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Abstract. Typical censoring models have mass points at the upper or lower tails,
or at both tails, of an otherwise continuous outcome distribution. In contrast, we
consider a censoring model with a mass point in the interior of the outcome dis-
tribution. We refer to this mass point as “bunching” and use it to estimate model
parameters. For example, economic theory suggests that, for increasing marginal
income tax rates, many taxpayers will report income exactly at the threshold where
the tax rate increases. This translates into a censoring model with bunching at
the threshold. The size of this mass point of taxpayers can be used to estimate
an elasticity parameter that summarizes taxpayers’ responses to taxes. In this
article, we introduce the command bunching, which implements new nonparamet-
ric and semiparametric identification methods for estimating elasticities developed
by Bertanha, McCallum, and Seegert (2021, Technical Report 2021-002, Board of
Governors of the Federal Reserve System). These methods rely on weaker assump-
tions than what are currently made in the literature and result in meaningfully
different estimates of the elasticity.

Keywords: st0684, bunching, bunchbounds, bunchtobit, bunchfilter, midcensoring,
partial identification, censored regression, income elasticity, tax

1 Introduction
Censoring models apply to distributions of an outcome variable that are continuous
except for a mass point at the upper or lower tails, or at both tails, of the distribution.
In this article, we consider models where the mass point occurs in the interior of the
outcome distribution. We refer to this class of models as “midcensoring models”. Al-
though we use the adjective “midcensoring”, the mass point may be at any point in the
interior of the support of the distribution of outcomes.

Previously developed methods use such a mass point, often called “bunching”, to
estimate model parameters. For example, economic theory suggests that, for increasing
marginal income tax rates, many taxpayers will report income exactly at the threshold
where the tax rate increases. This translates to a midcensoring model with a mass point
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in the interior of the distribution of reported income. The size of this mass point can
be used to identify an important parameter of the censoring model, which is known
to economists as an elasticity parameter. In this context, the elasticity parameter
describes the percent change in reported income in response to a percentage point
change in marginal income tax rate. More specifically, an elasticity of 0.5 means that
taxpayers reduce their reported income (labor supply) by 0.5% for each one-percentage-
point increase in marginal income tax rates. Section 3.1 provides simulated data and a
numerical example interpreting this elasticity in more detail. In the rest of this article,
we use “bunching” to refer to a mass point in the interior of an outcome distribution, and
we use “bunching methods” or “bunching estimator” to refer to the statistical methods
that recover elasticity parameters from data that exhibit bunching.

Using bunching to estimate elasticities began with Saez (2010), Chetty et al. (2011),
and Kleven and Waseem (2013). Following these influential articles, bunching methods
became a popular way to estimate elasticities in a variety of settings, such as electricity
demand (Ito 2014), real estate taxes (Kopczuk and Munroe 2015), labor regulations
(Garicano, Lelarge, and Van Reenan 2016), prescription drug insurance (Einav, Finkel-
stein, and Schrimpf 2017), marathon finishing times (Allen et al. 2017), attribute-based
regulations (Ito and Sallee 2018), education (Dee et al. 2019; Caetano, Caetano, and
Nielsen 2020a), minimum wage (Jales 2018; Cengiz et al. 2019), and air-pollution data
manipulation (Ghanem, Shen, and Zhang 2020), among others. Differences in mass
point sizes across groups has been exploited as the first stage in a two-stage approach
to control for endogeneity (Chetty, Friedman, and Saez 2013; Caetano 2015; Grossman
and Khalil 2020). Bunching has also been used for causal identification in Khalil and
Yildiz (2022); Caetano and Maheshri (2018); Caetano, Kinsler, and Teng (2019); and
Caetano, Caetano, and Nielsen (2020b). Jales and Yu (2017) connect bunching to re-
gression discontinuity. Lastly, Kleven (2016) conducts a detailed review of the bunching
literature.

In this article, we introduce a new command, bunching, that uses assumptions that
are weaker than current bunching methods. The command bunching is a wrapper
function for three other commands. The first is bunchbounds, which estimates upper
and lower bounds on the bunching elasticity using a partial-identification approach.
The second is bunchtobit, which uses a semiparametric method with covariates for
point identification. The third is bunchfilter, which filters friction errors from the
dependent variable before applying either bunchbounds or bunchtobit.

The statistical foundations for these commands were developed by Bertanha, McCal-
lum, and Seegert (2021). That article introduces multiple methods to recover elasticities
from bunching. Each method relies on different assumptions to achieve identification
of the elasticity. Because these are assumptions about an unobserved distribution, it is
not possible to determine which assumption is correct. However, it is possible to check
whether estimates relying on different assumptions are robust across assumptions. In
practice, we recommend that researchers use the bunching package to use different es-
timation methods and check that the elasticity estimates they recover are stable across
those methods.
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2 Bunching estimators
The application of bunching methods used by Bertanha, McCallum, and Seegert (2021)
and this article derives from bunching behavior caused by progressive marginal income
taxes, as in Saez (2010). Formally, agents maximize an isoelastic quasilinear utility
function of total consumption (or disposable income) and labor, which results in a
data-generating process (DGP) for optimal reported taxable income as follows:

yi =


εs0 + n∗

i , if n∗
i < n (k, ε, s0)

k, if n (k, ε, s0) ≤ n∗
i ≤ n (k, ε, s1)

εs1 + n∗
i , if n∗

i > n (k, ε, s1)

(1)

yi is the log of reported income, n∗
i is the log of unobserved heterogeneity of agent i, ε is

the elasticity parameter of interest, the log of the slope of the piecewise-linear constraint
changes from s0 to s1 at the log of the kink point k, and s1 < s0. All logs in this article
are natural logs. The restriction s1 < s0 guarantees concavity of the budget set, which
is fundamental for the solution in (1). In the original tax application, sj = log(1 − tj)
and j ∈ {0, 1}, in which tj is the marginal tax rate and t0 < t1. The expressions
for the thresholds that determine the three cases in (1) are n (k, ε, s0) = k − εs0 and
n (k, ε, s1) = k − εs1.

We use utility-maximizing agents and income taxes to motivate (1) and for exposition
of the command throughout the rest of this article. Nevertheless, the methods developed
by Bertanha, McCallum, and Seegert (2021), as well as the bunching package, apply to
any dataset generated by (1). We emphasize that any data must be transformed into
units that satisfy (1). In the income tax example, this is accomplished by taking logs
of the outcome variable, kink, and slopes.

Our methods are applicable to nontax data. For example, Bitler, Cook, and Roth-
baum (2021) study the Supplemental Nutrition Assistance Program, in which low-
income individuals receive benefits for food purchases as a function of labor income,
yi. The benefit is a constant amount for labor income less than a known value, k, but
decreases linearly after that. This reduction in benefits creates a piecewise linear budget
set over total consumption and labor income with a kink. At yi = k, the log of the slope
changes from s0 to s1 with s1 < s0 (see Bitler, Cook, and Rothbaum [2021, fig. 1]). In
this case, bunching methods identify the elasticity of labor supply, ε, with respect to
the benefit reduction rate.

Another non-income-tax application is Ito (2014), who studies consumption of elec-
tricity in Southern California. Electricity price per kilowatt hour changes as a function
of quantity of consumption in kilowatt hour (see figure 3 in his article). This piecewise
linear pricing scheme creates a budget set over disposable income and electricity con-
sumption with kinks. Bunching methods identify the demand elasticity with respect to
electricity price.

Piecewise linear constraints frequently exhibit several kinks at different locations.
bunching can be applied to each kink separately as long as the constraint does not
have a discontinuous jump—often called a “notch”—preceding the kink under study.



600 Bunching using Stata

Appendix B of Bertanha, McCallum, and Seegert (2021) provides a general solution to
a model with multiple kinks and notches, and section 3, “Identification”, of their article
discusses inference for multiple kinks.

Our estimation methods rely on (1), which maps the continuously distributed unob-
served n∗

i into a mixed continuous-discrete observed distribution for yi for given values
of (s0, s1, k, ε). For higher values of n∗

i , higher values of yi will be observed except when
n∗
i falls inside the bunching interval, that is, [n (k, ε, s0) , n (k, ε, s1)], in which case yi

remains constant and equal to k. Therefore, (1) leads to bunching in the distribution
of yi at the kink point k. In other words, the distribution of yi has a mass point at k,
P(yi = k) > 0, but is continuous otherwise. The mass of the point at k depends on the
size of the bunching interval according to

B ≡ P (yi = k) = P {n (k, ε, s0) ≤ n∗
i ≤ n (k, ε, s1)} (2)

= Fn∗ {n (k, ε, s1)} − Fn∗ {n (k, ε, s0)}

in which Fn∗ is the cumulative distribution function (CDF) of the unobserved n∗.

The data and model formally consist of five elements: 1) the CDF of the outcome
Fy; 2) the kink point k; 3) the slopes of the budget constraint on the left, s0, and right,
s1, of the kink point; 4) the CDF of unobserved heterogeneity, Fn∗ ; and 5) the elasticity
ε. Equation (1) maps elements 2–5 into the observed CDF, Fy. The researcher observes
elements 1–3 but not the last two elements, Fn∗ and ε.

Original bunching estimators recover ε in two steps (Saez 2010; Chetty et al. 2011).
First, they assume a specific function Fn∗ over the bunching interval. Second, they
invert (2) to recover ε using their assumption about Fn∗ . The methods developed
by Bertanha, McCallum, and Seegert (2021) that are implemented by the bunching
command are quite different than these original approaches.

bunching implements two novel identification strategies for the elasticity using a
mass point at a kink.

The first strategy partially identifies the elasticity by assuming Lipschitz continuity
and is implemented by bunchbounds. In other words, it assumes that the probability
density function (PDF) of the unobserved heterogeneity has bounded slope magnitude.
How this assumption recovers the elasticity is as follows. The observed bunching mass
equals the area under the heterogeneity PDF inside an interval. The size of this bunching
interval is a function of the unknown elasticity parameter. The highest and lowest values
for possible PDFs inside the bunching interval are set by the Lipschitz bound on the slope
magnitude of the PDFs. With a fixed bunching mass, these PDF bounds determine the
maximum and minimum widths of the bunching interval and imply lower and upper
bounds for the elasticity. bunchbounds has two particularly valuable features. First,
when bunching is observed, the elasticity lower bound must be positive. Second, the
bunching estimator based on the trapezoidal approximation (Saez 2010) is always within
the bounds (partially identified set of elasticities).

The second strategy rewrites (1) as a midcensored regression model and is imple-
mented by bunchtobit. The method assumes that the unobserved heterogeneity condi-
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tional on covariates follows a normal distribution, but we prove that conditional normal-
ity is not required for consistency of the elasticity when the unconditional distribution of
income is correctly specified. This approach effectively assumes that the unconditional
distribution of heterogeneity belongs to a semiparametric family of normal mixtures.
Conditional normality implies a tobit model that has a globally concave log likelihood
that is easy to maximize. bunchtobit also truncates the sample using a sequence of
smaller windows around the kink point. Consistency of the elasticity using these smaller
windows requires weaker assumptions on the distribution of heterogeneity because the
model tends to better fit the unconditional distribution of income as the window size
decreases. To the best of our knowledge, this is the first bunching estimation strategy
that uses covariates and semiparametric assumptions to recover the elasticity. Covari-
ates can control for a substantial amount of individual heterogeneity, and bunchtobit
only places assumptions on the remaining portion of heterogeneity that is unobserved.
In general, researchers should prefer methods that control for observable heterogeneity
using covariates over methods that omit covariates and instead restrict both observed
and unobserved heterogeneity.

Many datasets have friction errors that imply that the bunching mass is dispersed in
a small interval near, instead of exactly at, the kink. When friction errors are present,
they must first be filtered out before a bunching estimation method can be applied.
The procedure implemented by bunchfilter is a practical way of removing friction
errors and works well when 1) the researcher has an accurate prior on the support of
the friction error distribution, 2) the friction error affects nonbunching individuals more
than it affects bunching individuals, or 3) the friction error has a small variance. A
more general filtering method requires deconvolution theory, which is an active area of
research.

2.1 The bunchbounds command

bunchbounds uses bunching to partially identify the elasticity of a response variable with
respect to changes in the slope of the budget set. The syntax, options, and description
of this command are as follows:

2.1.1 Syntax for bunchbounds

bunchbounds depvar
[

if
] [

in
] [

weight
]
, kink(#) s0(#) s1(#) m(#)

[
nopic

savingbounds(filename
[

, replace
]
)
]

depvar must be one dependent variable (the response in logs in many applications).

fweights are allowed; see [U] 11.1.6 weight.
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2.1.2 Options for bunchbounds

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable. kink() is required.

s0(#) is a real number. In many applications, it is the log of the slope before the kink
point. s0() is required.

s1(#) must be a real number that is strictly less than s0(). In many applications, it
is the log of the slope after the kink point. s1() is required.

m(#) is the maximum magnitude of the heterogeneity PDF slope and must be a strictly
positive real number. m() is required.

nopic suppresses displaying graphs. The default is to display graphs.

savingbounds(filename
[

, replace
]
) saves filename.dta with coordinates of the par-

tially identified set as a function of the slope magnitude of the heterogeneity distri-
bution. Use replace if filename.dta already exists in the working directory.

2.1.3 Description for bunchbounds

The user enters the name of the response variable, the location of the kink point, the
slopes before and after the kink point, and the maximum slope magnitude of the het-
erogeneity PDF. Before applying the command, all of these entries must be transformed
into units that satisfy the DGP from (1). For example, in the tax setting of Saez (2010),
dollars of taxable income and the dollar value of the kink point are transformed by
taking logs, and the slopes are the log of 1 minus the respective marginal tax.

bunchbounds computes the maximum and minimum values of the elasticity that are
consistent with the slope restriction on the PDF specified in m(), the observed distribu-
tion of the response variable, and values of the PDF of the response variable evaluated
at the left and right limits approaching the kink. These limits are computed nonpara-
metrically using the method of Cattaneo, Jansson, and Ma (2020) as implemented by
their package lpdensity, discussed by Cattaneo, Jansson, and Ma (2022). Thus, the
user needs to install lpdensity before using bunchbounds.
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It is important to emphasize that the true value of the slope magnitude is unknow-
able, but bunchbounds provides four sample values as suggestions for the user. The
first two sample values are estimated using the continuous part of the distribution.
Specifically, minimum and maximum slope magnitude sample values are constructed
from a histogram of the dependent variable that excludes the kink point and uses a
bin width that is half the default bin width for the command histogram. The third
sample value is the maximum slope magnitude that results in a finite upper bound on
the elasticity. The fourth sample value is the minimum slope magnitude for which the
elasticity bounds exist and are equal. This is the same elasticity estimate that one ob-
tains with the trapezoidal approximation made by Saez (2010). bunchbounds outputs
elasticity bounds for three values of the slope: trapezoidal approximation, user-provided
slope magnitude m(), and the maximum slope magnitude that results in a finite upper
bound.

2.2 The bunchtobit command

bunchtobit uses bunching, tobit regressions, and covariates to identify the elasticity of
a response variable with respect to changes in the slope of the budget set. The syntax,
options, and description of this command are as follows.

2.2.1 Syntax for bunchtobit

bunchtobit depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, kink(#) s0(#) s1(#)[

binwidth(#) grid(numlist) nopic numiter(#)

savingtobit(filename
[

, replace
]
) verbose

]
depvar must be one dependent variable (the response in logs in many applications).

indepvars is a variable list of covariates. Heterogeneity is a linear function of these
covariates and an unobserved error that is normally distributed conditional on these
covariates.

fweights are allowed; see [U] 11.1.6 weight.

2.2.2 Options for bunchtobit

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable. kink() is required.

s0(#) is a real number. In many applications, it is the log of the slope before the kink
point. s0() is required.

s1(#) must be a real number that is strictly less than s0(). In many applications, it
is the log of the slope after the kink point. s1() is required.
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binwidth(#) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram.

grid(numlist) is a list of integers from 1 to 99. The values in numlist correspond to
percentages of the sample that define symmetric truncation windows around the
kink point. The truncated tobit model is fit on each of these samples and also the
full sample so that the number of estimates is always one more than the number of
entries in numlist. For example, if grid(15 82) is specified, then bunchtobit fits
the tobit model three times using 100%, 82%, and 15% of the data around the kink
point. The default is grid(10(10)90), which provides 10 estimates.

nopic suppresses displaying graphs. The default is to display graphs.

numiter(#) is the maximum number of iterations allowed when maximizing the tobit
log likelihood. It must be a positive integer. The default is numiter(500).

savingtobit(filename
[

, replace
]
) saves filename.dta with tobit estimates for each

truncation window. The filename.dta file contains eight variables corresponding to
the matrices that the code stores in r(). See section 3.3.1 for more details. Use
replace if filename.dta already exists in the working directory.

verbose displays detailed output from the tobit estimation including iterations of max-
imizing the log likelihood. Nonverbose mode is the default.

2.2.3 Description for bunchtobit

The user enters the name of the response variable, the location of the kink point, and
the slopes before and after the kink point. Before applying the command, all of these
entries must be transformed into units that satisfy the DGP from (1). For example, in
the tax setting of Saez (2010), dollars of taxable income and the dollar value of the kink
point are transformed by taking logs, and the slopes must be input as the log of 1 minus
the marginal tax rates.

bunchtobit estimates multiple midcensored tobit regressions using specified sub-
samples of the data. It starts with the entire sample, and then it truncates the sample
to symmetric windows centered at the kink as specified by the user. The elasticity esti-
mate is plotted as a function of the percentage of data used in each truncation window.
The code also plots the histogram of the response variable along with the best-fit tobit
distribution for each truncation window.

The user has the option of entering covariates that help explain the unobserved
heterogeneity. Lemma 2 by Bertanha, McCallum, and Seegert (2021) demonstrates
that the distribution of the unobserved heterogeneity conditional on covariates does not
need to be normal for the tobit estimates to be consistent. Consistency requires that
1) the unconditional distribution of heterogeneity is a semiparametric mixture of normal
distributions averaged over the included covariates and 2) the unconditional distribution
of the response variable predicted by the tobit model fits the observed distribution of
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the response variable well. If the user does not enter covariates, then the unconditional
distribution of heterogeneity needs to be normal.

3 Examples for bunchbounds and bunchtobit
In this section, we use simulated data to illustrate bunchbounds and bunchtobit. These
examples are motivated by the Earned Income Tax Credit that is investigated by Saez
(2010) and Bertanha, McCallum, and Seegert (2021). As such, sometimes we refer to
the simulated outcome data as “earnings” and the slope of the incentive schedule as
“marginal tax rates”. The units of the outcome also correspond to log thousands of
dollars.

3.1 Simulated data

We consider a DGP from (1) with one kink at k = log (8) = 2.079 given by

yi =


0.5 log (1.3) + n∗

i , if n∗
i < log (8)− 0.5 log (1.3)

log (8), if log (8)− 0.5 log (1.3) ≤ n∗
i ≤ log (8)− 0.5 log (0.9)

0.5 log (0.9) + n∗
i , if n∗

i > log (8)− 0.5 log (0.9)

(3)

in which the elasticity is ε = 0.5 and the slopes of the budget constraint to the left and
right of the kink are s0 = log (1.3) = 0.2624 and s1 = log (0.9) = −0.1054 (representing
tax rates of t0 = −0.3 and t1 = 0.1). To be concrete, the income tax rate changes from
−30% to 10%, a 40-percentage-point increase, and translates into a slope change in the
budget set of −0.368 = log(0.9) − log(1.3). The elasticity of 0.5 means that taxpayers
respond to this marginal tax rate increase by decreasing their labor supply (and income)
by about 18.4% (−0.184 = −0.368× 0.5).

We assume that ability is a function of covariates and unobserved error given by
n∗
i = 2− 0.2x1i +2.5x2i +0.4x3i + νi, νi ∼ N (0, 0.5). The covariates x1, x2, and x3 are

correlated binary variables with properties given in table 1.

Table 1. Covariates’ properties

Mean Std. dev.
x1 0.2 0.4
x2 0.5 0.5
x3 0.3 0.46

Correlations
x1 x2 x3

x1 1
x2 0.2 1
x3 0.1 0.4 1

We simulate about 1,000,000 weighted (100,000 unweighted) observations according
to (3). Frequency weights are drawn from a standard uniform distribution, and we
demonstrate how to use weights throughout the bunching package.
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In figure 1, we graph the histogram of the 1,000,000 observations in 100 bins. The
simulated outcome variable is bimodal because of the covariates, which highlights that
the unconditional distribution is not normally distributed. We graph the budget con-
straint (black thick solid line) in (log income, log consumption) space. That budget
set has a kink, that is, a change in slope from 1.3 to 0.9 at the value of 2.079 (black
thin solid line) for log income. The histogram in the same figure shows that individuals
bunch exactly at the kink point (gray bar).
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Figure 1. Histogram of simulated data

Bertanha, McCallum, and Seegert (2021) provide a complete description for how
utility maximization with heterogeneous preferences and income tax brackets results in
figure 1, and we provide an overview here. The heterogeneity of agents’ preferences
is captured by n∗, and each value of n∗ corresponds to a different indifference curve
(IC). We graph two specific ICs that correspond to the lower (black dotted line) and
upper (black dashed line) numerical thresholds in (3), whose theoretical counterparts
are n (k, ε, s0) = k−εs0 and n (k, ε, s1) = k−εs1 in (1). Many ICs that are not graphed
touch the budget set at the kink. In fact, the mass point at the kink corresponds
to all agents whose preference heterogeneity, n∗, lies in the bunching interval, that is,
n∗ ∈ [log (8)− 0.5 log (1.3) , log (8)− 0.5 log (0.9)].

The simulated data also exhibit bunching exactly at the kink point. In many em-
pirical applications, however, the bunching mass is dispersed in a small interval near,
instead of exactly at, the kink. We provide a solution to this issue in section 4.

3.2 Estimating elasticity bounds

We begin by estimating the elasticity bounds using the location of the kink, log (8) =
2.0794, k(2.0794); tax rates on either side of the kink, s0() = log(1.3) = 0.2624 and
s1() = log(0.9) = −0.1054; and a choice of the maximum slope, m(2).
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. use bunching

. bunchbounds y [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)
Your choice of M:
2.0000
Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000
maximum value M in the data (continuous part of the PDF):
0.3879
maximum choice of M for finite upper bound:
1.5930
minimum choice of M for existence of bounds:
0.0090

Elasticity Estimates
Point id., trapezoidal approx.:
0.4894
Partial id., M = 2.0000 :
[0.3913 , +Inf]
Partial id., M = 1.59 :
[0.4055 , 0.9374]

The bunchbounds command estimates the bounds for the elasticity using different
slope values. First, the output shows that we entered a maximum slope of 2 and the
bounds for this slope are [0.3913,∞]. Second, the command also estimates the bounds
using the maximum slope for a finite upper bound, when the maximum slope given
is greater than that value. In this case, the maximum slope for a finite upper bound
is 1.5930, resulting in the bounds [0.4055, 0.9374]. In both cases, the true elasticity
estimate of 0.5 is within these bounds. The output also gives the estimated minimum
and maximum slopes of the continuous portion of the PDF of the data. These slopes
are 0 and 0.3879. The point-identified elasticity using the trapezoidal approximation
(which is the Saez [2010] estimator) of 0.4894 is also provided.

The nonparametric bounds are also graphed by bunchbounds for different maximum
slope magnitudes of the unobserved heterogeneity PDF. These different slope magnitudes
are plotted on the horizontal axis, and the corresponding bounds are plotted on the
vertical axis. For this example, these are given in figure 2(a). This figure shows how
the upper bound, depicted as a dashed line, increases and the lower bound, depicted as
a solid line, decreases as the maximum slope increases. The vertical lines in figure 2(a)
at 0.01 and 1.59 denote the minimum slope for the existence of the bounds and the
maximum slope for a finite upper bound, respectively. The point-identified elasticity
using the trapezoidal approximation occurs where the bounds come together—the dash-
dot horizontal gray line in figure 2(a).
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Figure 2. Estimating elasticity bounds

The bunchbounds command can also be combined with conditional statements that
restrict to subsamples of the data based on values of different covariates but cannot
otherwise be conditional on covariates. For example,

bunchbounds y if x1 == 1 & x3 == 0 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) m(2)

estimates the bounds when x1 = 1 and x3 = 0. Restricting to subsamples when x1 = 1
or x1 = 0 have similar syntaxes. The output from these commands (not shown) is similar
to the output without conditioning, and the bound estimates for each subsample are
graphed in figures 2(b), 2(c), and 2(d). The bounds shift only slightly for each subsample
because the true elasticity is 0.5 for all subsamples and because the number of weighted
observations is large.
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3.3 Semiparametric point estimates of the elasticity

We estimate the elasticity using a truncated tobit model that allows for covariates.
Truncation and covariates provide robust estimation that relies on semiparametric as-
sumptions and does not require the unobserved heterogeneity PDF to be normally dis-
tributed (Bertanha, McCallum, and Seegert 2021). We demonstrate the robustness of
this method by comparing estimates of the correctly specified model with estimates
from a misspecified model that still recover the true elasticity.

3.3.1 Correctly specified tobit model

We begin by fitting the correctly specified model using bunchtobit.

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)

Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.
bunchtobit_out[10,5]

data % elasticity std err # coll cov flag
1 100 .50938668 .00218386 0 0
2 90 .50756197 .00224619 0 0
3 80 .50898083 .00227815 0 0
4 70 .50808053 .00229178 0 0
5 60 .50848689 .00231719 0 0
6 50 .50660888 .00236933 0 0
7 40 .50975777 .00251876 0 0
8 30 .50959025 .00273068 0 0
9 20 .50463572 .00317585 0 0
10 10 .47913201 .00419053 0 0

The command estimates the elasticity for 10 different subsamples by default. The
first uses all the data, the second uses 90% of the data around the kink, the third uses
80% around the kink, and so on. Estimation proceeds in 10-percentage-point intervals,
declining down to the last subsample that uses only 10% of the data. Each subsample
is truncated symmetrically, is centered around the kink, and includes the observations
at the kink. For the data simulated by (3) and using the 90% truncated subsample as
an example, about 42.5% of the data are from below the kink, about 42.5% of the data
are from above the kink, and about 5% of the data are from the kink. The fraction of
data at the kink does not change with this type of truncation. For example, the 10%
subsample uses about 2.5% of the data above and below the kink and about 5% from
the kink.
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Because the model is correctly specified, the estimates reported in the elasticity
column are always very close to the true value of 0.5 for any truncated subsample. Stan-
dard errors in column std err are small because the simulated data include 1,000,000
weighted observations. The standard errors increase as the percent of data used de-
creases because we use fewer observations. The table also reports the number of covari-
ates that were omitted because they were collinear in column # coll cov and when
optimizing the log likelihood did not converge to a maximum in column flag.
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Figure 3. Correctly specified truncated tobit estimates

Along with this numeric output, bunchtobit also produces a best-fit graph for each
subsample and a graph of the elasticity estimate for all subsamples. Figures 3(a), 3(b),
and 3(c) display these best-fit graphs for the 100%, 50%, and 20% truncation subsam-
ples, respectively. Each of these panels presents a histogram of yi (gray bars) and the
estimate of the correctly specified and truncated tobit model implied outcome variable
(black solid line). The model is correctly specified, so it fits the data well for all trun-
cated subsamples. Figure 3(d) plots the estimate (black solid line) and 95% confidence
interval (gray shading) for each truncated subsample corresponding to the elasticity
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column. The elasticity is the main parameter of interest, but the covariate coefficients
for the smallest value in numlist provided in grid(numlist) can be obtained by us-
ing the estimates replay command. For example, truncating to 77% of the data for
the correctly specified model, and then using estimates replay provides the following
output:

. bunchtobit y x1 x2 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)
> grid(77)
Obtaining initial values for ML optimization.
Truncation window number 1 out of 2, 100% of data.
Truncation window number 2 out of 2, 77% of data.
bunchtobit_out[2,5]

data % elasticity std err # coll cov flag
1 100 .50938668 .00218386 0 0
2 77 .50849786 .00228162 0 0
. estimates replay

active results

Log pseudolikelihood = -.96353496 Number of obs = 770,197
( 1) [eq_l]x1 - [eq_r]x1 = 0
( 2) [eq_l]x2 - [eq_r]x2 = 0
( 3) [eq_l]x3 - [eq_r]x3 = 0

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

eq_l
x1 -.2876614 .0035942 -80.03 0.000 -.2947059 -.2806168
x2 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 .5509258 .0036639 150.37 0.000 .5437448 .5581069

_cons 3.022123 .0033913 891.13 0.000 3.015476 3.02877

eq_r
x1 -.2876614 .0035942 -80.03 0.000 -.2947059 -.2806168
x2 3.541998 .0038313 924.49 0.000 3.534488 3.549507
x3 .5509258 .0036639 150.37 0.000 .5437448 .5581069

_cons 2.757436 .0035784 770.58 0.000 2.750422 2.764449

lngamma
_cons .347303 .001056 328.87 0.000 .3452331 .3493728

sigma .7065912 .0014946 .7051302 .7080553
cons_l 2.135406 .0030205 2.129486 2.141326
cons_r 1.94838 .0033687 1.941778 1.954983

eps .5084979 .0022816 .504026 .5129697
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Olsen (1978) introduces a reparameterization that is discussed in Hayashi (2000,
chap. 8.3) that ensures the log likelihood of a classical tobit model that is globally con-
cave. That reparameterization divides each coefficient of the covariates by the standard
deviation of the errors, and we use the same reparameterization in our log likelihood.
The results output by estimates replay report these reparameterized coefficients in-
stead of the original coefficients. The reparameterization can be reversed by multiplying
the reparameterized coefficients by the standard deviation. For example, the estimate
of the coefficient on x2 from (3) can be recovered as 3.54× 0.71 = 2.51.

The elasticity reported in column elasticity for the 77% subsample is from the
estimate eps in the active results table shown by estimates replay. The first
equation (eq_l) and the coefficient estimates on x1, x2, and x3 are from the left-hand
side of the kink and are the same as the estimates from the second equation, eq_r, on
the right of the kink. These coefficients are constrained to be the same on the left and
right sides of the kink as reflected by the three constraints ( 1), ( 2), and ( 3) at
the top of the table and consistent with (3). Because the model is correctly specified,
the covariate coefficient estimates are consistent and the estimates shown by estimates
replay are close to the (reparameterized) truth for each coefficient.

3.3.2 Incorrectly specified tobit model

The correctly specified tobit model from the previous section satisfies the assumption
that νi is normal and therefore always fits the observed distribution of yi. A mis-
specified model that does not have normally distributed errors will not always fit the
distribution of yi well. However, Bertanha, McCallum, and Seegert (2021) prove that
if the tobit model’s best-fit distribution matches the observed distribution of yi, then
the tobit model estimates the elasticity consistently whether or not the distribution of
νi is normal. This section demonstrates this robustness property using a misspecified
model that does not have normal errors. Specifically, we omit the covariate x2 and fit
the following model.
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. bunchtobit y x1 x3 [fw=w], k(2.0794) s0(0.2624) s1(-0.1054) binwidth(0.084)
Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.
bunchtobit_out[10,5]

data % elasticity std err # coll cov flag
1 100 .64269795 .00284279 0 0
2 90 .7643775 .00347177 0 0
3 80 .74113376 .00338469 0 0
4 70 .68969711 .00316174 0 0
5 60 .61191992 .00282291 0 0
6 50 .52858461 .00248579 0 0
7 40 .5125595 .00253649 0 0
8 30 .5103475 .00273716 0 0
9 20 .50446138 .00317555 0 0
10 10 .48052761 .0056067 0 0

The misspecified model returns an elasticity estimate of 0.643 using 100% of the
data. This is a substantially biased estimate of the true elasticity of 0.5, and figure 4(a)
shows that the misspecified model does not fit well.

We can truncate the sample to use data only local to the kink, however, to attenuate
the effect of omitting x2. In Bertanha, McCallum, and Seegert (2021, lemma 2), we show
that if the tobit distribution of the fitted outcome [the black solid lines in figures 4(a)
to 4(c)] matches the true distribution of the outcome variable (the gray bars in those
figures), and the unconditional distribution of n∗ is a mixture of normals, then the
elasticity estimated by the tobit is consistent for the true elasticity, regardless of whether
the conditional unobserved distribution, Fn∗|X , is normal.

Moreover, the smaller the truncation window, the easier it is to fit the unconditional
distribution of the outcome variable with a tobit, and the stronger is our conviction
that the estimate of the elasticity is consistent.
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Figure 4. Incorrectly specified truncated tobit estimates

Figure 4 demonstrates that using smaller truncation windows around the kink im-
proves the estimated distribution fit. Figure 4(b) uses 50% of the data and fits much
better than the estimate that uses all the data, in figure 4(a). Figure 4(c) uses 20% of
the data local to the kink and fits even better than the 50% subsample. Figure 4(d)
shows that for all subsamples that use 50% of the data or less, we recover an estimate
that is close to the true elasticity of 0.5. The largest truncation region for which the
estimated distribution fits the observed distribution is context specific. For the example
given in figure 4, using 50% of the data around the kink is the largest subsample of data
that provides a good fit to the outcome distribution. But for other datasets, the largest
truncation region that fits the outcome distribution well could use any fraction of the
data, so it could be very small indeed.
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4 Friction errors
Many datasets have friction errors, which are defined as when the bunching mass is
dispersed in a small interval near, instead of exactly at, the kink. Friction errors can
be caused by measurement error, optimizing frictions (Chetty et al. 2011), or other
distortions. When friction errors are present, they must first be filtered out before a
bunching estimation method can be applied.

The procedure implemented by bunchfilter is a practical way of filtering out fric-
tion errors. It works by fitting a polynomial to the empirical CDF of the response variable
with friction errors, yfrici. It excludes observations in a specified interval around the
kink during estimation and allows the intercepts to differ to the left and right of that
interval. The estimated CDF is then extrapolated into the excluded interval, which
constitutes an estimate of the CDF of the response variable without friction errors, yi.
The inverse of the extrapolated CDF evaluated at each observation produces the filtered
variable, and the difference between the intercepts at the kink provides the estimate of
the bunching mass.

This filtering method produces consistent estimates of the distribution of the re-
sponse variable without frictions under three conditions. First, the friction error, ei,
must be independent and identically distributed with known and bounded support. We
emphasize that it is not necessary for the friction error to be mean zero, or for the dis-
tribution of friction error, f (ei), to be symmetric or parametric. Second, friction errors
must only affect bunching individuals. Third, the CDF of yi without friction errors must
equal a polynomial in a known neighborhood of the kink that is bigger than the support
of the friction error.

4.1 The bunchfilter command

bunchfilter removes friction errors from data generated by a mixed continuous-discrete
distribution with one mass point plus a continuously distributed friction error. The dis-
tribution of the data with friction errors is continuous and does not have a mass point.
This type of data is common in economic bunching applications. For example, the dis-
tribution of taxable income usually has a hump around the kink where the marginal tax
rate changes instead of a mass point at the kink. The syntax, options, and description
of this command are as follows:

4.1.1 Syntax for bunchfilter

bunchfilter depvar
[

if
] [

in
] [

weight
]
, kink(#) deltam(#) deltap(#)

generate(varname)
[

binwidth(#) nopic pctobs(#) polorder(#)
]

depvar must be one dependent variable (the response in logs in many applications).

fweights are allowed; see [U] 11.1.6 weight.
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4.1.2 Options for bunchfilter

kink(#) is the location of the kink point and must be a real number in the same units
as the response variable. kink() is required.

deltam(#) is the distance between the kink point and the lower bound of the support
of the friction error to be filtered. It must be a real number in the same units as the
response variable. deltam() is required.

deltap(#) is the distance between the kink point and the upper bound of the support
of the friction error to be filtered. It must be a real number in the same units as the
response variable. deltap() is required.

generate(varname) generates the filtered variable with a user-specified name of var-
name. generate() is required.

binwidth(#) is the width of the bins for the histograms. It must be a strictly positive
real number. The default value is half of what is automatically produced by the
command histogram.

nopic suppresses displaying graphs. The default is to display graphs.

pctobs(#) specifies that, for a better fit, the polynomial regression uses observations
in a symmetric window around the kink point that contains # percent of the sample.
It must be a positive integer between 1 and 99. The default is pctobs(40).

polorder(#) specifies the order of polynomial for the filtering regression. It must be
a positive integer between 2 and 7. The default is polorder(7).

4.1.3 Description for bunchfilter

The user enters the variable to be filtered (for example, the log of income), the location
of the kink, and the size of the region around the mass point that contains the hump (in
other words, kink() − deltam(), kink() + deltap()). bunchfilter fits a polynomial
regression to the empirical CDF of the variable observed with error. This regression
excludes points in the hump window and has a dummy for observations on the left or
right of the kink. The fitted regression is used to predict values of the empirical CDF
in the hump window with a jump discontinuity at the mass point. The filtered variable
is then recovered from the inverse of the predicted CDF evaluated at the empirical CDF
value for each observation in the sample.

This procedure works well for cases where the friction error has bounded support
and only affects observations that would be at the kink in the absence of errors. A
proper deconvolution theory still needs to be developed for a filtering procedure with
general validity.
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4.2 Example for bunchfilter

We show how to remove the friction errors as a precursor to estimating the relevant
elasticity in this example. We simulate the outcome variable with friction errors as

yfrici = yi + eiI {yi = log (8)} (4)

in which yi is from (3), ei are independent and identically distributed truncated normal
from f (ei) = φ (ei) / [Φ {log (1.1)} − Φ {log (0.9)}], the standard normal PDF is φ (·),
and Φ(·) is the standard normal CDF. The errors have known and bounded support
[log (0.9) , log (1.1)], which ensures that frictions never add to or subtract from yi by more
than log 10%. The three conditions needed for bunchfilter to consistently estimate
yi, discussed in section 4, are satisfied by (4).

We generate the filtered variable, yfiltered, and figure 5 by applying bunchfilter
to the outcome variable with friction errors using the following command:

. bunchfilter yfric [fw=w], kink(2.0794) deltam(0.12) deltap(0.12)
> generate(yfiltered) binwidth(0.084) pctobs(30)

(output omitted )

We exclude log 12% below the kink, deltam(0.12), and log 12% above the kink,
deltap(0.12), because we know these excluded regions will capture the support of the
friction errors because the example frictions in (4) never add to or subtract from yi by
more than log 10%.

Without the friction errors, 5.17% of the responses bunch at the kink in the simulated
data from (3). Including friction errors lowers this fraction to zero because no obser-
vations are exactly at the kink in (4). After removing the frictions with bunchfilter,
the filtered data have 5.15% of the responses at the kink.
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Figure 5. Effect of bunchfilter on data with friction errors

The histogram of yfrici is shown in figure 5(a). The unfiltered data (black bars)
exhibit diffuse bunching around the kink point. The filtered data are saved in the
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variable yfiltered by invoking the option generate(yfiltered). The histogram for
the filtered data is depicted in the gray bars with evident reassignment of original
dispersed observations around the kink to the kink point exactly. This reassignment
can also be seen in the contrast between the filtered and unfiltered CDFs in figure 5(b).
Both of these figures are produced by the bunchfilter command.

5 Automatic estimation
Despite friction errors and model misspecification, bunching provides multiple estimates
of the true elasticity by implementing bunchbounds, bunchtobit, and bunchfilter
automatically. The user can provide outcome data with friction errors and a misspecified
model, and bunching can still recover estimates that are close to the true elasticity.

5.1 The bunching command

The command bunching is a wrapper function for three other commands: bunchbounds,
bunchtobit, and bunchfilter.

5.1.1 Syntax

bunching depvar
[

indepvars
] [

if
] [

in
] [

weight
]
, kink(#) s0(#) s1(#)

m(#)
[

nopic savingbounds(filename
[

, replace
]
) binwidth(#)

grid(numlist) numiter(#) savingtobit(filename
[

, replace
]
) verbose

deltam(#) deltap(#) generate(varname) pctobs(#) polorder(#)
]

The syntax and options for bunching are inherited from the three commands for
which it is a wrapper function, so we do not repeat them here. Entries for the first four
options—kink(), s0(), s1(), and m()—are required, whereas options inside the square
brackets are not required. bunching always implements bunchbounds and bunchtobit.
In contrast, bunchfilter is only called by bunching if all the required entries for
bunchfilter—namely, deltam(), deltap(), and generate()—are specified.

5.2 Example using bunching

The following example uses bunching with the outcome data from (4) but omits weights
and the covariate x2 to demonstrate the robustness of this package.
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. bunching yfric x1 x3, kink(2.0794) s0(0.2624) s1(-0.1054) m(2) binwidth(0.084)
> deltam(0.12) deltap(0.12) generate(ybunching) pctobs(30)
***********************************************
Bunching - Filter
***********************************************
[ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ]
***********************************************
Bunching - Bounds
***********************************************

Your choice of M:
2.0000
Sample values of slope magnitude M
minimum value M in the data (continuous part of the PDF):
0.0000
maximum value M in the data (continuous part of the PDF):
0.3334
maximum choice of M for finite upper bound:
1.5530
minimum choice of M for existence of bounds:
0.0792

Elasticity Estimates
Point id., trapezoidal approx.:
0.4930
Partial id., M = 2.0000 :
[0.3926 , +Inf]
Partial id., M = 1.55 :
[0.4087 , 0.9480]

***********************************************
Bunching - Tobit
***********************************************
Obtaining initial values for ML optimization.
Truncation window number 1 out of 10, 100% of data.
Truncation window number 2 out of 10, 90% of data.
Truncation window number 3 out of 10, 80% of data.
Truncation window number 4 out of 10, 70% of data.
Truncation window number 5 out of 10, 60% of data.
Truncation window number 6 out of 10, 50% of data.
Truncation window number 7 out of 10, 40% of data.
Truncation window number 8 out of 10, 30% of data.
Truncation window number 9 out of 10, 20% of data.
Truncation window number 10 out of 10, 10% of data.
bunchtobit_out[10,5]

data % elasticity std err # coll cov flag
1 100 .63579175 .00894356 0 0
2 90 .75808395 .01094832 0 0
3 80 .73437664 .01066292 0 0
4 70 .6836851 .00996446 0 0
5 60 .60786249 .00891428 0 0
6 50 .52680042 .00787451 0 0
7 40 .50716643 .00796644 0 0
8 30 .50457921 .00858105 0 0
9 20 .501674 .01001586 0 0
10 10 .5076258 .02029615 0 0

bunching first filters the data using bunchfilter. It then implements bunchbounds
on the filtered outcome using the full sample and maximum slope magnitude as specified.
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Finally, it uses bunchtobit on the filtered outcome with the covariates x1 and x3

specified for each of the 10 default truncated subsamples.
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Figure 6. Elasticity estimates with friction errors and model misspecification

Along with numeric output, bunching produces the same graphs produced by the
bunchfilter, bunchbounds, and bunchtobit commands. Selections from these graphs
are shown in figure 6. The output from bunching shows that, after we filter the data,
the bounds contain the true value of 0.5 [figure 6(a)]. Likewise, estimates from the
tobit model in the numeric output show that using a 40% subsample or less recovers
the true elasticity of 0.5 despite friction errors and model misspecification. Truncating
to 40% of the data provides a good fit, as shown in figure 6(b), and figure 6(c) shows
that truncating to 20% also provides a good fit. Figure 6(d) shows that estimates with
confidence intervals include the true elasticity of 0.5 for subsamples with 40% of the
data and less.
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6 Concluding remarks
Our new bunching package provides a series of estimation methods that enables re-
searchers to examine the sensitivity of their elasticity estimates to different identification
assumptions. The new techniques include bounds based on nonparametric assumptions
and a midcensored regression based on semiparametric assumptions and covariates.
The nonparametric assumptions are the most flexible of the two approaches and nest
the trapezoidal approximation assumption, which was the method used by the original
bunching estimator. In cases with multiple kinks, these methods can be applied at each
kink separately if the constraint is continuous preceding the kink under study. bunching
has broad applicability because budget constraints with kinks occur in a variety of fields
within economics and other social sciences.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0684 (to install program files, if available)

. net get st0684 (to install ancillary files, if available)

The bunching package and the simulated data can also be downloaded from the
Statistical Software Components Archive by typing

. ssc install bunching
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