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Abstract. We discuss the ivcrc command, which implements an instrumental-
variables (IV) estimator for the linear correlated random-coefficients model. The
correlated random-coefficients model is a natural generalization of the standard lin-
ear IV model that allows for endogenous, multivalued treatments and unobserved
heterogeneity in treatment effects. The estimator implemented by ivcrc uses re-
cent semiparametric identification results that allow for flexible functional forms
and permit instruments that may be binary, discrete, or continuous. The ivcrc
command also allows for the estimation of varying-coefficient regressions, which
are closely related in structure to the proposed IV estimator. We illustrate the
use of ivcrc by estimating the returns to education in the National Longitudinal
Survey of Young Men.

Keywords: st0680, ivcrc, ivregress, instrumental variables, correlated random co-
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1 Introduction
In this article, we describe the ivcrc command for Stata, which implements a lin-
ear instrumental-variables (IV) estimator for the correlated random-coefficients (CRC)
model. The CRC model relaxes the constant-effects assumption of the standard linear
IV model by allowing for random coefficients, which capture unobserved heterogeneity
in the causal effect of the endogenous variables, x, on the outcome variable, y. Heckman
and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) showed that if there is no un-
observed heterogeneity in the way the instrument, z, affects the endogenous variables,
x, then the usual linear IV estimator (for example, ivregress) will estimate the mean
of the random coefficients. However, this assumption is uncomfortably asymmetric:
treatment effects can be unobservably heterogeneous, but instrument effects cannot.
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Masten and Torgovitsky (2016) address this drawback by showing how to allow
for heterogeneity in the relationship between z and x. The identification arguments
developed there allow for the instrument to be binary, discrete, or continuous and depend
only on familiar, low-level assumptions about exclusion, exogeneity, and instrument
relevance. The arguments also lead to a semiparametric estimator that does not suffer
from the curse of dimensionality. In section 2, we briefly review the identification results
and estimation approach developed in Masten and Torgovitsky (2014, 2016). The ivcrc
command implements their proposed estimator.

The structure of the estimator turns out to be quite similar to a common estimator
for the varying-coefficient model (for example, Fan and Zhang 2008; Park et al. 2015).
We have written ivcrc to include a standard estimator for this model as a special case.
We briefly describe varying-coefficient models in section 3.

In section 4, we discuss syntax and options for the ivcrc command. In section 5, we
illustrate the command by estimating the return to schooling with a widely used extract
from the National Longitudinal Survey of Young Men. We provide some brief conclud-
ing remarks in section 6. For further examples, see Gollin and Udry (2021), who used
the ivcrc command to estimate agricultural production functions; Morales-Mosquera
(2020), who used it to estimate the effects of police infrastructure in Colombia; and Mas-
ten and Torgovitsky (2014), who used the estimator to revisit Chay and Greenstone’s
(2005) analysis of the effect of air pollution on housing prices.

2 The correlated random-coefficients model
2.1 Model and motivation

The simplest form of the model fit by ivcrc has the outcome equation

y = b0 + b1x (1)

where y is an observed outcome, x is an observed explanatory variable, and both b0 and
b1 are unobserved random variables. The model is described as a random-coefficients
model because of the treatment of b1 as an unobserved random variable. Economists
have long been interested in such models (Wald 1947; Hurwicz 1950; Rubin 1950; Becker
and Chiswick 1966). To allow for endogeneity, x is permitted to be arbitrarily depen-
dent with both b0 and b1. This feature makes the model one of correlated random
coefficients.1

1. This terminology seems to have been first used by Heckman and Vytlacil (1998). In earlier work,
some authors—for example, Conway and Kniesner (1991)—had used the adjective “correlated” to
describe an unrestricted correlation structure between the random coefficients on different explana-
tory variables. Our model also allows for this.
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It is helpful to compare (1) with the outcome equation for the textbook linear model,

y = α+ βx+ u (2)

where α and β are fixed (deterministic) parameters and u is an unobservable random
variable with mean 0. This model also allows for endogeneity by permitting x to be
dependent with u. The distinction between u in (2) and b0 in (1) is not important,
because one can view b0 as being equal to α + u. Rather, the important difference
between (2) and (1) is that the coefficient on x in (2), β, is deterministic, whereas the
coefficient on x in (1), b1, is a random variable. The interpretation is that in (2) the
causal effect of x on y is the same for all agents, whereas in (1) it is a random variable
that can be dependent with x. This important difference allows for heterogeneous
treatment effects and selection on the gain of the sort described in Heckman, Urzua,
and Vytlacil (2006). One can view (2) as a special case of (1) with a degenerate b1.

Textbook discussions of (2) show that β is identified if there exists an instrument
z such that Cov(u, z) = 0 and Cov(x, z) 6= 0. The corresponding IV estimator can be
implemented in Stata with the ivregress command. However, if the data are in fact
generated by (1), then this estimator converges to

Cov(y, z)
Cov(x, z)

= E
(
b1 ×

x {z − E(z)}
E [x {z − E(z)}]

)
(3)

This quantity is difficult to interpret in general (Garen 1984; Wooldridge 1997; Heckman
and Vytlacil 1998). It is a weighted average of the causal effect of x on y, that is, a
weighted average of b1. The weights, however, can be both positive and negative. It
generally does not equal the unweighted average of b1, unless b1 is independent of (x, z),
which would rule out the type of selection on the gain scenario described in Heckman,
Urzua, and Vytlacil (2006).

A natural question is whether there are additional assumptions under which the
IV estimator provided by ivregress would consistently estimate a parameter that is
easier to interpret. For example, are there additional conditions under which this esti-
mator converges to the average partial effect, E(b1)? Heckman and Vytlacil (1998) and
Wooldridge (1997, 2003, 2008) show that there are indeed such conditions, namely, the
assumption that the causal effect of z on x is homogeneous. While convenient, this type
of homogeneity assumption is uncomfortably asymmetric. It enables the additional het-
erogeneity in (1) relative to (2) only by assuming away the same type of heterogeneity
in the analogous relationship between z and x.2

2. An influential literature started by Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist,
Imbens, and Rubin (1996), and Angrist, Graddy, and Imbens (2000) has provided conditions under
which the IV estimator provided by ivregress can be interpreted as a local average treatment effect
or a weighted average of various local average treatment effects. While related, these arguments
are nonparametric and, in particular, do not use the linearity in x of the CRC model.
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2.2 Identification and estimation by conditional linear regression

Given these negative results, it is worthwhile to consider estimators other than
ivregress. The ivcrc command provides such an estimator. This estimator is based
on the following control function argument, which is developed formally in Masten and
Torgovitsky (2016).3

Suppose that there exists an observable variable r such that x ⊥⊥ (b0, b1) | r. The
variable r is a “control function” (or sometimes, and more loosely, a “control variable”)
because it controls for the endogeneity in x. That is, while x is endogenous in the sense
of being unconditionally dependent with (b0, b1), it is exogenous after conditioning on
the control function r. In practice, r is constructed from the instrument; we explain the
derivation and construction of r in more detail in section 2.3.

Given the availability of a variable r with this property, it is straightforward to see
that one could consistently estimate the vector β(r̃ ) ≡ E(b | r = r̃ ), where b ≡ [b0, b1]

′

by a linear regression of y on x conditional on r = r̃. Letting w ≡ [1, x]′ so that y = w′b,
one has

E (ww′ | r = r̃ )
−1 E (wy | r = r̃ ) = E (ww′ | r = r̃ )

−1 E (ww′b | r = r̃ )

= β (r̃ ) (4)

where the second equality uses the assumption that b is independent of x (and hence
w), conditional on r. For this argument to work, E(ww′ | r = r̃ ) must be invertible,
which is the usual condition of no perfect multicollinearity, but now conditional on
r = r̃. Intuitively, some variation must still be left in x after conditioning on r = r̃.
Assuming that this is the case for all r̃ in the support of r, one can average up the linear
regression estimands on the right-hand side of (4) to obtain E(b) ≡ E{β(r)}, and hence
the average partial effect of x on y, E(b1).

This identification argument suggests an estimator given by an average of conditional
ordinary least-squares estimators. The conditioning is incorporated by applying kernel
weights to each observation, where the weights reflect the distance of r from r̃. More
concretely, given a sample {yi, xi, ri}ni=1, a conditional regression estimator of y on w
near r = r̃ is given by

β̂ (r̃ ) ≡

{
n∑

i=1

khi (r̃ )wiw
′
i

}−1{ n∑
i=1

khi (r̃ )wiyi

}
(5)

where khi ( r̃ ) ≡ h−1k{(ri − r̃ )/h} with k() a second-order kernel function and h > 0 a
bandwidth parameter.

The conditional ordinary least-squares estimator (5) displays the same type of bias-
variance tradeoff that is familiar from nonparametric kernel regression. As h → ∞,

3. This article builds on a large literature on control functions, including Heckman (1979), Heckman
and Robb (1985), Smith and Blundell (1986), Blundell and Powell (2004), Florens et al. (2008),
and Imbens and Newey (2009), among many others.
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khi (r) → k(0) for all i so that β̂(r̃ ) is just the estimator from a usual linear regression
of y on w. We expect this estimator to be biased for E(b) if x is endogenous. Given
the control-function assumption, this bias disappears as h→ 0 but at the cost of higher
variance in using fewer effective observations in computing β̂(r̃ ). Balancing these two
concerns entails using fewer than n effective observations, and consequently β̂(r̃ ) will
have a slower-than-parametric rate of convergence for β(r̃ ).

As a parameter of interest, β(r̃ ) has a clear interpretation as the average partial
effect of x on y, conditional on r = r̃. Variation in this parameter as a function of r̃
indicates treatment-effect heterogeneity. We can average β(r) for r in some known set
R to obtain the average partial effect for the subpopulation with r ∈ R. A natural
estimator of this average is given by

β̂R =

∑n
i=1 β̂(ri)1 (ri ∈ R)∑n

i=1 1 (ri ∈ R)
(6)

where 1(·) is the indicator function that is 1 if · is true and 0 otherwise. At least in
principle, β̂R can be estimated at the parametric

√
n rate (see Masten and Torgovitsky

[2014], or, for a more general discussion, Newey [1994]). If the local Gram matrix is
invertible for (almost) every r̃ in the support of r, then R can be taken to be the entire
support of r so that (6) becomes an estimator of the unconditional average of b.

A more general version of (1) is

y = b0 +

dx∑
j=1

bjxj +

d1∑
j=1

bdx+jz1j ≡ w′b (7)

where x is now a dx-dimensional vector of potentially endogenous explanatory variables
and z1 ∈ Rd1 is a vector of exogenous explanatory variables. For notation, we combine
these variables and their coefficients together with the constant term as w ≡ [1,x′, z′

1]
′

and b. We rename the excluded exogenous variable as z2 and combine the exogenous
variables (included and excluded instruments) together into a vector z = [z′

1, z
′
2]

′. The
required condition on the control function is now that w⊥⊥ b | r so that both x and z1
are exogenous after conditioning on r. Given this condition, the identification argument
(4) and the estimators (5) and (6) follow exactly as before.

2.3 Estimation of the control function

We have shown how a control function, r, can be used to estimate interesting parameters
in a CRC model, but we have not yet explained how one can find or construct such a
control function. The most common approach is to assume that for each j = 1, . . . , dx,
there exists a function hj and unobservables v ≡ [v1, . . . , vdx

]′ ∈ Rdx such that

xj = hj(z,vj) for each j (8)

where hj(z, ·) is strictly increasing for each z. As shown by Imbens and Newey (2009)
and Masten and Torgovitsky (2016), if (b,v) ⊥⊥ z, then r ≡ [r1, . . . , rdx

]′ is a valid
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control function, where rj ≡ Fxj |z(xj | z) and Fxj |z(x̃j | z̃) ≡ P[xj ≤ x̃j | z = z̃]
is the population conditional distribution function of xj , given z. The components rj
of this control function can be interpreted as providing the conditional rank (relative
position) of xj given z. The ivcrc command is written primarily with this choice of
control function in mind, although the user can provide a different choice if desired. In
that case, the estimator can be viewed as fitting the varying-coefficient model discussed
in the next section.

We refer to Masten and Torgovitsky (2016) for more theoretical details on the in-
terpretation and restrictiveness of maintaining (8); see also Chernozhukov and Hansen
(2005) and Torgovitsky (2015). Here we focus on the implications for implementing (4)
and (5), with r as the resulting conditional ranks. The first implication is that it may be
useful to make a distinction between different components of the endogenous variables,
x. For example, if x2 is a deterministic transformation of x1, say, x2 = x2

1, then x2 is
also fully determined by r1. As a result, there is no need to separately estimate and
condition on r2. In the terminology of Masten and Torgovitsky (2016), x1 is a basic
endogenous variable and x2 = x2

1 is a derived endogenous variable.

Derived endogenous variables require special treatment, because they appear as part
of the vector of explanatory variables w but are not included as part of the conditioning
variables z in the definition of rj ≡ Fxj |z(xj | z). More formally, a component xj of x
is a derived endogenous variable if it can be written as xj = gj(x−j , z) for some known
function gj . Interaction terms and other nonlinear functions form the primary examples
of derived endogenous variables. The ivcrc command handles derived endogenous
variables using the dendog() option discussed in section 4. The empirical illustration
in section 5 provides an example of its use.

A second issue raised by this choice of r is that it is not directly observed in the
data. Instead, we need to estimate rji = Fxj |z(xji | zi) in a first step for each basic
endogenous variable xj and each observation i. The ivcrc command approaches this
problem by estimating conditional quantile functions and then inverting them using
the prerearrangement operator studied by Chernozhukov, Fernández-Val, and Galichon
(2010). This operator translates an estimator of a conditional quantile function, say,
Q̂xj |z(· | z̃), into an estimator of a conditional distribution function through the rela-
tionship

F̂xj |z(x̃j | z̃) =
∫ 1

0

1

{
Q̂xj |z(s | z̃) ≤ x̃j

}
ds (9)

For estimating Q̂xj |z(s | z̃), the ivcrc command uses linear quantile regression (see,
for example, Koenker 2005) as implemented by Stata’s built-in qreg command. The
generated regressors {r̂ji}ni=1 are then constructed by substituting (xji, zi) into (9) for
every i.
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A third point that arises when using this choice of r is that (6) can be simplified
when there is only one basic endogenous variable. This is because r = r ≡ Fx|z(x | z) is
uniformly distributed when x = x is continuous and scalar. As a result, the probability
that r = r lands in any region R is known a priori and does not need to be estimated.
In this case, the population average of β(r) conditional on r ∈ R reduces to

βR = λ (R)−1
∫
R
β(r) dr (10)

where λ(R) is the Lebesgue measure of the set R. When (10) holds, ivcrc estimates it
by substituting the (known) value of λ(R) and numerically approximating the integral∫
R β̂(r) dr that replaces β(r) with β̂(r).

A fourth point that is worth reemphasizing is that for (4) to exist, the Gram matrix
E(ww′ | r = r̃) must be invertible. That is, there must not be perfect multicollinearity
among the regressors after conditioning on r = r̃. When using the conditional rank for
r, conditioning on r = r̃ still leaves variation in the basic endogenous variables as long
as the excluded instrument, z2, is appropriately dependent with x near its rth quantile.
See Masten and Torgovitsky (2014, 2016) for a more detailed discussion of this point.
A consequence for implementation is that it is necessary to exclude from R regions over
which this instrument relevance condition fails.

2.4 Bandwidth selection

The ivcrc command implements automated bandwidth selection for h based on a rule-
of-thumb (ROT) method proposed by Fan and Gijbels (1996). We first estimate E(y |
r = r̃,w = w̃) as a fourth-order polynomial in r̃, linearly interacted with w̃. We use
this regression to produce estimates of the second derivative of E(y | r = r̃,w = w̃)

with respect to r̃, which we denote by w̃′δ̂(r̃). The ROT bandwidth is then defined as

hROT ≡ 0.58

{
σ̂2∑n

i=1
1
2w

′
iδ̂ (r̂i)

}1/5

where σ̂2 is the homoskedastic error variance from the polynomial regression and the
constant 0.58 is derived from the roughness for single-peaked kernels. See the discussion
in Hansen (2022, sec. 19.9) for further details.

2.5 Statistical inference

The asymptotic variance of β̂R needs to account for the statistical error involved in
estimation of the control function, r. Masten and Torgovitsky (2014) report this calcu-
lation, but the form of the asymptotic variance is complicated and does not facilitate
direct estimation. Fortunately, β̂R is a relatively well-behaved estimator, so the boot-
strap should be valid for approximating standard errors and confidence intervals (see,
for example, Chen, Linton, and Van Keilegom [2003]). The ivcrc command uses Stata’s
built-in bootstrap routine for these purposes.
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We evaluate the validity of the bootstrap using a small Monte Carlo simulation. The
model is (1) with a single endogenous variable, x. The relationship between x, z, and v
in (8) is specified as

x = 0.3z + 0.4zv + v

where z is binary {0, 1} with equal probability and v is normally distributed with mean
0.1 and variance 0.2. The unobservables are related by

b0 = 0.3v + ε0 and b1 = 0.7v + ε1

where ε0 and ε1 are normally distributed, independent of v, with means 0.2 and 0.45
and variances 0.2 and 1. The parameter values imply E(b0) = 0.23 and E(b1) = 0.52.

We implement the bootstrap on each of 1,000 Monte Carlo replications with 250
bootstraps per replication while using the ROT bandwidth. We first consider a nominal
level 5% test that uses bootstrap standard errors together with a normal approximation.
We reject the true null hypotheses E(b0) = 0.23 and E(b1) = 0.52 in 4.9% and 6.2%
of replications, respectively. Then we consider the coverage rate for a nominal 95%
bootstrap percentile confidence interval without exploiting normality. The confidence
intervals covered the true values of E(b0) and E(b1) in 94.5% and 94% of replications, re-
spectively. We interpret these findings as providing evidence that the bootstrap provides
inference that is close to size-correct.

3 Varying-coefficient models
The CRC model can be viewed as a special case of a larger class of models called varying-
coefficient models. A simple example of this model is

y = β0(s) + β1(s)x+ u (11)

where y is an observed outcome, s are observed covariates (sometimes called “effect mod-
ifiers”), x is our primary observed covariate of interest, and u is an unobserved variable.
Both β0(·) and β1(·) are unknown, nonparametrically specified functions. Conditional
on s, this is a parametric model in x. But conditional on x, it is a nonparametric model
in s. While it is unclear who first proposed such models (for example, see O’Hagan
[1978] for an early citation), their in-depth study began with Cleveland, Grosse, and
Shyu (1991) and Hastie and Tibshirani (1993). Fan and Zhang (2008) and Park et al.
(2015) provide recent reviews of this literature.

Given a sample {yi, xi, si}ni=1, the local regression estimator (5) with ri = si is pre-
cisely the Nadaraya–Watson (local constant) varying-coefficient estimator, for example,
(2.1) of Park et al. (2015). Cleveland, Grosse, and Shyu (1991) proposed a local lin-
ear estimator. Fan and Zhang (1999) study these and other alternative estimators in
detail. The asymptotic theory in Masten and Torgovitsky (2014) extends that of the
varying-coefficient literature in two directions: a) by allowing for s to be a generated
regressor and b) by considering the asymptotic distribution of average coefficients, such
as E{β1(s)}. While the literature on varying-coefficient models focuses on the functions
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β0(·) and β1(·) themselves, the econometric models we consider motivate interest in
these average coefficients as well.

The ivcrc command can fit varying-coefficient models like (11) via the varcoef()
option. See section 4 for details. This estimator allows all components of s to enter
all coefficients. Park et al. (2015) discuss estimators that allow one to impose the
assumption that some components of s enter some coefficients but not others.

We conclude this section by briefly showing how the linear CRC model can be seen
as a varying-coefficient model. For simplicity, we only consider the simple model (1).
Write

y = b0 + b1x

= E(b0 | r) + E(b1 | r)x+ [{b0 − E (b0 | r)}+ {b1 − E (b1 | r)}x]
≡ β0(r) + β1(r)x+ u

By x⊥⊥ (b0, b1) | r and the definition of u, E(u | r, x) = 0. Thus, the linear CRC model
is a varying-coefficient model with effect modifier r.

4 The ivcrc command
The syntax for the ivcrc command is

ivcrc depvar
[

varlist1
]

(varlistedg = varlist2)
[

if
] [

in
] [

, options
]

In terms of the IV model discussed in section 2, depvar is y, varlist1 consists of the
components in z1, varlistedg are the basic endogenous variable components of x, and
varlist2 are the components in z2. The required components of the syntax are depvar,
varlist2, and varlistedg, while the remaining terms in brackets are optional.

The command allows for the options shown in table 1. The dendog() option allows
the user to specify a list of endogenous variables that should be treated as derived
(rather than basic), with the implications for implementation discussed in section 2. The
bootstrap() option controls the calculation of standard errors and confidence intervals.
Note that ivcrc does not compute these by default, because the bootstrap procedure
can be computationally intensive. The kernel() and bandwidth() options allow the
user to change the kernel function k and bandwidth h used to compute the weights in (5).
If the input for bandwidth() is a list of numbers (separated by commas), then ivcrc
will compute different estimates for each bandwidth. The computational efficiency of
specifying several bandwidths at once is especially useful when calling bootstrap() for
standard errors and confidence intervals. The ranks() option controls the degree of
accuracy for approximating the integral in (9).
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Table 1. Options for ivcrc

options Description

dendog(varlist) list of derived endogenous variables, known
functions of varlistedg

bootstrap(options) bootstrap confidence intervals and standard
errors; default setting is no standard errors;
allows passing bootstrap command options,
for example, reps() or cluster();
access additional postestimation statistics
via estat bootstrap

kernel(string) choose alternative kernel functions; default is
the Epanechnikov kernel; string may be
uniform, triangle, biweight, triweight,
cosine, or gaussian

bandwidth(numlist) bandwidth of kernel; default is the ROT; if
multiple (comma-separated) values are
specified, estimates for each bandwidth
are reported; suboption: together with
varcoef(), specify the bandwidth for
a varying-coefficient model

ranks(integer) use [(1/integer), . . . , 1− (1/integer)] evenly
spaced quantiles for computing the
conditional rank statistic; default is
ranks(50)

average(numlist
[

, report
]
) options for numerical integration, with

generalized numlist syntax lb(g)ub; specify
average(lb(0)ub) to use the sample
average method; default is
average(0(0)1); specify nonzero values of
g to use the grid method, for example,
average(.01(.01).99) to numerically
integrate over the grid
(0.01, 0.02, . . . , 0.99); the space of
integration may comprise nonoverlapping
ascending subsets by specifying comma-
separated lists; suboption: specifying
average(lb1(g1)ub1,. . .,lbN(gN)ubN,
report) returns estimates for each
subset as well as estimates over their
union; suboption: together with varcoef(),
specify the support for kernel weights in
a varying-coefficient model

Continued on next page
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options Description

generate(varname
[

, replace
]
) save the conditional rank estimates to

varname in the working dataset; this option
is ignored when bootstrapping

userank(varname) use varname as the conditional rank statistic,
bypassing rank estimation

savecoef(filename) create a comma-delimited (.csv) dataset of
the local rank-specific coefficient estimates,
saved to filename

varcoef(varlist) fit a varying-coefficient model, in which
coefficients are conditioned on covariates
specified in varlist as an alternative to
conditioning on the ranks of the basic
endogenous variables varlistedg; options
average() and bandwidth() are required
with varcoef()

The average() option determines the set R over which the local estimates β̂(r)
are averaged and controls how this averaging is implemented. For example, average(.1
(0).3) sets R = [0.1, 0.3] and uses the empirical mean to evaluate the integral in
(10). The command interprets a grid step of 0 as a request for computing β̂R using
the sample averaging formula (6), which does not use knowledge of the distribution
of r. Alternatively, specifying average(.1(.01).3) sets R = [0.1, 0.3] and uses grid
steps of 0.01 to numerically evaluate the integral. Multiple nonoverlapping sets can
be specified by adding commas. If the report suboption is given, then estimates on
each set will be reported separately, together with the overall estimate. For example,
average(.1(0).3, .5(0).8, report) would report the estimate of βR just discussed,
along with another empirical average estimate for R = [0.5, 0.8]. The grid method
supports the report suboption as well.

There are two situations in which the command will always use (6) instead of at-
tempting to numerically integrate (10). The first is when there is more than one basic en-
dogenous variable, in which case r is a vector with a joint distribution that is not known
a priori and (10) is not valid. If a user specifies a list of subsets average(lb1(g1)ub1,. . .,
lbN(gN)ubN) when there are multiple basic endogenous variables, the command inter-
prets each subset lbn(gn)ubn as belonging to the nth endogenous variable in order of
appearance in varlistedg. Because of the difficulty of specifying sets in higher dimensions,
more-general multidimensional subset estimates may be obtained either by permuting
this syntax or by storing the local estimates β̂(r) using the savecoef() option and sub-
sequently computing any desired subset average. This is not essential to the method,
but allowing for more-general specifications would complicate the syntax significantly
without providing much in the way of useful flexibility.
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The second case in which ivcrc only uses the empirical average (6) is when the
varcoef() option is called. Passing varcoef(varlist) skips the estimation of r̂i and
uses the variables in varlist in its place. Because the density of these variables is
generally not known a priori, (10) may not be true, so (6) is used. The average in (6)
can still be taken over some specified subset R, and such a set is still specified using
the average(lb(0)ub) syntax. Note that using the (varlistedg = varlist2) syntax in
combination with the varcoef() option will generate an error.

5 Using ivcrc to estimate the returns to schooling
In this section, we use the ivcrc command to estimate the returns to schooling. Our
discussion builds off of Card (1995, 2001) and Heckman and Vytlacil (1998), who note
that a simple model of optimal schooling decisions (such as Becker [1975]) would generate
a CRC model like (1) or (7). In the notation of (7), y would be a labor market outcome
(for example, wages) and x would be a measure of educational attainment (for example,
years of completed schooling). There are several reasons to expect confounding factors
that make the direct relationship between x and y a poor indicator of the causal effect.
Some of these determinants, like family background characteristics, can be observed
in data and controlled for. However, the fact that individuals have some choice over
their education also suggests that some important confounding factors are inherently
unobservable.

Instrumental-variables strategies have been widely used to tackle this self-selection
problem. Some instruments that have been used are compulsory schooling laws (An-
grist and Krueger 1991; Oreopoulos 2006), the distance a teenager lives from a college
(Card 1993; Mountjoy 2021), and local labor market conditions (Cameron and Heck-
man 1998).4 The argument underlying these strategies is that the proposed instrument
affects an individual’s educational attainment by shifting the costs or benefits involved
but does not itself directly affect labor market outcomes and is uncorrelated with any
other factors that do. The CRC model discussed in section 2 allows for the effect that an
instrument has on an individual’s educational choice to be correlated with their returns
to schooling. So, for example, those whose education choice is affected by distance might
have systematically different returns to schooling than those whose choice is not.

Our analysis uses the same data and regression specification as Card (1993) and
Kling (2001), which are available as part of Cameron and Trivedi’s (2010) textbook on
Stata for microeconometrics. The data are an extract from the National Longitudinal
Survey of Young Men that consists of 3,010 men who were aged 24–34 in 1966. The
extract contains variables from both 1966 and a follow-up survey in 1976. The data,
as well as the code for the following analysis, are available at https: //github.com/a-
torgovitsky/ivcrc.

4. See also Carneiro, Heckman, and Vytlacil (2011) for an IV strategy that uses multiple types of
instruments.

https://github.com/a-torgovitsky/ivcrc
https://github.com/a-torgovitsky/ivcrc
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The outcome variable is wage76, the individual’s log hourly wage in 1976. The pri-
mary endogenous variable of interest is grade76, the individual’s highest level of school-
ing measured in years. The regression includes two additional endogenous variables:
years of potential work experience in 1976, exp76, and squared experience, expsq76.
Potential work experience is defined as exp76 = age76−grade76−6, following the stan-
dard convention for Mincer equations (Mincer 1958, 1974). To avoid perfect collinearity,
we follow the literature by including experience in the outcome equation and age in the
first-stage equation. Because potential experience is a derived endogenous variable, this
convention also allows us to illustrate the command’s dendog() option.

We include a set of sociodemographic controls for race (black), parents’ education
(daded, momed, famed1–famed8), family structure at age 14 (momdad14, sinmom14), and
geographic region (smsa66, smsa76, reg1–reg8).5 While not essential to demonstrating
use of the ivcrc command, the inclusion of these controls shows that the semiparametric
estimator does not suffer from the curse of dimensionality. Including these controls also
replicates the regression specification in Card (1993) and Kling (2001), which allows
us to compare the ivcrc command with popular alternative estimators, like two-stage
least squares (for example, ivregress).

We begin by estimating a linear regression of log wages on schooling, potential work
experience, and demographic control variables. This type of regression is often referred
to as a Mincer equation; see Heckman, Lochner, and Todd (2006) for an in-depth
discussion. The estimates indicate that an additional year of schooling is associated
with an approximate 7.25% increase in 1976 wages:

. use http://www.stata-press.com/data/mus2/mus207klingdata

. local ControlVars black south76 smsa66 smsa76 reg1-reg8
> momdad14 sinmom14 daded momed famed1-famed8
. local TableOptions ci noobs nostar nomtitles nonumbers nolines nonotes nogaps
. regress wage76 grade76 exp76 expsq76 `ControlVars', robust
Linear regression Number of obs = 3,010

F(27, 2982) = 52.45
Prob > F = 0.0000
R-squared = 0.3040
Root MSE = .37191

Robust
wage76 Coefficient std. err. t P>|t| [95% conf. interval]

grade76 .0725423 .0038685 18.75 0.000 .0649572 .0801275
(output omitted )

As discussed above, education is a choice variable that is likely correlated with latent
factors that affect wages, even after controlling for sociodemographic characteristics.
Card (1993) used an indicator for living (at age 14) in a county with a four-year college
as an instrument for education. Proximity to a four-year college is associated with about
a third of a grade higher educational attainment.

5. For readability, we collect these into a local variable, ControlVars, for this exercise.
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. regress grade76 col4 `ControlVars', robust
Linear regression Number of obs = 3,010

F(25, 2984) = 53.50
Prob > F = 0.0000
R-squared = 0.2937
Root MSE = 2.2591

Robust
grade76 Coefficient std. err. t P>|t| [95% conf. interval]

col4 .3669905 .1023706 3.58 0.000 .1662663 .5677147
(output omitted )

For college proximity to be a valid instrument, it should have no direct effect on wages
in 1976 and also be uncorrelated with other factors that are correlated with wages or
schooling decisions after conditioning on observables. There are several reasons to be
suspect of this requirement; see, for example, Kling (2001), and see Mountjoy (2021) for
a modern discussion with richer geographic data. Here we simply compare estimators
and take the validity of the college proximity instrument for granted.

The two-stage least-squares estimator suggests that an additional year of schooling
causes about a 13.33% increase in 1976 wages:

. ivregress 2sls wage76 (grade76 exp76 expsq76 = col4 age76 agesq76)
> `ControlVars', perfect
Instrumental variables 2SLS regression Number of obs = 3,010

Wald chi2(27) = 1007.25
Prob > chi2 = 0.0000
R-squared = 0.2030
Root MSE = .39614

wage76 Coefficient Std. err. z P>|z| [95% conf. interval]

grade76 .1333034 .0493359 2.70 0.007 .0366068 .2300001
(output omitted )

This interpretation presumes that the causal effect of schooling on wages is constant. It
yields the potentially puzzling conclusion that the raw association between education
and wages actually substantially understates the causal effect of education on wages. As
Card (2001) documents, this conclusion about the returns to schooling is actually fairly
common across diverse studies that use a variety of IV strategies and data sources.
One explanation proposed by Card is that this arises from a failure to account for
heterogeneity in the causal effect of schooling on wages.
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We can use the ivcrc command to assess this explanation. The syntax is similar to
that for the IV estimator:

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76)
(default settings do not compute standard errors, see bootstrap() option)
(estimating the conditional rank of grade76)
(estimating rule-of-thumb bandwidth)
(estimating beta(r) at each r[i] rank in the sample)
IVCRC Number of obs = 3,010

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0852767 . . . . .
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .0370327

We treat potential experience, exp76, as a derived endogenous variable here because
it is defined as a deterministic function of grade76 and age76. Whereas the coeffi-
cient on grade76 reported by the standard linear regression estimator implemented
by ivregress will estimate a difficult-to-interpret quantity like (3), the coefficient on
grade76 produces an estimator of the average causal effect of a one-year increase in
grade76. The causal effect estimated here of 8.53% is substantially lower than the
linear IV estimate of 13.33%. This supports Card’s (2001) reasoning if, as he argues,
the usual linear IV estimator places more weight on individuals with higher returns
to schooling. The ivcrc estimate is also somewhat larger than the linear regression
coefficient 0.0725.

We now demonstrate some of the options for ivcrc by evaluating the statistical
significance and robustness of the above average treatment-effect estimate. First, we
compute standard errors, which tends to be time consuming because of the necessity of
using bootstrap(). The syntax and results are

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020))
(estimating rule-of-thumb bandwidth)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0852767 .0267166 3.19 0.001 .0329131 .1376403
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .0370327
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The confidence interval here is a bit wider than for the linear regression estimator,
although it is substantially narrower than for the usual linear IV estimator. The textbook
IV estimator and the ivcrc estimates are constructed under nonnested assumptions,
so this by itself is not unexpected. However, because the bandwidth controls a bias-
variance tradeoff in the ivcrc estimator, it does suggest that we may want to explore
bandwidths other than the default ROT (ĥROT = 0.037) to guard against potential bias
due to oversmoothing. So we next evaluate the point estimates at several specified
bandwidths:

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bandwidth(.025, .05, .075)
(default settings do not compute standard errors, see bootstrap() option)
(estimating the conditional rank of grade76)
(estimating beta(r) at each r[i] rank in the sample)
IVCRC Number of obs = 3,010

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0869784 . . . . .
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

grade76 .0807563 . . . . .
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .05

grade76 .0779116 . . . . .
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .075

The estimate is relatively stable over different bandwidths but does decline somewhat
as the local estimates β̂(r̃ ) are computed using larger neighborhoods of r̃. The standard
errors and confidence intervals using the smallest bandwidth in this list are
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. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0869784 .029612 2.94 0.003 .0289401 .1450168
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

We find a slightly larger standard error and a wider confidence interval, as anticipated.
Though more comparable with the standard error and confidence interval from the
linear IV model, the ivcrc standard error remains roughly 1.5 times smaller, even at
this smaller bandwidth.

The number of quantiles used to approximate the integral in (9) and the functional
form of the kernel weights k could, in principle, also impact the ivcrc estimates. Qua-
drupling the number of quantiles from its default of 50 while carrying forward the smaller
bandwidth from above yields

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .078291 .0320328 2.44 0.015 .0155079 .1410741
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

We find that the results are not very sensitive to how finely the integral in (9) is ap-
proximated.
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Next we swap a uniform kernel for the (default) Epanechnikov kernel, while carrying
forward a smaller bandwidth and more accurate rank estimation from above:

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200) kernel(uniform)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0780691 .0302556 2.58 0.010 .0187693 .137369
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

We find that the results are also not sensitive to the functional form of the kernel, in
concordance with the usual folklore for nonparametric kernel regression.

One interesting way to explore both the robustness and the potential explanations
for our finding is to change the set R over which the average is being taken. By default,
ivcrc averages over all estimated conditional ranks (r̂i) directly as in (6). Alternatively,
if we are concerned about results being driven by outliers in the conditional distribution
of education, we can specify R to be [0.05, 0.95]. Trimming the distribution in this
way, while maintaining the smaller bandwidth and more accurate rank estimation from
above, yields

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200) average(.05(0).95)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0735619 .0345893 2.13 0.033 .0057681 .1413558
(output omitted )

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025
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We obtain slightly lower estimated returns to education and a slightly larger standard
error but overall similar results to the estimates that used the full observed conditional
distribution of education.

When there is a single basic endogenous variable, as in the present application,
another check on the estimates is to use numerical integration based on (10). Specifying
an equally spaced grid with steps of 0.01 over the outlier-trimmed region [0.05, 0.95] from
above gives

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200) average(.05(.01).95)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0730978 .0341265 2.14 0.032 .0062111 .1399845
(output omitted )

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025

We obtain estimates that are nearly identical to those obtained using the default sample
average method, (6).

We can also consider smaller sets of r to explore heterogeneity in the return to
schooling. For example, an estimate for individuals in the lower half of the education
distribution is

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200) average(0(0).5)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .1038839 .0531316 1.96 0.051 -.0002521 .2080199
(output omitted )

Note: Average coefficients over R = [0,.5] rank subset; Bandwidth = .025
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This suggests that individuals with lower schooling have higher returns to schooling.
Specifying a set for each quartile of the education distribution reveals a pattern that
supports this explanation while indicating potentially more nuance:

. ivcrc wage76 (grade76 = col4 age76 agesq76) `ControlVars',
> dendog(exp76 expsq76) bootstrap(reps(100)
> seed(5282020)) bandwidth(.025)
> ranks(200) average(0(0).25, .2501(0).5, .5001(0).75, .7501(0)1, report)
(running _ivcrc_estimator on estimation sample)
Bootstrap replications (100)

1 2 3 4 5
.................................................. 50
.................................................. 100
IVCRC Number of obs = 3,010

Replications = 100

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .078291 .0320328 2.44 0.015 .0155079 .1410741
(output omitted )

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

grade76 .0651947 .0616646 1.06 0.290 -.0556657 .1860551
(output omitted )

Note: Average coefficients over R = [0,.25] rank subset; Bandwidth = .025

grade76 .1418537 .1006071 1.41 0.159 -.0553327 .33904
(output omitted )

Note: Average coefficients over R = [.2501,.5] rank subset; Bandwidth = .025

grade76 .0264401 .066345 0.40 0.690 -.1035938 .1564739
(output omitted )

Note: Average coefficients over R = [.5001,.75] rank subset; Bandwidth = .025

grade76 .0787306 .0512649 1.54 0.125 -.0217468 .1792081
(output omitted )

Note: Average coefficients over R = [.7501,1] rank subset; Bandwidth = .025

The command first displays the estimate taken over the union of the given sets, in this
case the overall sample average. Then ivcrc reports the estimates over each subset that
we specified in average(). We find that the estimates of the returns to schooling vary
across the education distribution, with the second quartile exhibiting large returns that
are comparable with the linear IV estimate. However, the estimates are less precisely
estimated than the average return using the entire sample, which reflects the fact that
each subset only uses approximately one-fourth of the number of effective observations.
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We conclude with an illustration of varying-coefficient estimation with ivcrc. Cai
(2010) suggests that the relationship between education and wages might be increasing
in work experience. We can explore this hypothesis by using the varcoef() option,
which allows the linear coefficients to be nonparametric functions of experience. To use
varcoef(), we must also specify the average() option. To obtain the support points
of experience for average(), we first quietly calculate summary statistics. Then we call
varcoef() using the savecoef() option to store the experience-conditioned coefficient
estimates. Loading the dataset stored with savecoef(), we plot our estimates of the
coefficient on education as a function of experience in figure 1.

. quietly summarize exp76

. * Returns to education as a function of experience

. ivcrc wage76 grade76 `ControlVars',
> varcoef(exp76) bandwidth(4)
> average(`r(min)'(0)`r(max)') savecoef(varcoef_exp)
(default settings do not compute standard errors, see bootstrap() option)
(estimating beta(exp76) at each exp76[i] in the sample)
(file varcoef_exp.csv not found)
IVCRC Number of obs = 3,010

wage76 Coef. Std. Err. z P>|z| [95% Conf. Interval]

grade76 .0602117 . . . . .
(output omitted )

Note: Average coefficients over = [0,23]; Bandwidth = 4
. * Load dataset of saved variable coefs, beta(exp)
. import delimited "varcoef_exp.csv", colrange(2:3) clear
(encoding automatically selected: ISO-8859-1)
(2 vars, 3,010 obs)
. quietly rename rank exp76
. * Plot without 1% tails
. local plotopt title("") scheme(sj)
> ylabel(, angle(0) labsize(4)) legend(off)
> xtitle("Years of experience", size(4))
> ytitle("Coefficient on education", size(4))
. twoway (scatter grade76 exp76, msize(small) mcolor(black))
> (lpoly grade76 exp76, degree(0) bwidth(1) lcolor(black) `plotopt')



490 ivcrc

0

.02

.04

.06

.08

C
oe

ffi
ci

en
t o

n 
ed

uc
at

io
n

0 5 10 15 20 25
Years of experience

Figure 1. Varying-coefficient estimation: Coefficients as a function of experience

The coefficient on education is positive for all levels of experience and averages about 6%
per year of education across experience levels. The coefficient decreases as experience
increases for both small and large values of experience. However, as suggested by Cai
(2010), the coefficient on education is increasing over the 10th to 90th percentiles (4 to
15 years) of experience.

6 Conclusion
In this article, we discussed the CRC model, which is a parsimonious IV model that
explicitly incorporates heterogeneous treatment effects. The ivcrc command for Stata
implements an estimator for the CRC model. The estimator can be used to carefully
analyze heterogeneous treatment effects in a way that the usual linear estimator imple-
mented by ivregress cannot. Because the estimator is based on averaging conditional
linear regressions, it scales well and incorporates covariates easily, making it attractive
from a practical perspective.

A few important limitations to the estimator are worth mentioning both as caveats
and as directions for future research. First, the conditions described in section 2.3
to construct the control function, r, from the instrument, z, require the endogenous
variable, x, to be continuously distributed. The extent to which these methods fail
for discrete endogenous variables is an interesting theoretical question that may have
important implications for practice. Second, the ivcrc command implements an ROT
bandwidth. Other superior methods for automated bandwidth selection may exist.
Third, defining, detecting, and correcting for weak instruments is an unexplored topic
for the CRC model.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-3

. net install st0680 (to install program files, if available)

. net get st0680 (to install ancillary files, if available)

The ivcrc command also is available on the Statistical Software Components archive
and can be installed directly in Stata with the command

. ssc install ivcrc

Alternatively, the latest version of the command can be downloaded from the GitHub
repository https://github.com/a-torgovitsky/ivcrc. The code (ivcrc.ado) and the help
file (ivcrc.sthlp) can be downloaded from the repository and placed in the personal
ado-directory.6
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