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Abstract. In modern multivariate statistics, where high-dimensional datasets
are ubiquitous, learning large (inverse-) covariance matrices is imperative for data
analysis. A popular approach to estimating a large inverse-covariance matrix is
to regularize the Gaussian log-likelihood function by imposing a convex penalty
function. In a seminal article, Friedman, Hastie, and Tibshirani (2008, Biostatis-
tics 9: 432–441) proposed a graphical lasso (Glasso) algorithm to efficiently esti-
mate sparse inverse-covariance matrices from the convex regularized log-likelihood
function. In this article, I first explore the Glasso algorithm and then introduce
a new graphiclasso command for the large inverse-covariance matrix estima-
tion. Moreover, I provide a useful command for tuning parameter selection in the
Glasso algorithm using the extended Bayesian information criterion, the Akaike
information criterion, and cross-validation. I demonstrate the use of Glasso using
simulation results and real-world data analysis.

Keywords: st0685, graphiclasso, graphiclassocv, graphiclassoplot, datafromicov,
compareicov, graphical lasso, graphical models, inverse-covariance matrix

1 Introduction
Recently, applications with datasets where the number of variables is higher than the
number of observations are prevalent. The critical challenge in this setting is to develop
a method that incorporates the complex relationships present in the dataset. Whereas
the entries of a covariance matrix quantify pairwise or marginal dependence, those of
the precision or inverse-covariance matrix specify multivariate relationships among the
variables in a p-dimensional random vector X = (X1, . . . , Xp)

t ∈ Rp with a positive-
definite covariance matrix Σ. More precisely, when X follows a Gaussian distribution, a
zero off-diagonal entry of Ω = Σ−1, ωjk = 0, implies that Xj and Xk are conditionally
independent given all other variables (Whittaker 1990). When the number of observa-
tions n is less than the number of variables p, it is reasonable to impose structure or
regularize Ω directly in the search for sparsity (Banerjee, El Ghaoui, and d’Aspremont
2008; Friedman, Hastie, and Tibshirani 2008); see Pourahmadi (2013) for an overview.

Meinshausen and Bühlmann (2006) impose sparsity on Ω by fitting a lasso model
(Tibshirani 1996) to each variable, using the rest of the variables as predictors. Then, if
either the estimated coefficient of variable i on j or the estimated coefficient of variable
j on i is nonzero, the ωij element is estimated to be nonzero. Banerjee, El Ghaoui, and
d’Aspremont (2008) and Friedman, Hastie, and Tibshirani (2008) regularize the log-
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likelihood function by imposing an `1 penalty on the elements of Ω. The graphical lasso,
proposed in Friedman, Hastie, and Tibshirani (2008), uses the block coordinate descent
algorithm to estimate sparse inverse-covariance matrices from the regularized likelihood
function. The word “graphical” in graphical lasso (Glasso) characterizes the salient
relationship between the inverse-covariance matrix and undirected graphical models. In
particular, the absence of the edge between the Xi and Xj variables corresponds to the
zero entry of the inverse-covariance matrix ωij (for example, see Whittaker [1990]). I
illustrate this equivalence in section 4.

This article relies on the Glasso algorithm to introduce the graphiclasso command
in Stata. Moreover, I provide the graphiclassocv command for selecting tuning pa-
rameter λ using the extended Bayesian information criterion (eBIC) (Foygel and Drton
2010) and the cross-validation (CV) criterion.

The remainder of the article is organized as follows: Section 2 introduces the graph-
ical lasso algorithm and methods for selecting a tuning parameter. Section 3 provides
syntax for the graphiclasso and graphiclassocv commands. Section 4 contains nu-
merical studies. Section 5 concludes with a discussion. The appendix contains syntax for
two additional commands that are used to generate multivariate Gaussian data from
the random inverse-covariance matrix with a prespecified sparsity level and compare
the true inverse covariance with the estimated inverse-covariance matrix in terms of the
true-positive rate (TPR), false-positive rate (FPR), and true-discovery rate (TDR).

2 Glasso
We assume sample X1, . . . ,Xn ∼ Np(0,Σ) with the sample covariance matrix S =
n−1

∑n
i=1 XiX

′
i. Then the log-likelihood function of data can be written as

`(Ω) = log |Ω| − tr(SΩ) (1)

where we ignore constant terms and | · | and tr(·) are the determinant and the trace of
the matrix, respectively. The sparsity in Ω is achieved by imposing an `1 norm penalty
on (1) and maximizing the penalized log-likelihood function

L(Ω) = `(Ω)− λ‖Ω‖1 (2)

where ‖Ω‖1 is the sum of the absolute values of elements of Ω and maximization is
over the space of nonnegative definite matrices. The tuning parameter λ controls the
sparsity level; that is, the larger the λ, the sparser the Ω. Note that the negative of (2)
is a convex function of Ω (Banerjee, El Ghaoui, and d’Aspremont 2008) and the global
maximum is achievable.

From Karush–Kuhn–Tucker conditions, the subdifferential (Bertsekas 2016, sec. B.5)
for maximizing (2) is

Ω−1 − S− λΓ = 0 (3)

where the γij element of the subgradient matrix Γ takes the following form: γij =
sign(ωij) if ωij 6= 0 and γij ∈ [−1, 1] if ωij = 0.
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Relying on the framework developed in Banerjee, El Ghaoui, and d’Aspremont
(2008), Friedman, Hastie, and Tibshirani (2008) show that Ω and its inverse W = Ω−1

can be iteratively estimated by solving lasso regression one row and column at a time.
To illustrate, I discuss the algorithm by focusing on the last row and column.

The ingenuity of the algorithm follows from exploiting the partition of W and its
inverse Ω. In particular, [

W11 w12

wt
12 w22

] [
Ω11 ω12

ωt
12 ω22

]
=

[
I 0
0t 1

]
(4)

and from (4)
w12 = −W11

ω12

ω22
= W11β (5)

where β = ω12/ω22. After a similar partition of (3), the corresponding upper right
block can be written as

w12 − s12 − λγ12 = 0 (6)

After substituting (5) into (6), we obtain

W11β − s12 + λsign(β) = 0 (7)

where we used the fact that β and ω12 have opposite signs. After some algebra, Fried-
man, Hastie, and Tibshirani (2008) show that (7) is equivalent to lasso regression. For
each column, authors resort to the pathwise coordinate descent algorithm (Friedman
et al. 2007) to solve the modified lasso problem (7). Letting V = W11, we can obtain
the closed-form updates by solving for j = 1, 2, . . . , p− 1, . . . until convergence,

β̂j = S

s12j −
∑
k 6=j

Vkj β̂k, λ

 /Vjj

where S(x, λ) = sign(x)(|x| − λ)+ is the soft-threshold operator. I summarize the main
steps of Glasso in algorithm 1.



628 Graphical lasso

Algorithm 1 Glasso
1: Input:
2: S, λ← Sample covariance matrix and penalty parameter
3: Top:
4: Initialize W = S+ λI
5: Repeat for j = 1, 2, . . . , p until convergence
6: (a) Solve the modified lasso problem (7)
7: (b) Update w12 = W11β̂

8: In the final cycle, solve ω̂12 = −β̂ · ω̂22

9: Output:
10: Ω,W

Note that diagonal elements wjj of the solution matrix W are equal to sjj + λ and
can be fixed in line 4 of algorithm 1. Alternatively, one may choose not to penalize
diagonal elements of Ω in (2). In that case, wjj = sjj , and the rest of the algorithm
remains the same. As I show in section 3, the graphiclasso command allows such
flexibility for estimation.

2.1 Tuning parameter selection

In real-world applications, the value of penalty parameter λ is unknown and, tradi-
tionally, is treated as a tuning parameter to be selected from data. The value of λ
is directly connected to the sparsity of Ω; that is, the higher the λ, the sparser the
inverse-covariance matrix Ω. In graphical model literature, λ is intimately related to
the Gaussian graphical model-selection problem (for example, see Hastie, Tibshirani,
and Friedman [2009, chap. 17]). In this section, I discuss two popular methods for
tuning parameter selection: CV and eBIC.

ForK-fold CV, we randomly split the full dataset D intoK subsets of about the same
size, denoted by Dν , ν = 1, . . . ,K. For each ν, D −Dν is used to estimate parameters
and Dν to validate. The performance of the model is measured using the log-likelihood
criterion. We choose the tuning parameter λ as a minimum of the K-fold cross-validated
log-likelihood criterion over the grid

CV(λ) =
1

K

K∑
ν=1

(
−dν log |Ω̂−ν |+

∑
Iν

ytiΩ̂−νyi

)
(8)

where Ω̂−ν is the estimated inverse-covariance matrix using the dataset D−Dν , i ∈ Iν
is the index set of the data in D, dν is the size of Iν , and yi is the ith observation of
the dataset D.



A. Dallakyan 629

For the Glasso, the Akaike information criterion (AIC) has the form

AIC = −n {log |Ω|+ tr (SΩ)}+ E

where E is the number of nonzero off-diagonal elements of the inverse-covariance matrix
Ω.

Similarly, the eBIC criterion, introduced in Foygel and Drton (2010), takes the form

eBICγ = −n {log |Ω|+ tr (SΩ)}+ E log n+ 4Eγ log p

The criterion is indexed by a parameter γ ∈ [0, 1]. It is easy to see that the γ = 0
case is the classical Bayesian information criterion (BIC) (Schwarz 1978). A positive
γ leads to the stronger penalization of large inverse-covariance matrices and results in
a model-selection criterion with good theoretical properties (Foygel and Drton 2010).
Resorting to simulation results, the authors suggest γ = 0.5 as a proposed value.

3 Commands
3.1 Syntax for graphiclasso

The command graphiclasso estimates a large inverse-covariance matrix by impos-
ing `1 penalization on the log-likelihood function. The observed data are supplied to
graphiclasso either as a list of variables (varlist) or as a matrix (matname). The
syntax for the Glasso algorithm is

graphiclasso varlist
[

if
] [

in
] [

, options
]

The syntax for using a matrix as data input is

graphiclasso matname
[

, options
]

options Description

lambda(#) (nonnegative) penalty parameter; default is lambda(0.1)
max_iter(#) maximum number of iterations of outer loop; default is

max_iter(100)
tolerance(#) maximum tolerance for convergence; default is

tolerance(1e-5)
diag whether diagonal should be penalized; default is false

The penalization level is controlled through lambda(); the default is lambda(0.1).
The optimization parameters max_iter() and tolerance() control the maximum num-
ber of iterations and the maximum tolerance for convergence. Finally, diag specifies
whether to penalize diagonal elements of the inverse-covariance matrix.



630 Graphical lasso

3.1.1 Stored results

graphiclasso stores the following in e():

Matrices
e(lambda) tuning parameter
e(Omega) inverse-covariance matrix
e(Sigma) covariance matrix

3.2 Syntax for graphiclassocv

As discussed in section 2, the tuning parameter λ is frequently selected through CV,
AIC, or eBIC. I combine these methods under one umbrella command, graphiclassocv,
with the option to choose any of the criteria. Similarly to graphiclasso, the input
dataset can be supplied to the command as either a varlist or a matname. The syntaxes
for the graphiclassocv command are

graphiclassocv varlist
[

if
] [

in
] [

, options
]

or

graphiclassocv matname
[

, options
]

options Description

lamlist(numlist) grid of positive tuning parameters for penalty term; if
provided, causes graphiclassocv to disregard
nlam()

nlam(#) number of generated tuning parameters for penalty
term; default is nlam(20)

max_iter(#) maximum number of iterations of outer loop; default is
max_iter(1000)

tolerance(#) maximum tolerance for convergence; default is
tolerance(1e-5)

nfold(#) number of folds used for K-fold CV
crit(string) CV criterion (loglik, eBIC, or AIC); default is

crit(loglik)
start(string) type of initial values; default is start(cold);

start(warm) uses the solution of the previous λ as an
initial value

gamma(#) parameter for eBIC criterion; gamma(0) corresponds to
BIC (Foygel and Drton 2010); default is gamma(0.5);
activated if crit() is eBIC

diag whether diagonal should be penalized; default is false
verbose show the table of selected information criterion
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The graphiclassocv command borrows most of the options from the graphiclasso
command. Additional options are lamlist(), which is the list of positive λ values, and
nlam(), which is the number of tuning parameters λ that should be generated for
the selection. nlam() is activated if lamlist() is not provided. The nfold() option
specifies the folds for K-fold CV with the default value of nfold(5). The crit()
takes one of the three options loglik, AIC, or eBIC. If loglik is specified, the tuning
parameter is selected based on (8). The start() option specifies the selection of the
initial values. If warm is selected, the estimated solution from the previous λ is selected
as an initial value for the Glasso algorithm.

3.2.1 Stored results

graphiclassocv stores the following in e():

Scalars
e(lambda) tuning parameter

Matrices
e(Omega) inverse-covariance matrix
e(Sigma) covariance matrix
e(lamlist) list of regularization parameters

3.3 Syntax for visualization

I provide two options to visualize the estimated inverse-covariance matrix: either as a
matrix plot or as an undirected graph (for example, see figures 1 and 2). In the ma-
trix plot, empty cells correspond to zero elements of the inverse-covariance matrix. As
discussed, for the undirected graph, zeros in the inverse-covariance matrix are equiva-
lent to missing edges in the corresponding graph. My command heavily relies on the
nwcommands package (Grund 2015) and accepts all nwplot and nwplotmatrix options.
The syntax for the command is

graphiclassoplot matname
[

, options
]

options Description

type(string) type of the plot: graph or matrix; default is
type(graph)

newlabs(lab1 lab2 . . .) labels for the plot
nwplot_options options for undirected graph plot; for details,

see Grund (2015)
nwplotmatrix_options options for matrix plot; for details, see

Grund (2015)

The graphiclassoplot command accepts a square matrix as an input, and the
type() parameter accepts two options, matrix or graph (the default). The newlabs(),
nwplot_options, and nwplotmatrix_options parameters are borrowed from the pack-
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age nwcommands and accept all inherited corresponding options. See Grund (2015) for
details.

4 Numerical results
In this section, I demonstrate the use of the graphiclasso command through a variety of
simulated and real-world datasets. Note that, by design, the Glasso algorithm depends
on the scaling of variables. Therefore, data standardization was performed prior to the
implementation of the algorithm. For simulations, I rely on my own datafromicov
command to generate data from the random inverse-covariance matrix with a speci-
fied sparsity level. The sparsity is controlled through probability in the off-diagonal
elements of the inverse-covariance matrix being nonzero. I measure the performance
of Glasso based on three metrics: TPR, FPR, and TDR. These metrics are estimated
using the compareicov command. The syntax and details for the datafromicov and
compareicov commands are provided in the appendix.

For the real-world examples, I use flow-cytometry data (Hastie, Tibshirani, and
Friedman 2009, chap. 17.3) and bank stock return volatility data (Demirer et al. 2018)
to illustrate the use of the graphiclasso command.

4.1 Simulation result

In all simulations, the sample sizes are n = 50, 150 and dimension p = 50, covering
settings where p = n and p < n. Each of the two simulated datasets is centered to zero
and scaled to unit variance. The tuning parameter is selected from the range [0.1, 1]
over 30 equally spaced grid points using the BIC, eBIC, AIC, and CV criteria. As an input
parameter for the Glasso algorithm, we set tolerance equal to 10−4. Each simulation
setting is run over 20 repetitions. The upper left parts in figures 1 and 2 illustrate
examples of the simulated inverse-covariance matrix as an undirected graph and sparse
matrix, respectively. The results for eBIC are similar to BIC, so we omit them.

. set seed 111

. // Case n = 300, p = 50, prob = 0.2

. local n = 300

. local p = 50

. local prb = 0.2

. // Simulate data

. datafromicov, n(`n') p(`p') prob(`prb')
number of observations will be reset to 300
Press any key to continue, or Break to abort
Number of observations (_N) was 0, now 300.
. // Extract true inverse covariance matrix
. matrix trueOmega = r(Omega)
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. // Select tuning parameter via CV

. graphiclassocv var1-var50, nlam(30) nfold(3)

. // Extract the estimated Omega and lambda

. matrix cvOmega = e(Omega)

. scalar cvlambda = e(lambda)

. // Select tuning parameter via AIC

. graphiclassocv var1-var50, nlam(30) crit(AIC) nfold(3)

. // Extract the estimated Omega and lambda

. matrix aicOmega = e(Omega)

. scalar aiclambda = e(lambda)

. // Select tuning parameter via BIC

. graphiclassocv var1-var50, nlam(30) gamma(0) crit(eBIC) nfold(3)

. // Extract the estimated Omega and lambda

. matrix bicOmega = e(Omega)

. scalar biclambda = e(lambda)

. // Plot combined undirected graph

. graphiclassoplot trueOmega, type(graph) lab layout(circle)
> title(True precision matrix, position(12)) saving(trueomegagr, replace)
Calculating node coordinates...
Plotting network...
file trueomegagr.gph saved
. graphiclassoplot cvOmega, type(graph) lab layout(circle)
> title(CV, position(12)) saving(cvomegagr, replace)
Calculating node coordinates...
Plotting network...
file cvomegagr.gph saved
. graphiclassoplot bicOmega, type(graph) lab layout(circle)
> title(BIC, position(12)) saving(bicomegagr, replace)
Calculating node coordinates...
Plotting network...
file bicomegagr.gph saved
. graphiclassoplot aicOmega, type(graph) lab layout(circle)
> title(AIC, position(12)) saving(aicomegagr, replace)
Calculating node coordinates...
Plotting network...
file aicomegagr.gph saved
. graph combine "trueomegagr" "cvomegagr" "bicomegagr" "aicomegagr"
. graph export "sim1graph.png", replace
file sim1graph.png saved as PNG format
. graphiclassoplot trueOmega, type(matrix)
> title(True precision matrix, position(12)) saving(trueomega, replace)
. graphiclassoplot cvOmega, type(matrix) title(CV, position(12))
> saving(cvomega, replace)
. graphiclassoplot bicOmega, type(matrix) title(BIC, position(12))
> saving(bicomega, replace)
. graphiclassoplot aicOmega, type(matrix) title(AIC, position(12))
> saving(aicomega, replace)
. graph combine "trueomega" "cvomega" "bicomega" "aicomega"
. graph export "sim1matrix.png", replace
file sim1matrix.png saved as PNG format
. // Now let's compare the result
. compareicov cvOmega, true(trueOmega)



634 Graphical lasso

. matrix cvr = r(combine)

. compareicov bicOmega, true(trueOmega)

. matrix bicr = r(combine)

. compareicov aicOmega, true(trueOmega)

. matrix aicr = r(combine)

. matrix compresult = cvr,bicr,aicr

. matrix colnames compresult = CV BIC AIC

. matrix list compresult
compresult[3,3]

CV BIC AIC
tpr 1 .00952381 .88571429
fpr .76069869 0 .00960699
tdr .10758197 1 .89423077

var1
var2

var3
var4

var5
var6var7var8var9var10var11var12var13var14var15var16var17var18var19

var20
var21

var22
var23
var24
var25
var26
var27
var28
var29
var30

var31var32var33var34var35var36var37var38var39var40var41var42var43var44
var45
var46
var47
var48
var49
var50

True precision matrix

var1
var2

var3
var4

var5
var6var7var8var9var10var11var12var13var14var15var16var17var18var19

var20
var21

var22
var23
var24
var25
var26
var27
var28
var29
var30

var31var32var33var34var35var36var37var38var39var40var41var42var43var44
var45
var46
var47
var48
var49
var50

CV

var1
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var3
var4
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var6var7var8var9var10var11var12var13var14var15var16var17var18var19

var20
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var22
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var24
var25
var26
var27
var28
var29
var30

var31var32var33var34var35var36var37var38var39var40var41var42var43var44
var45
var46
var47
var48
var49
var50
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var1
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var4
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var6var7var8var9var10var11var12var13var14var15var16var17var18var19
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var21
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Figure 1. Illustration of Glasso solutions as undirected graphs for three different infor-
mation criteria when p = 50, n = 300
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True precision matrix CV

BIC AIC

Figure 2. Illustration of Glasso solutions as a matrix for three different information
criteria when p = 50, n = 300

In table 1, we report results only for n = 300, p = 50 because a similar result
holds for the other simulation settings. We can see that AIC is preferred compared with
the other two criteria. In particular, CV and BIC are respectively underestimating and
overestimating the inverse-covariance matrix.

Table 1. Averages of three metrics over 20
simulated repetitions for the n = 300, p = 50
case

CV BIC AIC

TPR 1 0.01 0.89
FPR 0.76 0 0.01
TDR 0.11 1 0.89

The values smaller than 0.001 are written as 0.
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4.2 Flow-cytometry data

The flow-cytometry dataset, borrowed from Hastie, Tibshirani, and Friedman (2009),
contains measures of 11 proteins on 7,466 cells.

. import delimited protain, clear
(encoding automatically selected: ISO-8859-2)
(11 vars, 7,466 obs)
. summarize

Variable Obs Mean Std. dev. Min Max

praf 7,466 6.09e-06 247.5281 -123.0719 4489.928
pmek 7,466 -.0000317 377.0562 -144.381 6959.619
plcg 7,466 3.35e-06 173.8598 -53.85364 6153.146
pip2 7,466 .0000198 299.3475 -150.1207 8906.88
pip3 7,466 1.29e-06 43.04816 -26.03496 1247.965

p44_42 7,466 2.16e-06 45.82672 -25.63119 2544.369
pakts473 7,466 5.19e-06 137.7662 -80.16721 3473.833

pka 7,466 -.0000444 644.4593 -624.7586 8270.241
pkc 7,466 -3.46e-06 92.87002 -29.34166 1580.658
p38 7,466 -8.18e-06 494.7688 -134.0145 7363.985

pjnk 7,466 -2.78e-06 215.6606 -72.2675 4666.732

Figure 3 illustrates the result of applying the Glasso to the standardized flow-
cytometry data for four different values of λ. As expected, the graph becomes sparse as
the penalty parameter increases.

Raf

MekPlcg

PIP2

PIP3

Erk

Akt

PKA PKC

P38

Jnk

λ  = .5

Raf

MekPlcg

PIP2

PIP3

Erk

Akt

PKA PKC

P38

Jnk

λ  = .25

Raf

MekPlcg

PIP2

PIP3
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PKA PKC

P38

Jnk

λ  = .1

Raf

MekPlcg

PIP2

PIP3
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PKA PKC

P38

Jnk

λ  = .01

Figure 3. Glasso solutions for four different tuning parameters
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Next I illustrate the estimated inverse-covariance matrix using CV and eBIC criteria.

. import delimited protain, clear
(encoding automatically selected: ISO-8859-2)
(11 vars, 7,466 obs)
. quietly ds
. local varlist `r(varlist)'
. foreach var in `varlist' {

2. egen sd`var' = std(`var')
3. }

. // Run graphiclassocv with eBIC

. graphiclassocv sdpraf-sdpjnk, gamma(0.5) nlam(20) crit(eBIC)

. matrix eBICOmega = e(Omega)

. local bic = round(e(lambda), 0.0001)

. // Run graphiclassocv with CV

. graphiclassocv sdpraf-sdpjnk, nlam(20) crit(loglik)

. matrix cvOmega = e(Omega)

. local cv = round(e(lambda), 0.0001)

. matrix lambda = `cv',`bic'

. // Plot the results

. graphiclassoplot cvOmega, type(graph) saving(cvprotaingraph,replace)
> layout(circle) newlabs("Raf" "Mek" "Plcg" "PIP2" "PIP3"
> "Erk" "Akt" "PKA" "PKC" "P38" "Jnk")
> lab title("CV, {&lambda} = `cv'")
Calculating node coordinates...
Plotting network...
file cvprotaingraph.gph saved
. graphiclassoplot eBICOmega, type(graph) saving(bicprotaingraph,replace)
> layout(circle) newlabs("Raf" "Mek" "Plcg" "PIP2" "PIP3"
> "Erk" "Akt" "PKA" "PKC" "P38" "Jnk")
> lab title("eBIC, {&lambda} = `bic'")
Calculating node coordinates...
Plotting network...
file bicprotaingraph.gph saved
. graphiclassoplot cvOmega, type(matrix) saving(cvprotainmat,replace)
. graphiclassoplot eBICOmega, type(matrix) saving(bicprotainmat,replace)
. graph combine "cvprotaingraph" "bicprotaingraph" "cvprotainmat"
> "bicprotainmat"
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Figure 4 reports the result. The left and right columns correspond to the solution
from the CV and eBIC criteria, respectively.
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CV, λ = .01

Raf

MekPlcg

PIP2
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Erk

Akt

PKA PKC

P38

Jnk

eBIC, λ = .0263

Figure 4. Glasso solutions for CV and eBIC criteria, respectively

4.3 Stock return volatility data

In this section, I analyze stock return volatility data. Data are borrowed from Demirer
et al. (2018), where the authors estimate the global bank network connectedness. The
original data contain 96 banks from 29 developed and emerging economies (countries)
from September 12, 2003, to February 7, 2014. To illustrate, I select only economies
where the number of banks in each economy is greater than 4; we thus have a total of
54 banks (for more details, please refer to Demirer et al. (2018).

Here I use only the AIC criterion for the tuning parameter selection. To visual-
ize the result, I exploit a multidimensional scaling algorithm (Hastie, Tibshirani, and
Friedman 2009) to calculate proximities between variables. The algorithm can be easily
implemented using the nwcommands package. For details, see Grund (2015). Figure 5
illustrates the result. Colors in the figure (here shown in grayscale) indicate the cor-
responding country of the bank. As can be seen, using the estimated sparse inverse-
covariance matrix as an input for the network, banks from the same country tend to
compose groups, while being connected to banks from the other countries.
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Figure 5. The Glasso solution using the AIC criterion

5 Conclusion
In this article, I discussed the Glasso algorithm and introduced the graphiclasso com-
mand for its implementation. Moreover, I provided commands for the visualization and
postsimulation comparison of the estimated and the true sparse inverse-covariance ma-
trices. I demonstrated the use of commands to analyze data when the input is a matrix
or varlist.

For future work, I consider a possible extension of the graphiclasso command to
implement the time-series Glasso (Dallakyan, Kim, and Pourahmadi Forthcoming) and
joint Glasso (Danaher, Wang, and Witten 2014) algorithms.
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0685 (to install program files, if available)

. net get st0685 (to install ancillary files, if available)
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A Appendix
A.1 Additional commands

Commands datafromicov and compareicov generate multivariate Gaussian data from
the random inverse-covariance matrix with a given sparsity level and compare the esti-
mated and the true matrices using the TPR, FPR, and TDR metrics. Below, I show the
syntax of those commands.

datafromicov, n(#) p(#)
[

options
]

options Description

* n(#) number of observations for generated data
* p(#) number of variables (dimension) for generated data

prob(#) probability that any off-diagonal element of inverse-covariance
matrix is nonzero; default is prob(3/p)

v(#) off-diagonal elements of the precision matrix, controlling the
magnitude of partial correlations with u(); default is v(0.3)

u(#) positive number being added to the diagonal elements of the
precision matrix to control the magnitude of partial
correlations; default is u(0.1)

* n() and p() are required.
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datafromicov stores the following in r():

Scalars
r(sparsity) sparsity level in the inverse-covariance matrix

Matrices
r(data) generated data matrix
r(Omega) inverse-covariance matrix for the generated data
r(Sigma) covariance matrix for the generated data
r(S) empirical covariance matrix for the generated data

The required inputs for the command are the number of observations n and the
number of variables p of the generated data. General steps for data generation are the
following: We start with the p × p zero matrix Ω and assign its off-diagonal elements
to value 1 with probability prob(). The default is prob(3/p). The value of prob()
controls the sparseness of the inverse-covariance matrix; that is, the lower the prob(),
the sparser the matrix, and vice versa. Then, in the next step, nonzero elements are filled
with values generated from the Uniform[0, 0.5] distribution. To control the magnitude of
partial correlations, we multiply the Ω matrix with the positive number v. The default
value for v is 0.3. The diagonal elements of the Ω are filled with λmin(Ω)+u, where λmin

is the minimum eigenvalue and u is a positive number added to the diagonal elements.
Finally, multivariate Gaussian data can be sampled from the inverse-covariance matrix
through the Cholesky factor. For a fast sampling technique, see, for example, Rue
(2001).

Next I discuss the compareicov syntax.

compareicov matname1, true(matname2)

compareicov stores the following in r():

Scalars
r(TPR) TPR
r(FPR) FPR
r(TDR) TDR

compareicov takes two inputs: the p × p dimensional inverse-covariance matrix,
which can be output from the graphiclasso command, and the true matrix. It reports
the TPR, FPR, and TDR such that

TPR =
TP

TP+ FN

FPR =
FP

FP+ TN

TDR =
TP

TP+ FP

where TP = number of estimated edges that are also present in the true graph, FN =
number of estimated gaps that are present in the true graph, FP = number of estimated
edges that are not present in the true graph, and TN = number of estimated gaps that
are not present in the true graph.




