 0.1795 + 0.0630

In words, the value of school race segregation in states is 0.1087, but it is
{(0.1795/0.1087) — 1} x 100 = 65.13% larger in districts. Finally, once we control
for the effect of states and districts, race segregation in schools per se accounts for only
(0.0630/0.3512) x 100 = 17.94% of the measurement.

4.9.2 Chained decomposition along the unit and group dimensions

Let us revisit the example in subsection 4.7. There we studied the segregation of whites
from minorities and among minorities. Let us suppose further that we wanted to con-
trol for the differential race shares in states and in school districts, as in the previous
subsection 4.9.1. For this task, M is the only instrument in the toolbox because it
is additively decomposable in partitions of units and groups. It takes three steps to
accomplish this goal.

The first two steps replicate (8). With the M index,

M = STATE —+ DISTRICT + SCHOOL
= MESS + > praMESS () + > pae MIGS(d) (9)
t d
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The term M3 (d) corresponds to the M index of race segregation in the schools of
district d. As such, it can be decomposed as in (4) into a between term that measures
segregation between minority and white students and a within term that captures school
segregation that arises among the minorities. This is the third step:

;3§§01(d) — Mminority versus white(d) +pminority(d) ~ Mminorities(d) (10)

school school
Now we join (9) and (10):
M = M;taactee + ZptOMdr?;terict (t) + ZdeMSI:}i:,zﬁity versus white(d) + Zpd-Msncl}i;r;Z?ties(d)
t d d

= STATE + DISTRICT ~ + MINORITY VERSUS WHITE +  MINORITIES (11)

The novelty with respect to (8) lies in the last two terms. The term MINORITY VERSUS
WHITE captures minority—white segregation in schools, controlling for districts. The
term MINORITIES identifies the contribution to race segregation in schools that comes
from the segregation among minorities, controlling for districts. With three calls to the
dseg command, we follow these three steps in Stata.

. dseg mutual race [fw=student_count], given(district) nolist
> within(state) saving(stepl,replace)

(output omitted )

. dseg mutual race [fw=student_count], given(school) prefix(step2) nolist
> within(district, components) saving(step2,replace)

(output omitted )

. dseg mutual school [fw=student_count], given(race) prefix(step3) nolist
> within(mrg) by(district) clear

(output omitted )

The within(state) option of dseg in the first call identifies the first two terms on the
right hand side of (9). The saving(stepl, replace) option stores in a new dataset
(named stepl.dta) the following variables: 1) M stands for the sum of STATE and
DISTRICT in (11); 2) M_B for STATE; and 3) M_W for DISTRICT. The resulting stepl.dta
has one observation with national aggregates.

The second call identifies M and, thanks to the within(districts, components)
option, also pge in (11). The prefix(step2) option avoids naming conflicts with vari-
ables generated in the other two calls. The saving(step2, replace) option stores five
variables in step2.dta. However, we need only two of the five to continue obtaining the
values of the terms in (11): step2M, which stands for M in (11), and step2M_w for pye.
step2.dta has 16,768 observations, one for each district. Variable step2M is constant
because it is the nationwide index.
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Thanks to the by (district) option, the third call to dseg generates the three terms
in (10) from left to right in every district. The clear option replaces the original dataset
with the new dataset that has 16,768 observations. Next, we merge the current dataset
with step2.dta, which also includes one observation per district. We can perform a
one-to-one merge directly because dseg automatically sorts these datasets by district
when it creates them.

. merge 1:1 district using step2.dta
(output omitted )

For each district, we calculate the value of the term pgq MmO versus white gy

by multiplying step2M_w and step3M_B. Likewise, we obtain the value of the term
Pae MinOMEES () with the product of step2M_w and step3M_W.

. generate MINORITIES=step2M_w * step3M_W
. generate MINORITY_WHITE=step2M_w * step3M_B

Next, we sum these two products over all districts with the collapse command and its
sum option. With this operation, we obtain the last two terms in (11). Recall that the
variable step2M has the value of M in (11). We keep this constant by using the mean
option in the collapse command.

. collapse (sum) MINORITIES MINORITY_WHITE (mean) M=step2M

Finally, we merge the only observation in the current data with stepl.dta, where
the values of STATE and DISTRICT are stored. We thereby obtain all the terms in (11),
which we rename suitably for displaying the results:

. merge 1:1 _n using stepl.dta
(output omitted )
. rename M_B STATE
. rename M_W DISTRICT
. list M STATE DISTRICT MINORITY_WHITE MINORITIES, abbreviate(15)

M STATE DISTRICT MINORITY_WHITE MINORITIES

1. 0.4678 0.1505 0.2331 .0385773 .0456264

Racial segregation in states and districts accounts for around (0.1505+0.2331)/0.4678 x
100 = 82% of race segregation in schools. The contribution to school racial segregation
of segregation among minorities only, controlling for the segregation that arises between
minorities and whites, and for the segregation due to states and districts, is 0.0456264
or 0.0456/0.4678 x 100 = 9.75%. Moreover, in subsection 4.7 we found that school
segregation among minorities accounts for about half the segregation fueled by the
seven race groups. We can now conclude that this result holds after controlling for
states and districts: 0.0456/(0.0386 + 0.0456) = 0.54.

This is only an example. The M index can be decomposed in as many levels as
deemed useful. By levels, we mean any arbitrary combination of partitions in the
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unit and group dimensions. Then the analyst may use dseg to implement the desired
multilevel decomposition with only a few command lines.

4.9.3 The interaction term

For brevity, in this section we consider only two-way unit decompositions in unit-
decomposable indices. However, its arguments apply to two-way group decompositions
and to two-way decompositions that combine a unit and a group partition. Let discrete
variables d; and dy be two unit-level characteristics. By partitioning the units along the
levels of dq, we identify a within term that captures the part of the overall segregation
that is exclusively due to dy: the within term would become zero in the hypothetical
case that all segregation within each cluster was eliminated. Moreover, vice versa: the
partition defined by the levels of do identifies the segregation exclusively due to d.

With the two decompositions, the segregating force of each factor in exclusivity can
be fairly appreciated because the influence of the other factor is controlled for. This
we have repeated on numerous occasions in the article. However, thus far we have not
mentioned that the common metric upon which we weigh the relative standing of each
factor allows assessing whether the two factors interact, that is, whether there is some
part of the segregation they jointly produce that cannot be unambiguously attributed to
any of the two factors by itself. The interaction term I can be defined as the segregation
that is not unambiguously attributable to either d; or dz. Mathematically, denoting by
1) ¥ the overall segregation that is jointly produced by the two factors, 2) W% the
segregation exclusively due to d, and 3) U? the segregation exclusively due to do, then
I is equal to whatever remains of the overall segregation once we subtract from it all
that is uniquely attributable to each factor:

I=V— (0% 4 uh)

To illustrate the role that the interaction term may play in the case of unit decomposi-
tions, let us compare the exclusive contributions given by the within terms of the two
decompositions in subsection 4.6: 0.0568 versus 0.0121; that is, the racial mix of CBSAs
yields almost five times more segregation than it does in states. In percentages, CBSAs
account, per se, for 100 x (0.0568,/0.1695) = 33.51% of the overall segregation that there
is in CBSAs and states; instead, states generate only 100 x (0.0121/0.1695) = 7.14% of
it.

Recall we denote overall race segregation in CBSAs and states by Hace|oBSA xstate 111
subsection 4.6. Now we denote the exclusive contribution of states to race segregation in
states and CBSAs by HT = e WeH ace|state(€) and the exclusive contribution of CBSAs
to race segregation in states and CBSAs by H® = >, wyHyace|cpsa (t); the interaction
term I is

I= Hrace|CBSA><state - {HT + HC}

= 0.1695 — (0.0121 + 0.0568)
= 0.1006
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The interaction accounts for 100 x (0.1006/0.1695) ~ 59.35% of the race segregation in
CBSAs and states. Substantively, this large chunk of race segregation in this instance
of the Hgrouplunit index stems from race differences in the student enrollment body in
the geographical units defined by the combination of a CBSA category (including rural)
and a state. Such racial differences are greater, in absolute and relative terms, than the
ones observed when the units are defined by either the CBSA classification within states
or state boundaries within CBSAs.

The interaction term can be negative. For example, Guinea-Martin, Mora, and
Ruiz-Castillo (2015) report with the M index a small but negative interaction term that
emerges from the joint effect of race and sex on occupational segregation. It reflects that
each variable, controlling for the other, generates a more informative distribution than
when it is measured directly: sex is more informative about someone’s occupation when
race is controlled for than when we observe only the distribution of women and men in
occupations. Likewise, race is more informative when sex is controlled for. Why? The
two factors are mixed up or confounded, and they pull the occupational distribution
in opposite directions. Not controlling for one of them waters down the impact of the
other.

4.9.4 Survey data: Bootstrapping and simulation techniques

Bias correction and confidence limits. Thus far, we have used census data
that cover the population of interest comprehensively. Consequently, proportions pyg
can be interpreted as probabilities Pr(unit = n,group = g¢). For sample data, as the
number of observations increases and the experiment of observing individuals’ unit n
and group g is continued indefinitely, the sample frequencies converge in probability to
the corresponding probabilities: ppgq 2s Pr(unit = n, group = g) (Bulmer 1979).

By contrast, survey-based measurements of segregation are finite-sample estimates
and, therefore, biased and subject to sample variability (Deutsch, Fliickiger, and Silber
1994; Herranz, Mora, and Ruiz-Castillo 2005). Bootstrap methods can help estimate
bias and basic bootstrap confidence intervals for segregation indices (Ransom 2000;
Allen et al. 2015). Command dseg with the option bootstraps() implements the
nonparametric type of bootstrap. It draws random samples with replacement from the
data. It then creates a new dataset with index values calculated on each bootstrap
sample.

Next we simulate samples with the 2017 CCD census of the student enrollment body
in U.S. public schools. With these samples and the bootstraps() option, we show
below that the seriousness of the bias in the estimation of segregation measures varies
with sample size. We also illustrate the computation of bias-corrected indices and basic
bootstrap confidence intervals after using dseg.
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In some contexts, we may find surveys sampled on some of the key variables in
the analysis. For example, school surveys are common. If the sampled schools are
representative of all the schools, then a cluster bootstrap may be appropriate and can
be implemented in dseg with the bootstraps() option and its cluster() suboption
as in bootstraps(#, cluster(varlist)).

However, in the following illustration, we survey students rather than schools. This
replicates a common situation where the analysis is based on survey data. For instance,
gender segregation in occupations is usually measured with labor force surveys of in-
dividuals sampled on households or firms but not on occupations. In this scenario,
typically individuals from all groups and units of interest are sampled. To keep compu-
tation times short, we sample students enrolled in the 1,334 public schools of Alabama,
which happens to be the first state when these are ordered alphabetically. Further as-
sume that our goal is estimating with M the level of race segregation in the 138 school
districts of Alabama. To achieve it, we randomly sample the students. Survey sam-
ples and weights are seldom designed to accurately estimate the joint distribution of
key variables for the analyst, such as school districts and races in our example. Let us
assume that survey weights are provided to estimate, say, the number of girls and boys
in Alabama.

In the 2017 CCD, there are 671,939 students in Alabama. School districts range in
size from 245 to 50,028 students, with an average of approximately 4,869. To illustrate
the basic algorithm, let us consider the bias that arises from a 10% random sample of
the population and 500 bootstrap replications. To sample, we first expand the 2017
CCD:

. drop if student_count==0 | student_count>=.
(output omitted )

. expand student_count
(output omitted )

. sample 10
(output omitted )

. generate survey_count=1

. collapse (sum) survey_count, by(sex race district)

The first command line above ensures that the expanded data contain no observations
with missing or nonpositive values in student_count. The third line randomly samples
10% of the observations. The last line aggregates the data again along the levels of the
relevant variables for the weighting scheme (sex) and for the ensuing analysis (race
and district).

Next, we generate frequency weights (variable weights). They allow the estimation
of the number of girls and boys in the Alabamian public school system with a 10%
sample of its population. Let weights.dta (sorted by sex) contain the variable target
with the total count of students in the population by sex. The weights are equal to
the population number of girls and boys per survey observation, rounded to the closest
integer.
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. egen survey=sum(survey_count), by(sex) // # of girls and boys in the survey
. sort sex
. merge m:1 sex using weights.dta

(output omitted )

. generate weights=round(survey_count*(target/survey))

Before calling dseg, we expand the sample data with these weights, or else the option
bootstraps() will not work.

. expand weights
. dseg mutual race, given(district) bootstraps(500) saving("boots.dta")

(output omitted )

The new data file boots.dta has 501 observations and includes two variables: 1) bsn
identifies the bootstrap sample (bsn==0 refers to the original survey sample); 2) M is the
index value. Data are automatically sorted by bsn. Hence, M[1], the first observation
in boots.dta, corresponds to the M index computed with the original survey sample.

A bootstrap estimate of the expectation of the M index for the survey sample is the
average of M in the 500 bootstrap samples: 50071 x Ziilz M[b]. Following Davison
and Hinkley (1997), we can estimate the bias in M[1] as

501
Bias = 500 X 2 MLb] — MI[1]

The bootstrap bias-corrected estimate of M is then obtained as

M,, = M[1] — Bias
501

2% M[1] = oo % > M[b] (12)

The sample variance of the 500 M values obtained from the bootstrap samples is a
consistent estimator of the variance of M[1]. Unfortunately, the variance is of limited
value because the normal approximation of M[1]’s distribution is likely to be poor and
so is that of any segregation index computed with a survey sample. Asymptotic results
are obtained under the assumption that the number of observations goes to co (Allen
et al. 2015). Thus, bootstrap quantile estimates likely are a better strategy for obtaining
confidence intervals, provided that the number of bootstrap replications is large enough.
The basic bootstrap 90% upper confidence limit for J/W\bc is

M = My, — (M[c] — M[1])

where c¢ is the observation number marking the first decile in the ascendingly ordered
distribution of {M[b] }3%,.

With these samples and the bootstraps() option, we argue below that the serious-
ness of the bias in the estimation of segregation measures varies with sample size. We
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also illustrate the computation of bias-corrected indices and basic bootstrap confidence
intervals after using dseg.

To show the effect of sample size on the estimation of segregation measures with
survey data, we draw one sample for each sampling level set at 5 percentage-point
intervals in the range from 5 to 95% of the population. Panel (a) in figure 1 shows the
results of this analysis. Unsurprisingly, the survey-based index value is systematically
larger than both the population-based index and the bias-corrected estimate. However,
bias correction is not satisfactory. It is insufficient for small sample sizes and unnecessary
for large sample sizes. Moreover, the true segregation level is not within the confidence
interval for sample sizes smaller than 15%.

(a) 7 race groups and 138 districts (b) 3 race groups and 128 districts
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Figure 1. Bias and variance in sample-based segregation indices: Race segregation in
the school districts of Alabama.

NOTE: Bias correction and basic bootstrap confidence limits obtained with 500 boot-
strap replications (random sampling with replacement). The Population index is the
M index obtained with the complete 2017 ¢CD for Alabama: 0.2311 with 7 race groups
and 138 districts; 0.2007 with 3 race groups and 128 districts. The Survey estimate is
obtained from a simulated random sample with weights based on the ratio of the popu-
lation number of boys and girls to the corresponding survey figures. The Bias-corrected
estimate is the index obtained by applying (12).

What is best to do, then? A simple strategy would trade off the less ambitious
facets of our research goals for a more robust analysis. For example, in Alabama,
almost 90% of students are either white (54.6%) or black (32.8%). Correspondingly,
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our analyses by race can be based on a partition of three supergroups: white, black,
and other. Trading the original classification with seven categories for its simplified
ternary makes the population-based index of race segregation in schools fall by only
(0.2311 — 0.2035)/0.2311 x 100 = 12%.

Nevertheless, small districts are a potential source of small-cell bias. Merging those
with fewer than 1,000 students with adjoining districts of a similar racial profile re-
duces their number from 138 to 128.* Altogether, aggregating by both race groups and
districts lowers the population-based index by (0.2311 — 0.2007)/0.2311 x 100 = 13%,
compared with its original level.

The aggregation of race groups and districts allows us to obtain acceptable estimates
with sample sizes of 10% of the population [see panel (b) in figure 1]. The lesson here
is that decomposable indices are useful for analyzing survey data that may give rise to
small-cell problems. (See Herranz, Mora, and Ruiz-Castillo [2005] for an application of
this approach to gender segregation in occupations and industries with the M index.)

Estimation of random segregation. Suppose that T is an estimate of index ¥
that is obtained with a small sample of the population. ¥ can be positive even if ¥ =0
because of integer constraints (each individual must be uniquely allocated to one unit)
and sample variation in small units. To discard this possibility, Boisso et al. (1994)
propose calculating the value of the segregation index for repeated samples j = 1,...,J
under the null hypothesis of no segregation, \Ifz‘j). They also propose carrying out an
approximate randomization test. Generally, randomization tests are used to test the
null hypothesis that one set of variables is unrelated to another. Random shuffling of
one of the sets ensures that there is no relation between the two sets. Hence, in the
presence of a true relation, the value of the statistic for the unshuffled data should be
unusual (Noreen 1989).

The distribution of the index under the null can be estimated with the empirical
distribution function obtained from resampling. The test implies the computation of
the p-value as (1+#{V{,) > U})/(J + 1), where #{A} means the number of times the

event A occurs (Davison and Hinkley 1997).

Implementing this approximate randomization test with the dseg command requires
individual-level data and writing a few lines of code. Next is an example with 999
replications based on the 10% Alabamian sample data that we created earlier:

. expand weights
(output omitted )
. dseg mutual race, given(district) random(999) clear

(output omitted )

4. We merge Sheffield City with Tuscumbia City; Midfield City with Fairfield City; Greene County
with Sumter County; Linden City with Marengo County; Acceleration Day And Evening Academy
Charter Agency with Mobile County; Lanet City with Chambers County; Barbour County with
Bullock County; Daleville City with Ozark city; and Elba City with Enterprise City and Coffee
County.
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. generate count=sum(M>=M[1]) in 2/1
(output omitted )

. generate pvalue=(l+count)/_N
(output omitted )

. list pvalue in 2, clean noobs

pvalue
.001

The null hypothesis of no segregation is rejected if the p-value is less than or equal to
the specified rejection level for the test. In this example, p-value = 1/1000 because the
segregation index of the unshuffled data is never smaller than the index in any of the
999 null samples. Hence, the null is rejected at conventional significance levels.

5 Conclusions

In this article, we presented the community-contributed command dseg. The command
computes eight indices of segregation that are multigroup and decomposable. These are
useful qualities when segregation stems from multiple groupings and levels of organiza-
tion in the units. Six of the eight indices follow one of two notions on segregation. The
mutual information index and its weak normalization follow both. The most common
notion in the literature compares the group mix in each unit with the overall mix. The
other notion compares the group distribution across units with the overall distribution.
The syntax of dseg aids the user in being explicit about what notion the index cho-
sen follows and, correspondingly, about the actual meaning of “segregation” in their
research.

The command dseg also provides the following advantages to users. First, it com-
putes one- and two-way decompositions intuitively, directly, and securely. Second, it can
give the weights and local indices that are used in the calculation of the within term
of the decomposition. These quantities can then be used in chained decompositions.
Third, it accepts frequency weights for working with aggregate or sample data. Fourth,
it helps deal with problems arising from small samples in the estimation of the indices
through bootstrapping and approximate randomization tests.

The findings from our illustration of the usage of dseg with U.S. school enrollment
data show that decomposable multigroup indices are a resourceful tool for analyzing
segregation with a multilevel organization of groups or units, or both. For example,
we find that 1) the contribution to race segregation in schools of segregation among
minorities accounts for a sizable portion of the total, and this fact remains after con-
trolling for the differential race shares in states and districts; and 2) only a small share
of school racial segregation can be unambiguously attributed to the segregation of races
in schools, net of state and district.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3
. net install st0682 (to install program files, if available)
. net get st0682 (to install ancillary files, if available)
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