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1 Introduction
Defining the timescales of interest is essential when performing any time-to-event anal-
ysis. Most commonly, only one timescale of interest is modeled using standard survival
analysis methods. There may be, however, certain situations where modeling multiple
timescales is preferred or necessary to obtain useful results and answer research ques-
tions of interest (Iacobelli and Carstensen 2013). Consider the example of time to death
after a cancer diagnosis. Here two timescales may be of importance: time since diagnosis
and attained age. Time from cancer diagnosis to death is a highly important timescale
and is commonly used in studies of this type (although this does vary according to the
cancer diagnosis under study). However, it is also known that age is an important factor
to consider for the risk of death. In studies of breast cancer incidence, attained age and
time since childbirth are two important timescales (Albrektsen et al. 2006). In studies
of infection risk after admittance to intensive care unit, both time in intensive care and
calendar time are important timescales to consider (Wolkewitz et al. 2016). In the field
of engineering, with regard to studying engine failure, attained age of the engine and
the usage (time) of the engine are valuable timescales (Duchesne and Lawless 2000).

When more than one timescale is thought to be important in an exposure-outcome
association, it can be common for analysts to simplify their approach by choosing the
most important timescale to model and to select and model some time-fixed version
of a second timescale rather than modeling, for example, in age-period-cohort models
(Carstensen 2007). If modeling the hazard as a function of the first timescale is only of
interest and the second timescale is sufficiently captured using the time-fixed version,
then this is a reasonable approach. This is often the case when considering time to
death after a cancer diagnosis; the hazard is often modeled as a function of time since
diagnosis and age at diagnosis. However, if modeling the hazard as a function of both
timescales is of interest, then it may be important to capture the effect of multiple
timescales simultaneously. For example, it may be of interest to model the mortality
rate as a function of both time since diagnosis and attained age in cancer patients. It
has also been shown that effect estimates may be biased in some situations where the
underlying hazard is a function of multiple timescales (Batyrbekova et al. Forthcoming).

In situations where one would like to model the hazard as a function of multiple
timescales, it is common to split the second timescale and either 1) model the hazard
as a step function of the second timescale or 2) smooth this function by including, for
example, a spline (Carstensen 2006; Royston and Lambert 2011). Note that splitting
across timescales can be computationally intensive depending on the size of the study
population and the number of splits across the timescale one wishes to make. Modeling
time as a continuous function, for example, by using splines, has been shown to be able
to equally or more accurately capture an array of hazard functions that other methods
based on parametric assumptions may struggle with (Royston and Lambert 2011).

Because time increases at the same rate independently of the timescale, it is pos-
sible to present each timescale as a function of another (Efron 2002; Danardono 2005;
Iacobelli and Carstensen 2013). The difference between two timescales is simply a dif-
ference between the origins of the timescales. For example, the difference between the



H. Bower, T. M.-L. Andersson, M. J. Crowther, and P. C. Lambert 681

timescales time since diagnosis and attained age is simply age at diagnosis. We use this
approach to model multiple timescales in a flexible parametric survival-model frame-
work. Our previous article describes the command strcs, which fits flexible parametric
survival models on the log-hazard scale using numerical integration to obtain the log
likelihood (Bower, Crowther, and Lambert 2016). The use of numerical integration al-
lows incorporation of arbitrary functions of time into the model and hence lends itself to
the inclusion of multiple timescales in an appealing way. We now extend this approach
to model multiple timescales and introduce the command stmt, which models multiple
timescales using flexible parametric survival models on the log-hazard scale. In sec-
tion 2, we describe flexible parametric survival models in general and then, in section 3,
describe how multiple timescales can be implemented in these models. In sections 4
and 5, we describe the command stmt and its postestimation commands. Finally, in
section 6 we present an illustrative example of modeling multiple timescales using the
stmt command.

2 Flexible parametric survival models
A flexible parametric survival model on the log-hazard scale that assumes proportional
hazards can be written as

ln{h(t|x)} = s{f(t)|γ,k}+ xβ (1)

where s{f(t)|γ,k} represents the restricted cubic spline function that forms the baseline
log-hazard function for time t with knots k (further details on restricted cubic splines
can be found in Bower, Crowther, and Lambert [2016]) and β represents the log-hazard
ratio estimates for variables contained in x. Estimates from flexible parametric survival
models have been shown to be approximately the same as estimates from a similar Cox
model (Royston and Lambert 2011; Rutherford, Crowther, and Lambert 2015). It is
common for the spline function to have f(t) = t or f(t) = ln(t).

The flexible parametric survival model is easily extended to include time-dependent
effects and hence relax the proportional-hazards assumption by introducing an interac-
tion between xy and a spline term:

ln{h(t|x)} = s{f(t)|γ,k}+ xβ +
Y∑

y=1

s{f(t)|γy,ky} × xy (2)

Y is the number of time-dependent effects, and s{f(t)|γy,ky} is the spline function for
the yth time-dependent effect.

2.1 Maximum likelihood estimation

Flexible parametric survival models are fit using maximum likelihood estimation; the
ml command is used in Stata. Consider a sample of n individuals who are followed over
time ti; di represents the event indicator for the ith individual. Then the log-likelihood
contribution for the ith individual is
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log li = di log{h(ti)}+ log{S(ti)} (3)

where h(ti) is the hazard function and S(ti) is the survival function evaluated at the
time of event or censoring ti. Using the relationship between the survival function and
the cumulative hazard function,

S(ti) = exp{−H(ti)}

we can rewrite the log likelihood in (3) as

log li = di log{h(ti)} −H(ti) (4)

Under delayed entry, where individual i becomes at risk at t0i, (4) becomes

log li = di log{h(ti)} −H(ti) +H(t0i) (5)

Thus, when fitting a flexible parametric survival model, we need the hazard h(ti)
and the cumulative hazard H(ti) to evaluate the likelihood. Under delayed entry, H(t0i)
is also required.

Consider the flexible parametric survival model in (2). Theoretically, components of
the log likelihood presented in (4) can be calculated because the log-hazard function is
being modeled and because of the following relationship:

H(ti) =

∫ ti

t0i

h(ui) du

However, because restricted cubic splines are used to estimate the log baseline haz-
ard function, the hazard function cannot be integrated analytically. Thus, numerical
integration techniques must be used to calculate the cumulative hazard function and
evaluate the likelihood. In this application, Gaussian quadrature is used to numerically
integrate the hazard function; this converts an integral into a weighted sum over a set
of predefined points called nodes. This is further described in section 3.1.

3 Modeling multiple timescales using flexible parametric
survival models on the log-hazard scale

Because time progresses at the same rate, multiple timescales can be considered as a
function of one another. Thus, the difference between timescales is really a question of
the difference between the origins of the timescales. If we consider the situation where
there are two timescales of interest, where t1 and t2 represent the first and second
timescales, respectively, there exists some constant c that

t2 = t1 + c
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For example, if we consider t1 to be time since diagnosis and t2 to be attained age,
then our constant c would be age at diagnosis, the difference between the two timescales.
This relationship extends to multiple timescales, where all timescales can be written as
a function of the first timescale and some constant. When modeling multiple timescales
using flexible parametric survival models, we apply the same theory. Modeling multiple
timescales using other types of survival models is possible, but the flexible parametric
survival-model approach described here avoids the need for time splitting, which can
be time consuming, and additionally allows us to simultaneously model the hazard as a
function of two smooth timescales. Consider again the situation where one is interested
in modeling the hazard as a function of two timescales simultaneously; this is in fact a
special case of the bivariate hazard model whereby

h(t|x) = h0(t1, t2)exp(xβ)
= h01(t1)h02(t2)exp(xβ)
= h01(t1)h02(t1 + c)exp(xβ) (6)

Using splines to model the baseline hazard functions in (6) similarly to that shown
in (1), we get the flexible parametric survival model with two timescales:

ln{h(t1|x)} = s{f(t1)|γ1,k1}+ s{f(t1 + c)|γ2,k2}+ xβ

= s{f(t1)|γ1,k1}+ s{f(t2)|γ2,k2}+ xβ (7)

Now there are two restricted cubic spline functions; s{f(t1)|γ1,k1} is a function of
the first timescale with knots k1, whereas s{f(t2)|γ2,k2} is a function of the second
timescale with knots k2. This concept extends to modeling several timescales.

3.1 Log likelihood and numerical integration

As previously described, maximum likelihood is used to estimate parameters in the
flexible parametric survival model. Because the log-hazard function is modeled, the
cumulative hazard should be calculated as shown in (4) and (5). Consider the model
shown in (7), which models two timescales simultaneously. The cumulative hazard
evaluated between t0 and t can be written as

H(t) =

∫ t

t0

h(u) du

=

∫ t

t0

exp [s {f(u1)|γ1,k1}+ s {f(u2)|γ2,k2}+ xβ] du (8)
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Unfortunately, the restricted cubic splines s{f(t1)|γ1,k1} and s{f(t2)|γ2,k2} cannot
be integrated analytically. Instead, Gauss–Legendre quadrature is implemented (Stoer
and Bulirsch 2002) as follows, which converts an integral into a weighted summation
over a set of predefined points known as nodes, m, across a function g(u):∫

g(u)du ≈
m∑
j=1

wjg(uj)

If we are interested in estimating the integral between a and b, then this formula
becomes ∫ b

a

g(u)du ≈ b− a

2

m∑
j=1

wjg

(
b− a

2
uj +

a+ b

2

)
(9)

Now considering that we are interested in estimating the integral of the hazard
function between t0 and t as displayed in (8), we can use (9) to get∫ t

t0

exp [s {f(u1)|γ1,k1}+ s(f(u2)|γ2,k2) + xβ] du

=

∫ t

t0

exp [s {f(u1)|γ1,k1}+ s {f(u1 + c)|γ2,k2}+ xβ] du

≈ t− t0
2

m∑
j=1

exp

[
s

{
f

(
t− t0
2

u1j +
t0 + t

2

)
|γ1,k1

}

+s

{
f

(
t− t0
2

u1j +
t0 + t

2
+ c

)
|γ2,k2

}
+ xβ

]

The summation is calculated over timescale 1, t1, at m nodes. Note that the weights
in (9) are set to 1 here. Because every timescale can be written as a function of the first
timescale, the hazard function can be numerically integrated over the first timescale
only, and the likelihood function can be calculated according to t1. The number of
quadrature nodes is selected by the user; the number of nodes required is dependent
on the complexity of the hazard function, but it has been shown that approximately 30
nodes should be sufficient in the majority of situations (Crowther and Lambert 2014).

4 The stmt command
The stmt command fits flexible parametric survival models on the log-hazard scale while
allowing multiple timescales (up to three) to be fit simultaneously. Restricted cubic
splines smooth the log hazard with user-specified degrees of freedom. The first timescale
is specified using the stset command as in other standard survival analyses. Additional
timescales are included using the options described below. Covariates can be included
within the model, and interactions between covariates and the timescale can be specified.
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Numerical integration of the hazard function is undertaken via integration with Gauss–
Legendre quadrature. Both the rcsgen (Lambert 2008) and stpm2 (Lambert 2010)
commands are called in stmt to create splines and obtain initial values, respectively;
the user must install these prior to using the stmt command. The log likelihood is
maximized using the Newton–Raphson algorithm via the ml command in Stata, using
analytic derivatives for the score and Hessian to increase speed and accuracy.

4.1 Syntax

stmt varlist
[

if
] [

in
]
, time1(suboptions)

[
time2(suboptions) time3(suboptions)

timeint(int_list) timeintknots(int_list) timeintbknots(int_list)
noconstant nodes(#) noorthog nohr verbose from(matrix) inith(varname)

maximize_options
]

4.2 Options

time1(suboptions) contains suboptions for timescale 1 (see below for a list of subop-
tions). The first timescale is always specified using the stset command. time1()
is required.

time2(suboptions) contains suboptions for timescale 2 (see below for a list of sub-
options). The second timescale is a function of the first timescale; the difference
between the second timescale and the first timescale is specified in the start()
suboption.

time3(suboptions) contains suboptions for timescale 3 (see below for a list of subop-
tions). The third timescale is a function of the first timescale; the difference between
the third timescale and the first timescale is specified in the start() suboption.

timeint(int_list) specifies two-way timescale interactions. The syntax looks as follows:
timeint(t1:t2 2:4), where an interaction between timescale 1 and timescale 2 will
be created. Restricted cubic splines with 2 degrees of freedom for timescale 1 will
be interacted with restricted cubic splines with 4 degrees of freedom for timescale 2.
The space separates the specified timescales and their degrees of freedom. Addi-
tional timescale interactions can be added using | as follows: timeint(t1:t2 2:4
| t1:t3 2:2).

timeintknots(int_list) specifies the internal knots for two-way timescale interactions.
The syntax looks as follows: timeintknots(2 5 : 50 60 70), where an interaction
between the timescales specified in timeint() will be created. This will create
restricted cubic splines for the first timescale specified in the timeint() option with
internal knots at 2 and 5 on this timescale (3 degrees of freedom) and restricted
cubic splines for the second timescale specified in the timeint() option at 50, 60,
and 70 on this timescale (4 degrees of freedom) and then interact the spline terms
together. The spaces separate the knot locations, whereas the colon separates the
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timescales included in timeint(); that is, the internal knots for the first timescale
in timeint() are specified prior to the colon, and the internal knots for the second
timescale in timeint() come after the colon. Internal knots for additional timescale
interactions can be added using | in a similar way to the timeint() option, for
example, timeintknots(2 5 : 50 60 70 | 2 3 5 : 2). Note that knots should
be specified on the untransformed timescale.

timeintbknots(int_list) specifies the boundary knots for two-way timescale interac-
tions. The syntax looks like timeintbknots(timeint(0 7 : 25 95)), where an in-
teraction between the timescales specified in timeint() will be created. Restricted
cubic splines with 2 degrees of freedom for the first timescale specified in timeint()
will be interacted with restricted cubic splines with 4 degrees of freedom for the
second timescale specified in timeint(). The spaces separate the boundary knot
locations, whereas the colon separates the timescales included in timeint(); that
is, the boundary knots for the first timescale in timeint() are specified prior to the
colon, and the boundary knots for the second timescale in timeint() come after the
colon. Boundary knots for additional timescale interactions can be added using | in
a similar way to the timeint() option, for example, timeintbknots(0 7 : 25 95
| 0 7 : 1 12). Note that both the timeint() option and timeintknots() option
can be used with the timeintbknots() option and that knots in timeintbknots()
should be specified on the untransformed timescale.

noconstant suppresses the constant term (intercept) in the model.

nodes(#) specifies the number of nodes to be used in Gauss–Legendre quadrature
numerical integration when calculating the estimated cumulative hazard function
from the estimated hazard function. The default is nodes(30). Changing the nodes
may be useful if there are convergence problems. Too few nodes may result in a poor
approximation involved in the numerical integration. Analyses should be performed
to ensure the results are not sensitive to the number of nodes.

noorthog suppresses orthogonal transformation of spline variables.

nohr reports the coefficients instead of hazard ratios.

verbose details the process of the stmt command.

from(matrix) defines the parameter matrix of initial values to be used in maximum
likelihood estimation. By default, stmt estimates initial hazard estimates by fitting
a model on the log cumulative-hazard scale using the stpm2 command.

inith(varname) defines initial hazard estimates to be used in maximum likelihood
estimation. By default, stmt estimates initial hazard estimates by fitting a model
on the log cumulative-hazard scale using the stpm2 command.
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maximize_options: difficult, technique(algorithm_spec), iterate(#),
[

no
]
log,

trace, gradient, showstep, hessian, shownrtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance,
from(init_specs); see [R] Maximize. These options are seldom used, but the
difficult option may be useful if there are convergence problems.

4.2.1 Timescale-specific suboptions

bknots(knots_list) specifies the boundary knots for the timescale specified. knots_list
is a two-element numlist giving the boundary knots. By default, these are located
at the minimum and maximum of the uncensored event times. They are specified
on the scale defined by knscale().

bknotstvc(knots_list) gives the boundary knots for any restricted cubic splines cre-
ated for the timescale when including an interaction between a covariate and the
timescales. By default, these are the same as for the bknots() option. They are
specified on the scale defined by knscale(). For example, bknotstvc(x1 0.01 10
x2 0.01 8) indicates that the boundary knots for the timescale should be at 0.01
and 10 when including an interaction with the variable x1 and at 0.01 and 8 when
including an interaction with the variable x2.

df(#) specifies the degrees of freedom for the restricted cubic spline function for the
baseline function; the number of degrees of freedom does not include the constant
term. # must be between 1 and 10. With 1 degree of freedom, a linear function
is fit. The knots() option is not applicable if the df() option is specified. The
knots are placed at equally spaced percentiles of the uncensored event times or log
event times, depending on the logtoff option. For example, if suboption df(5)
is specified in the time1() option with no logtoff suboption, knots are placed at
the 20th, 40th, 60th, and 80th percentiles of the distribution of the uncensored log
event times on the first timescale. Note that these are interior knots and there are
also boundary knots placed at the minimum and maximum of the distribution of
uncensored event times or log survival-times.

dftvc(df_list) specifies the degrees of freedom used when including interactions be-
tween the timescale and covariates in df_list. If there is more than one interaction
and different degrees of freedom are requested, then the syntax dftvc(x1:3 x2:2
1) applies. This will use 3 degrees of freedom for covariate x1, 2 degrees of freedom
for covariate x2, and 1 degree of freedom for all remaining interactions between co-
variates and the restricted cubic spline of the first timescale if used in the time1()
option.

indicator(varname) specifies an indicator variable that expresses which observations
have more than one timescale. The indicator variable should be coded 0 for those
observations who did not have the second or third timescale and 1 for those who
did. This could be useful when a secondary timescale is relevant only for a subset
of the analysis population.
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knots(#
[

# ...
]
) specifies the knot locations for the timescale, as opposed to the

locations set by the df() option. Note that the locations of the knots are placed
on the scale defined by knscale(). However, the scale used by the restricted cubic
splines function is always log time unless the logtoff option is specified. Default
knot locations are determined by the df() option.

knotstvc(knots_list) defines the location of the interior knots when recalculating the
restricted cubic splines for the specified timescale-covariate interaction. If different
knots are required for different interactions, the option is specified as, for example,
knotstvc(x1 1 2 3 x2 1.5 3.5).

knscale(scale) sets the scale on which user-defined knots are specified for the specified
timescale. knscale(time) denotes the original timescale, knscale(log) denotes the
log timescale, and knscale(centile) specifies that the knots are taken to be centile
positions in the distribution of the uncensored survival times or log survival-times de-
pending on whether the logtoff option is specified. The default is knscale(time).

logtoff smooths the specified timescale over time using restricted cubic splines. By
default, smoothing is over log time.

start(varname) specifies the variable that is the difference between the timescale spec-
ified in stset and the timescale of interest. For example, if the first timescale of
interest (t1) is time since diagnosis and the second timescale (t2) is attained age,
attained age is equal to time since diagnosis plus the age at diagnosis; that is,
t2 = t1 + age at diagnosis. Thus, in this example varname would be a variable
that contains the age at diagnosis. This option is not for use when using time1(),
because this timescale is specified when using the stset command.

tvc(varlist) gives the name of the variables that are to be included as part of an inter-
action with the specified timescale. Interactions between covariates and timescales
are included by reformulating the timescale using a restricted cubic spline, as the
user prefers. The degrees of freedom are specified using the dftvc() option.

5 The stmt postestimation command
5.1 Syntax

predict newvar
[

if
] [

in
]
, {hazard | xb} time1var(varname)[

time2var(varname) time3var(varname) at(varname #
[

varname # ...
]
)

ci nodes(#) per(#) zeros level(#)
]
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5.2 Options

hazard predicts the hazard function. hazard or xb is required.

xb predicts the linear predictor, including the spline function. hazard or xb is required.

time1var(varname) specifies the variable in the dataset that defines the values of
timescale 1 that the user wishes to predict over. time1var() is required.

time2var(varname) specifies the variable in the dataset that defines the values of
timescale 2 that the user wishes to predict over.

time3var(varname) specifies the variable in the dataset that defines the values of
timescale 3 that the user wishes to predict over.

at(varname #
[

varname # ...
]
) requests that the covariates specified by the listed

varnames be set to the listed # values. For example, at(x1 1 x3 50) would evalu-
ate predictions at x1 = 1 and x3 = 50. This is a useful way to obtain out-of-sample
predictions. Note that if at() is used together with zeros, all covariates not listed
in at() are set to zero. If at() is used without zeros, then all covariates not listed
in at() are set to their sample values. See also zeros.

ci calculates a confidence interval for the requested statistics and stores the confidence
limits in newvar_lci and newvar_uci.

nodes(#) specifies the number of nodes to be used when numerically integrating the
estimated hazard function using Gauss–Legendre quadrature. Numerical integration
is required when predicting the cumulative hazard and survival functions. The
default is nodes(30).

per(#) expresses hazard rates and differences in hazard rates per # person years.

zeros sets all covariates to zero (baseline prediction). For example, predict s0,
survival zeros calculates the baseline survival function. See also at().

level(#) specifies the confidence level as a percentage. The default is level(95) or
as set by set level.

6 Example
The stmt command and predictions are illustrated here through an application to 2,982
patients diagnosed with breast cancer in Rotterdam. Patients are followed from primary
surgery until death (due to any cause) in this illustrative example. Time from primary
surgery is used as the first timescale, and attained age is then introduced as a second
timescale. Grade of breast cancer is the exposure variable of interest; note that all
women have a diagnosis of a grade 2 or grade 3 breast cancer.
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6.1 One timescale

We first consider grade on the risk of breast cancer mortality while modeling time since
surgery and ignoring attained age. The stset command is used as follows to define the
timescale of interest:

. use http://www.stata-press.com/data/fpsaus/rott2
(Rotterdam breast cancer data, truncated at 10 years)
. stset os, failure(osi) scale(12)
Survival-time data settings

Failure event: osi!=0 & osi<.
Observed time interval: (0, os]

Exit on or before: failure
Time for analysis: time/12

2,982 total observations
0 exclusions

2,982 observations remaining, representing
1,272 failures in single-record/single-failure data

21,270.702 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 19.28268

A flexible parametric survival model on the log-hazard scale as a function of one
timescale using stmt can then be implemented as follows:

. stmt grade, time1(df(5)) nolog
Log likelihood = -3023.3924 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.659792 .1152621 7.30 0.000 1.448582 1.901798

rcs
__t1_s1 .1130917 .0309638 3.65 0.000 .0524038 .1737795
__t1_s2 .1179876 .0291052 4.05 0.000 .0609425 .1750326
__t1_s3 -.1213544 .0299503 -4.05 0.000 -.1800559 -.062653
__t1_s4 -.0914425 .0299644 -3.05 0.002 -.1501716 -.0327134
__t1_s5 -.026898 .0318642 -0.84 0.399 -.0893507 .0355546

_cons -4.12488 .1960625 -21.04 0.000 -4.509155 -3.740604

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes

This model includes a restricted cubic spline function that models the log time since
surgery timescale with 5 degrees of freedom. We see from the model output that the
mortality rate in those diagnosed with grade 3 breast cancer is 1.66 times that of those
diagnosed with grade 2 breast cancer while using time since surgery as our timescale.
We get similar results when fitting the equivalent model using strcs and when fitting
the model on the log cumulative-hazard scale using stpm2.
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. quietly estimates store stmt

. quietly stpm2 grade, df(5) scale(h)

. quietly estimates store stpm2

. quietly strcs grade, df(5)

. quietly estimates store strcs

. estimate table stmt strcs stpm2, eform keep(grade) se

Variable stmt strcs stpm2

grade 1.6597924 1.6597925 1.6582902
.1152621 .1152621 .11514289

Legend: b/se

We can additionally adjust for age at surgery as a time-fixed version of our second
timescale, attained age, by including this as a covariate in our model, as shown in the
following output. Here we see that the continuous effect of age at surgery is significant
and slightly reduces the effect estimate of grade, indicating that now the mortality rate
in those diagnosed with grade 3 breast cancer is 1.63 times that of those diagnosed with
grade 2 breast cancer.

. quietly rename age agesurgery

. stmt grade agesurgery, time1(df(5)) nolog
Log likelihood = -2990.4001 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.629973 .113256 7.03 0.000 1.422447 1.867776

agesurgery 1.018382 .0022847 8.12 0.000 1.013914 1.02287

rcs
__t1_s1 .131522 .0310742 4.23 0.000 .0706177 .1924263
__t1_s2 .1073886 .0291626 3.68 0.000 .050231 .1645461
__t1_s3 -.1292379 .0300013 -4.31 0.000 -.1880393 -.0704364
__t1_s4 -.0965942 .0300029 -3.22 0.001 -.1553989 -.0377895
__t1_s5 -.030469 .0318703 -0.96 0.339 -.0929337 .0319957

_cons -5.075964 .2296522 -22.10 0.000 -5.526074 -4.625854

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes

If we instead decide to model the log hazard as a function of the second timescale,
attained age, rather than age at surgery, we can do so by introducing the start()
option of stmt. In start(), we specify the variable that defines the difference between
the origins of the two timescales. In this example, the age at surgery is the difference
between the two timescales. Thus, the following command fits a flexible parametric
survival model modeling the log hazard as a function of the two timescales, where
the attained age timescale is modeled using a restricted cubic spline with 3 degrees of
freedom.
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. stmt grade, time1(df(5)) time2(df(3) start(agesurgery)) nolog
Log likelihood = -2956.7515 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.609036 .1118154 6.84 0.000 1.404151 1.843816

rcs
__t1_s1 .078144 .0316819 2.47 0.014 .0160487 .1402394
__t1_s2 .1307119 .0291879 4.48 0.000 .0735047 .187919
__t1_s3 -.1186399 .0300058 -3.95 0.000 -.1774502 -.0598297
__t1_s4 -.0946102 .0300088 -3.15 0.002 -.1534263 -.0357941
__t1_s5 -.030988 .0318674 -0.97 0.331 -.0934469 .0314709
__t2_s1 .2271669 .0260366 8.72 0.000 .1761361 .2781977
__t2_s2 -.2377882 .0251054 -9.47 0.000 -.2869938 -.1885825
__t2_s3 -.0887876 .0266178 -3.34 0.001 -.1409575 -.0366178

_cons -4.048158 .1961963 -20.63 0.000 -4.432695 -3.66362

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
. quietly estimates store stmt_2ts

When modeling as a function of two timescales, the mortality rate for those with
grade 3 breast cancer is 1.61 times the rate in those with grade 2 breast cancer. We can
also include an interaction between the timescale and the grade covariate if we wish,
allowing the hazard ratio for grade to vary over the timescale. Here we do this for the
time-since-surgery timescale.

. stmt grade, time1(df(5) tvc(grade) dftvc(2)) time2(df(3) start(agesurgery))
> nolog
Log likelihood = -2953.3856 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.514219 .1233225 5.09 0.000 1.290816 1.776287

rcs
__t1_s1 .5111851 .2011859 2.54 0.011 .116868 .9055022
__t1_s2 .3295628 .2191507 1.50 0.133 -.0999648 .7590903
__t1_s3 -.098055 .0353463 -2.77 0.006 -.1673326 -.0287775
__t1_s4 -.091684 .0300071 -3.06 0.002 -.1504969 -.0328711
__t1_s5 -.0309256 .0319089 -0.97 0.332 -.093466 .0316147
__t2_s1 .2274068 .0260295 8.74 0.000 .1763899 .2784236
__t2_s2 -.2386316 .0251059 -9.51 0.000 -.2878382 -.189425
__t2_s3 -.0892667 .0266396 -3.35 0.001 -.1414793 -.0370541

__t1_s_grade1 -.1539901 .0712874 -2.16 0.031 -.2937108 -.0142695
__t1_s_grade2 -.068185 .0770798 -0.88 0.376 -.2192586 .0828886

_cons -3.884596 .2262782 -17.17 0.000 -4.328093 -3.441099

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
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We may also wish to include an interaction between the two timescale functions. We
use the timeint() option to define the two timescales and the degrees of freedom that
will be used for the interaction.

. stmt grade, time1(df(5)) time2(df(3) start(agesurgery)) timeint(t1:t2 2:2)
> nolog
Log likelihood = -2942.5024 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.604792 .1115284 6.81 0.000 1.400434 1.838971

rcs
__t1_s1 .0484406 .0333889 1.45 0.147 -.0170004 .1138817
__t1_s2 .1548197 .0317914 4.87 0.000 .0925096 .2171297
__t1_s3 -.1052611 .030662 -3.43 0.001 -.1653575 -.0451646
__t1_s4 -.0690362 .030844 -2.24 0.025 -.1294893 -.008583
__t1_s5 -.0299301 .0317676 -0.94 0.346 -.0921934 .0323332
__t2_s1 .2719147 .0418266 6.50 0.000 .1899361 .3538933
__t2_s2 -.2557761 .0408903 -6.26 0.000 -.3359197 -.1756325
__t2_s3 -.0730147 .0279576 -2.61 0.009 -.1278106 -.0182188

__t1_t2_s11 .02997 .0318829 0.94 0.347 -.0325193 .0924594
__t1_t2_s12 -.0339458 .0313896 -1.08 0.280 -.0954683 .0275767
__t1_t2_s21 -.1274015 .0295475 -4.31 0.000 -.1853136 -.0694895
__t1_t2_s22 .0200843 .02825 0.71 0.477 -.0352846 .0754532

_cons -4.073179 .1967425 -20.70 0.000 -4.458788 -3.687571

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
. quietly estimates store stmt_timeint

Here time since surgery is modeled using a spline with 5 degrees of freedom and at-
tained age with 3 degrees of freedom. The interaction terms are estimated by re-creating
restricted cubic splines on each timescale with 2 degrees of freedom each (specified in
the timeint() option) and multiplying these together. This model indicates that the
mortality rate in those with grade 3 breast cancer is 1.60 times that of individuals with
grade 2 breast cancer once we include these functions in the model.

Likelihood-ratio tests can be performed when models are nested. Here we assess
whether the timescale interaction is significant by using the lrtest command and see
that the model including the timescale interaction is significantly better than the pro-
portional hazards model with two timescales.

. lrtest stmt_2ts stmt_timeint
Likelihood-ratio test
Assumption: stmt_2ts nested within stmt_timeint
LR chi2(4) = 28.50
Prob > chi2 = 0.0000

Hazard rates from the models fit with stmt can be predicted as described below.
The user must first create variables that represent the timescales to be predicted over;
these created variables are then fed into the predict command. For example, should
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we wish to predict the hazard function for those diagnosed with grade 3 breast cancer
from start to 10 years since surgery (timescale 1) for those at 50 years on the attained
age timescale (timescale 2), we can create variables time1 and time2 and feed them
into the predict command:

. range time1 0 10 100
(2,882 missing values generated)
. generate time2=50
. predict h, hazard time1var(time1) time2var(time2) at(grade 3)
(2,883 missing values generated)

We can also predict the hazard rate across both timescales simultaneously via the
creation of the timescale variables that are fed into the predict command. For example,
we can make predictions similar to those above but for every combination of time since
surgery and attained age as follows. We start by creating a temporary dataset containing
every combination of timescale 1 (time since diagnosis, from 0.2 to 15 years in 0.2 yearly
steps) and timescale 2 (attained age from 40 to 70 years in 301 steps using the range
command).

. capture drop time1 time2

. preserve

. forvalues j=0.2(0.2)15 {
2. quietly clear
3. quietly set obs 301
4. quietly generate time1 = `j'
5. quietly range time2 40 70 301
6. quietly tempfile temppred`n'
7. quietly save `temppred`n''
8. local datalist `datalist' `temppred`n''
9. local n=`n'+1
10. }
. clear
. quietly set obs 0
. quietly append using `datalist'
. quietly tempfile timedata
. quietly save `timedata'
. restore
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Below, the first 15 rows of this temporary dataset are displayed.

. list time1 time2 in 1/15

time1 time2

1. .2 40
2. .2 40.1
3. .2 40.2
4. .2 40.3
5. .2 40.4

6. .2 40.5
7. .2 40.6
8. .2 40.7
9. .2 40.8
10. .2 40.9

11. .2 41
12. .2 41.1
13. .2 41.2
14. .2 41.3
15. .2 41.4

This temporary dataset is then merged into our original dataset, and these values of
the timescales are used to predict the mortality rate using the hazard option like before
(note that the ageatsurgery variable is not used for our predictions but rather used
later for visualization of these hazard rates):

. merge 1:1 _n using `timedata', nogen
(output omitted )

. generate ageatsurgery=round(time2-time1, 0.1)

. predict h2, hazard time1var(time1) time2var(time2) at(grade 3) ci
note: confidence intervals calculated using Z critical values.

Using the predicted values, we can plot different combinations of the mortality rate
to address different questions. For example, if we were interested in the breast cancer
mortality rate for those diagnosed with grade 3 breast cancer over attained age for
different ages at surgery, we can use the following code and present the rates as in
figure 1.
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. twoway (line h2 time2 if ageatsurgery==40, sort)
> (line h2 time2 if ageatsurgery==50, sort)
> (line h2 time2 if ageatsurgery==60, sort),
> legend(order(1 "40 years" 2 "50 years" 3 "60 years" ) rows(1))
> ylabel(, format(%3.2f) angle(h))
> scheme(sj)
> xtitle("Attained age (years)")
> ytitle("Mortality rate (per person-year)")
> name(overts2_agesurgery, replace)
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Figure 1. Mortality rate of grade 3 breast cancer presented across attained age for
different ages at surgery
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Other ways of presenting the mortality rate for grade 3 breast cancer are shown in
figure 2.
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Figure 2. Other mortality prediction presentations available in stmt

We can also predict hazard ratios using the predictnl command. Below, we present
code that estimates and plots the hazard ratio comparing patients diagnosed with
grade 3 breast cancer with those with grade 2 breast cancer for the timescales we pre-
viously created. We first start by simplifying the model back to one with no timescale
interactions to simplify presentation of results. Figure 3 shows the predicted hazard
ratio over time since surgery, illustrating that the relative mortality rate in those with
grade 3, compared with grade 2, is higher early on after surgery and after 1–2 years re-
mains around 1.5 (at 5 years, hazard ratio = 1.48, 95% confidence interval [1.26, 1.75]).
Note that when predicting the hazard ratio, we estimate on the log-hazard scale and
then back-transform to the hazard scale.
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. stmt grade, time1(df(5) tvc(grade) dftvc(2)) time2(df(3) start(agesurgery))
Iteration 0: log likelihood = -3021.6264
Iteration 1: log likelihood = -2969.4752
Iteration 2: log likelihood = -2953.4512
Iteration 3: log likelihood = -2953.3856
Iteration 4: log likelihood = -2953.3856
Log likelihood = -2953.3856 Number of obs = 2,982

Haz. ratio Std. err. z P>|z| [95% conf. interval]

xb
grade 1.514219 .1233225 5.09 0.000 1.290816 1.776287

rcs
__t1_s1 .5111851 .2011859 2.54 0.011 .116868 .9055022
__t1_s2 .3295628 .2191507 1.50 0.133 -.0999648 .7590903
__t1_s3 -.098055 .0353463 -2.77 0.006 -.1673326 -.0287775
__t1_s4 -.091684 .0300071 -3.06 0.002 -.1504969 -.0328711
__t1_s5 -.0309256 .0319089 -0.97 0.332 -.093466 .0316147
__t2_s1 .2274068 .0260295 8.74 0.000 .1763899 .2784236
__t2_s2 -.2386316 .0251059 -9.51 0.000 -.2878382 -.189425
__t2_s3 -.0892667 .0266396 -3.35 0.001 -.1414793 -.0370541

__t1_s_grade1 -.1539901 .0712874 -2.16 0.031 -.2937108 -.0142695
__t1_s_grade2 -.068185 .0770798 -0.88 0.376 -.2192586 .0828886

_cons -3.884596 .2262782 -17.17 0.000 -4.328093 -3.441099

Note: Estimates are transformed only in the first equation to hazard ratios.
Quadrature method: Gauss-Legendre with 30 nodes
. predictnl lnhr= ln(predict(h time1var(time1) time2var(time2) at(grade 3)))
> - ln(predict(h time1var(time1) time2var(time2) at(grade 2))),
> ci(lnhr_lci lnhr_uci)
note: confidence intervals calculated using Z critical values.
. generate hr=exp(lnhr)
. generate hr_lci=exp(lnhr_lci)
. generate hr_uci=exp(lnhr_uci)
. twoway (rarea hr_lci hr_uci time1 if time1>=0.25, sort lcolor(gs12) fcolor(gs12))
> (line hr time1 if time1>=0.25, sort),
> legend(off)
> ylabel(, format(%2.1f) angle(h))
> scheme(sj)
> xtitle("Time since surgery (years)")
> ytitle("Hazard ratio")
> name(hr_grade, replace)
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Figure 3. Hazard ratio (grade 3 versus grade 2 breast cancer) presented over time since
surgery. Note that values are presented after 0.25 years (time since surgery).

7 Conclusion
We illustrated how flexible parametric survival models on the log-hazard scale can be
used to model multiple timescales and how to fit these models in Stata using the stmt
command. The stmt command is a user-friendly tool that comes with a handy postes-
timation command that can produce practical predictions to illustrate different effects
on different timescales.

8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0688 (to install program files, if available)

. net get st0688 (to install ancillary files, if available)

stmt can also be downloaded from the Statistical Software Components Archive by
typing

. ssc install stmt
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