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Abstract.  Starting from version 15, Stata allows users to manage data and fit
regressions accounting for spatial relationships through the sp commands. Spatial
regressions can be estimated using the spregress, spxtregress, and spivregress
commands. These commands allow users to fit spatial autoregressive models in
cross-sectional and panel data. However, they are designed to estimate regressions
with continuous dependent variables. Although binary spatial regressions are im-
portant in applied econometrics, they cannot be estimated in Stata. Therefore, I
introduce spatbinary, a Stata command that allows users to fit spatial logit and
probit models.
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1 Introduction

In recent decades, spatial econometrics has been a growing field of study. In Stata
software packages, spatial data were originally managed by a plethora of community-
contributed commands. Pisati (2001) and Drukker et al. (2013) released spatwmat and
spmat, respectively, for managing spatial matrices. Other relevant contributions include
software to perform spatial correlation tests (the spatcorr command of Pisati [2001]),
geocode data (Ozimek and Miles 2011), calculate travel time (Huber and Rust 2016;
Weber and Péclat 2017), and visualize detailed maps (Pisati 2018). Other than these
utilities, community-contributed packages address spatial regression models in terms of
cross-sectional data (Pisati 2001), panel data (Belotti, Hughes, and Mortari 2017), and
endogenous regressors (Drukker, Prucha, and Raciborski 2013).

In addition, Stata 15 introduced sp, a suite of commands that allows users to manage
spatial data and fit regressions with underlying spatial relationships. Some of the above-
mentioned community-contributed packages were embedded in sp.

As of Stata 17, official commands for spatial regression models (that is, spregress,
spxtregress, and spivregress) are designed to fit models with continuous dependent
variables. For models with binary responses, it is only possible to use spregress to
fit spatial linear probability models. These models do not constrain the predicted values
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in [0, 1] (Wooldridge 2010). Conversely, spatial probit or logit models can be fit only by
using other software.!

In applied economics, spatial models for binary outcomes have many uses. For in-
stance, Klier and McMillen (2008) analyzed clustering in the automotive sector; Flores-
Lagunes and Schnier (2012) used them to solve sample selection issues; Brasington,
Flores-Lagunes, and Guci (2016) analyzed the adoption of open enrollment in schools;
and more recently Prato et al. (2018) investigated the role of urban environment in
pedestrian accidents.

The aim of this article is therefore to address the lack of Stata packages that are
specifically aimed at fitting spatial models with binary response variables. Thus, I
introduce spatbinary, a command that allows the estimation of logit and probit spatial
autoregressive models. The spatbinary command is equivalent to spregress (with the
option dvarlag) for binary dependent variables and to logit and probit for spatial
data. The command is based on the generalized method of moments (GMM) estimators
outlined in Pinkse and Slade (1998) and their approximations (Klier and McMillen
2008). The remainder of this article is organized as follows: the next section outlines
the econometric setting for spatbinary, sections 3 and 4 present the syntax, section 5
presents some examples of the use of spatbinary, and section 6 concludes.

2 The econometric setting

Consider a binary outcome model in which the observed binary response y; = 1 only if
the unobserved latent variable u; € U is greater than 0; otherwise, y; = 0. For instance,
in the random utility setting (McFadden 1974), the latent variable represents the utility
of a consumer facing the decision of whether to purchase a product or a service. If
the underlying latent variable depends on a set of independent variables X and is also
spatially autocorrelated, the binary spatial autoregressive (BSAR) model assumes the
form

U=pWU+XB+e (1)

where W is a row-standardized contiguity matrix, € represents the error term, and pa-
rameters B and p are to be estimated. Spatial autocorrelation of the (latent) dependent
variable U through parameter p implies a form of endogeneity because U appears in
(1) both as a dependent variable and as a covariate (Arbia 2014). Specifically, this is
a form of simultaneity that “arises when at least one of the explanatory variables is
determined simultaneously along with the dependent variable” (Wooldridge 2010). In
(1), it is straightforward to note that U is determined simultaneously with itself because
it is the same variable.

Because U is unobserved, the spatial autocorrelation parameter p implies that the
propensity of having a positive outcome is correlated with the propensity to have a
positive outcome in nearby units of observation (Klier and McMillen 2008). A positive

1. For instance, R users can rely on packages such as McSpatial and spatialprobit (Wilhelm and
de Matos 2013).
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p implies clustering: units with a high probability of a positive outcome are located
close to other peers characterized by a high probability that y; = 1. Conversely, p < 0
means that the propensity is dispersed in space.

Depending on the distribution of the error term, (1) can be estimated through a logit
or a probit model characterized by “transformed” independent variables X **, predicted
probabilities P(y; = 1), and generalized residuals e; (table 1). The error-term variance
is proportional to V = E(e'€) = [(I — pW ) (I — pW)]~! (Calabrese and Elkink 2014;
McMillen 1992), and D contains the square root of the elements of V' on its main
diagonal.

Table 1. Relevant quantities for logit and probit BSAR models

Probit Logit
D diag(V)
X+ DI - pW)'X
exp(X*3)
Py =1 O(X _explA B)
=1 (X;°P) e

{yi — P(yi) }o(X;*B)
P(y:) « {1 — P(y:)}

Yi — P(yi)

To estimate BSAR parameters 3 and p, Pinkse and Slade (1998) proposed a GMM-
type estimator (Hansen 1982) where coefficient estimates are chosen to minimize the
quantity in (2).

Q=N"Ye(B,p)ZMZ'e(B,p)} (2)

Such a model requires a set of instruments Z that may include the independent
variables X and their spatial lags WX, ..., W"X (Kelejian and Prucha 1998). Klier
and McMillen (2008) noted that the estimator in (2) reduces to nonlinear two-stage
least squares (N2SLS) if M = (Z’'Z)~! and proposed a simplified version of the N2SLS
model by introducing a linear approximation around a convenient starting point. The
spatbinary command is designed to fit both models.
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2.1 N2SLS estimator

The N2SLS procedure for estimating model parameters © is the following:

1. Assume initial values ®g.

2

2. Repeat until convergence® or until the maximum number of iterations is reached:

a. Calculate the guess of the generalized residuals at iteration ¢ (e).

b. Obtain the fitted values Gy from a linear regression of the gradient terms
G = (0e;)/(0©;) on the instruments Z.

c. Update @11 = O, + [ééét]fléiet-

3. The robust variance—covariance estimator is given by the following matrix:

[G'G)diag(G'ee'G)[G'G] .

2.2 Linearized estimator

The linearized estimator procedure is the following:

1. Through a nonspatial logit or probit model, obtain initial estimates of By and eg
(that is, assume p = 0).

2. Calculate the gradient G = (0e)/(0©). These gradients are much simpler than
in the N2SLS case.

~

3. Regress G on Z and obtain the predicted gradient estimates G.

4. Calculate eg —|—Gf3ﬁ0 and regress it on G. The obtained coefficients are the desired
estimates of B and p.

2.3 Using the estimators in practice

The main advantage of the linearized model is computational. Indeed, it avoids the
inversion of the matrix I —pW during each iteration. However, this advantage becomes
less pronounced if the matrix W is small or sparse (that is, with many zero entries).

Furthermore, Klier and McMillen (2008) show that the linearized model provides a
good approximation of the spatial autocorrelation parameter p only if the absolute value
of the data-generating autocorrelation parameter lies in the interval 0.1-0.5. Outside
this interval, estimates from the linearized model are upwardly biased (Arbia 2014).
Moreover, assuming that the model is correctly specified, the standard errors produced
by the linearized model are larger than those obtained by N2SLS; thus, the linearized
BSAR is less efficient (Klier and McMillen 2008; Billé 2013). To summarize, the practical
situations for which the linearized model can be used are the following:

2. Convergence is achieved if (|Q¢ — Q¢—1])/(Q¢t—1 + 1le — 3) < tol. In spatbinary, the convergence
tolerance (tol) is controlled by the option tolerance().
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o W is large.
o W is dense.

e The data have a weak spatial structure.

Otherwise, the N2SLS approach is preferable, and coefficients from the linearized
model can be used as starting values for the N2SLS model. Neither model guarantees
that the confidence intervals for p are bounded in the [—1, 1] interval (Billé 2013).

2.4 Measures of impact and marginal effects

As in standard probit and logit models, the coefficients 3 represent the impact of the
independent variables X on the latent variable U. Such estimates are difficult to in-
terpret because U is unobserved; however, they provide useful information about the
direction of the impact of X on the probability that the outcome y is observed through
their sign. To overcome this difficulty, a common strategy is to report measures of im-
pact using margins (Williams 2012). In the general spatial autoregressive framework, a
variation of an explanatory variable in a certain geographical unit affects the response
variable both in the same location and in other locations because of spatial dependence
(Anselin, Florax, and Rey 2004; Arbia 2014). Thus, measures of impact are split into
direct and indirect components. The former measures a unit’s predicted contribution to
its own probability of a positive outcome, and the latter measures the predicted impact
of the other units’ contributions to a unit’s probability. In Stata, four types of measures
of marginal impact are generally reported:

o the marginal effect (ME), which represents the variation of the dependent variable
in response to a unit variation in an explanatory variable (in margins, this is
calculated using the dydx option);

e the elasticity, which represents the percent variation in the response variable in
relation to a 1% variation of an explanatory variable (eyex option in margins);

o the semielasticity representing the percent variation in the response variable in
relation to a unit variation of an explanatory variable (eydx option in margins);
and

¢ asecond type of semielasticity representing the variation in the dependent variable
in natural units in relation to a 1% variation of an explanatory variable (dyex
option in margins).

In the BSAR framework, the response variable is P; = P(y; = 1). Table 2 summarizes
the measures of impact related to the ith observation of covariate X*. In table 2, g; is
the first derivative of P; with respect to the ith row of X} Xk Such a derivative could
be direct (that is, measuring a unit ¢’s predicted contribution to P;) or indirect (that
is, measuring the other units’ contributions to the variation of P;).3 In the spatbinary

3. For a thorough analytic formulation of g;, see Beron and Vijverberg (2004) and Billé and Leorato
(2020).
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framework, the measures of impact in table 2 can be obtained using the postestimation
command spatbinary_impact. Users can also use margins by exploiting the calcu-
lation of g; using predict along with options directmargin, indirectmargin, and
totalmargin.

Table 2. Relevant measures of impact for BSAR models

Measure Expression
dydx 9iBxr
eyex  giX[Bxk[P]!
eydx giBxx [Pt
dyex i XFBxx

3 The spatbinary command

3.1 Syntax

Data should be spset before using spatbinary. The syntax of spatbinary is

spatbinary depvar indepvars [zf} [m] [wez’ght], wmat (matname) [linearized
n2sls logit probit mnoconstant force instr(warlist) winstr (varlist)
impower (#) noinstrconstant iterate(#) start(matname) tolerance(#)

display__options level (#) coeflegend]

fweights are allowed; see [U] 11.1.6 weight.

3.2 Options
Main options

wmat (matname) specifies that the spatial weight matrix W is stored in matrix matname.
This option is required and is equivalent to dvarlag in spregress. The weight
matrix must be created using spmatrix.

linearized requests that the linearized estimator be used. This is the default.

n2sls requests the N2SLS estimator be used. Specifying both n2sls and linearized
will cause spatbinary to ignore linearized.

logit requests to fit the logit BSAR model. This is the default setting. If both probit
and logit are specified, the program returns an error message and stops the execu-
tion of spatbinary.

probit requests to fit the probit BSAR model.
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noconstant suppresses the constant term in the model; see [R] Estimation options.

force requests that estimation be done when the estimation sample is a proper subset
of the sample used to create the spatial weighting matrices. The default is to refuse
to fit the model. Weighting matrices potentially connect all the spatial units. When
the estimation sample is a subset of this space, the spatial connections differ, and
spillover effects can be altered. In addition, the normalization of the weighting
matrix differs from what it would have been had the matrix been normalized over
the estimation sample. The better alternative to force is to first understand the
spatial space of the estimation sample and then, if it is sensible, create new weighting
matrices for it. See [SP] spmatrix and Missing values, dropped observations, and
the W matrix in [SP] Intro 2.

Instruments options

The following options control the instruments specification. The number of instruments
must be equal to or greater than the number of parameters to be estimated. Otherwise,
spatbinary stops its execution.

instr(varlist) specifies a list of instruments. By default, the independent variables are
included.

winstr (varlist) specifies a list of instruments to be spatially lagged using wmat (mat-
name). By default, the spatial lags of the independent variables are included. The
option may be specified with instr (varlist).

impower (#) specifies the order of an instrumental-variable approximation used in fit-
ting the model. The derivation of the estimator involves a product of # matrices.
Increasing # may improve the precision of the estimation and will not cause harm
but will require more computer time. The default is impower (1).

noinstrconstant omits the intercept from the instruments.

Options for the N2SLS model

These options affect the estimation only if n2sls is specified.
iterate(#) specifies the number of iterations for N2SLS estimation.

start (matname) specifies that the starting values for the N2SLS estimation be stored
in vector matname. The default starting values are estimated using the linearized
approach.

tolerance(#) specifies the tolerance for the GMM criterion. The default is
tolerance(le-5).
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Reporting

display__options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (%fmt),
pformat (%fmt), sformat (%fmt), and nolstretch; see [R] Estimation options.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.8 Specifying the width
of confidence intervals.

coeflegend displays the legend instead of statistics.

3.3 Stored results

spatbinary stores the following in e():

Scalars
e(N) number of observations
e(level) confidence level

e (impower)
e(iterations)
e(converged)
e(J)

order of the instrumental-variable approximation used to fit the model
number of GMM iterations; applies only to n2sls

convergence indicator; applies only to n2sls

Hansen’s J

e(J_df) Hansen’s J degrees of freedom

e(Q GMM objective function
Macros

e(cmd) spatbinary

e(depvar) dependent variable

e(wtype) weight type

e (wexp) weight expression

e(properties) bV

e(predict) program used to implement predict

e(w) name of the spatial weight matrix

e(indepvars) independent variables

e(logit) logit if a logit model is fit

e(probit) probit if a probit model is fit

e(estimator) returns n2sls; applies only to n2sls
Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

4 Postestimation

After spatbinary, predict and spatbinary_impact are available. The latter is a
wrapper of margins and estimates measures of impact such as marginal effects, elastic-
ities, and semielasticities; it corresponds with estat impact following spregress; see
[SP] spregress postestimation.
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4.1 Syntax for predict

The available predictions are the following:
predict newvar, pr, the default, calculates the probability of a positive outcome.
predict newvar, xb calculates X;*0.

predict newvar, totalmargin calculates the total marginal effect with respect to
X*B. It is used with margins.

predict newvar, directmargin calculates the direct marginal effect of X*3 (g; in
section 2.4). It is used with margins.

predict newvar, indirectmargin calculates the indirect marginal effect of X;/*8. It
is used with margins.

predict newvar, residuals calculates probit or logit generalized residuals.

4.2 Syntax for spatbinary_impact

spatbinary_impact wvarlist [, [dydx|eyex|dyex|eydx| total direct indirect |

Options dydx, eyex, dyex, and eydx are mutually exclusive. If total, direct, and
indirect are all left unspecified, spatbinary_impact estimates them all.

4.2.1 Options

dydx calculates the marginal effect of varlist on the predicted probability (option pr in
predict). dydx is the program default.

eyex calculates the elasticity of the predicted probability (option pr in predict) with
respect to wvarlist.

dyex calculates the semielasticity (dP/dInz) of the predicted probability (option pr in
predict) with respect to varlist.

eydx calculates the semielasticity (dlnP/dz) of the predicted probability (option pr in
predict) with respect to varlist.

total calculates the total measure of impact of varlist (defined by dydx, eyex, dyex,
and eydx).

direct calculates the direct measure of impact. It captures own-unit contributions of
varlist on a unit’s prediction.

indirect calculates the indirect measure of impact. It captures the contributions of
the other units’ varlist on a unit’s prediction.
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5 Examples

5.1 Setup

I illustrate spatbinary with five examples using homicide1990.dta (Messner et al.
2000); this dataset also provides examples for Stata’s official spatial regression command
(spregress). Each observation in homicide1990 is a county in the southern United
States.

Before we use spatbinary, the dataset must be declared to hold spatial data using
spset, and a spatial weight matrix should be specified. To this end, homicide1990.dta
comes with an ancillary shapefile storing the spatial information (coordinates and prox-
imity) and is already spset. In the remainder of this section, the spatial weight matrix is
created using spmatrix create and stored in W2, a row-standardized contiguity matrix.
The examples include both probit and logit BSAR models for illustrative purposes. Like
their nonspatial counterparts, they generally give similar predictions (Greene 2018);
however, the logit estimator is less likely to estimate probability estimates near 0 or 1.
The choice between them depends on the specific application and field of research. Be-
cause coeflicients are not readily interpretable, measures of impact are calculated. Thus,
measures of impact throughout this section are related to gini.

. webuse homicide1990
(S.Messner et al.(2000), U.S southern county homicide rates in 1990)

. copy https://www.stata-press.com/data/r17/homicide1990_shp.dta .
. spmatrix clear

. spmatrix create contiguity W2, normalize(row)

. spset

Sp dataset: homicide1990.dta
Linked shapefile: homicide1990_shp.dta
Data: Cross sectional
Spatial-unit ID: _ID
Coordinates: _CX, _CY (planar)

The first three examples are devoted to logit and probit BSARs with a dichotomized
version of hrate, the county-level homicide rate per year per 100,000 persons, as the
response variable. The independent variables are the Gini index, a measure of in-
come inequality (gini), and the logarithm of the population (1n_population). Let
us assume that the impact of income inequality on the probability of having a high
homicide rate (also referred to as “the predicted probability” or “the probability that
hrate_gt_p95=1") is the main research interest of the analysis.

. quietly summarize hrate, detail

. generate hrate_gt_p95=hrate>r(p95)

Examples 4 and 5 are based on simulated dependent variables Y1 and Y2. In both
examples, the underlying latent variable is xb=-10+22*gini. Examples 4 and 5 are
respectively based on p = 0.7 and p = 0.2.
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. set seed 123456789
. spmatrix matafromsp W id=W2

. mata:

: x=st_data(.,"gini")

¢ xb=-10:4+22%x

: xbl=qrsolve(I(1412)-.7*W,xb)
: xb2=qrsolve(I(1412)-.2*W,xb)

: end

303

mata (type end to exit) —

. capture drop xb* Y*

. getmata xbl=xbl xb2=xb2

. generate Yl=rbinomial(l,invlogit(xb1))
. generate Y2=rbinomial(l,invlogit(xb2))

5.2 Example 1—Linearized models with program defaults

This example illustrates the estimation of the linearized BSAR using the default settings
of spatbinary. In the first model, neither probit nor logit is specified; hence, a logit
model is fit. The second model is a spatial probit. Further, because option n2sls is not
specified, linearized probit and logit models are fit. Program defaults imply that the
instruments are an intercept, the independent variables, and their spatial lag. This is
equivalent to specifying options instr (1ln_population gini), winstr(ln_population

gini), and impower(

1).

. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2)

instruments set as (X,WX...W'n X) where X= 1ln_population gini and W=W2 where n=1

(1412 observat
(1412 observat
(weighting mat

LINEARIZED LOGIT

ions)
ions (places) used)
rix defines 1412 places)

Robust
hrate_gt_p95 | Coefficient std. err. z P>zl [95% conf. intervall]
hrate_gt_p95
1n_population .2403071 .1620309 1.48 0.138 -.0772677 .5578819
gini 40.14493 6.682836 6.01 0.000 27.04681 53.24305
_cons -23.19683 4.486104 -5.17 0.000 -31.98943 -14.40423
rho
_cons -.4276641 .2635575 -1.62 0.105 -.9442273 .0888992

Test of overiden

tifying restriction:

Hansen's J chi2(1) = .0783474, p = .7795495
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. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit

instruments set as (X,WX...W™n X) where X= ln_population gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

LINEARIZED PROBIT

Robust
hrate_gt_p95 Coefficient std. err. z P>|z| [95% conf. intervall
hrate_gt_p95
1n_population .0845121 .037548 2.25 0.024 .0109194 .1581047
gini 19.34454 2.247513 8.61 0.000 14.9395 23.74959
_cons -11.0464 1.28814 -8.58 0.000 -13.57111 -8.521691
rho
_cons -.3749664 .155578 -2.41 0.016 -.6798937 -.0700391

Test of overidentifying restriction:
Hansen's J chi2(1) = .3138245, p = .5753428

The coefficient rho is negative in both models and is significant only in the probit
specification. Therefore, the propensity of having high homicide rates is characterized
by weak dispersion: the probability of having hrate = 1 in a county decreases if the
same propensity is high in the neighboring counties. The coefficient attached to gini
is positive and highly significant in both models; this means that the higher the income
inequality, the higher the probability of having high homicide rates. The coefficient of
1n_population is positive and significant only in the probit model, suggesting a weak
correlation between population and the probability of having high homicide rates. The
package also provides Hansen'’s test for overidentification, which applies when the num-
ber of instruments (moment conditions) is larger than the number of parameters to be
estimated (see [R] gmm postestimation). In this example, there are four parameters
to be estimated and five instruments. The test is not significant and safely suggests
that the instruments are valid.

Because probit and logit are nonlinear models, their coefficients do not convey in-
formation about the magnitude of the relationship between the attached explanatory
variable (gini and 1n_population) and the probability that hrate_gt_p95=1. More-
over, the structure of the model [see (1) and section 2.4] implies spillovers through the
existence of the spatial autocorrelation coefficient p. In this example, the implication is
that the propensity of having high homicide rates is affected by own-county inequality
(gini), own-county population (1n_population), and the propensity of having high
homicide rates of neighboring counties, which in turn are affected by inequality and
population. Thus, a county’s propensity of having high homicide rates is indirectly
influenced by inequality and population in the neighboring counties. This fact adds
complexity to the interpretation of the coefficients attached to the explanatory vari-
ables. MEs are reported for the probit model because it exhibits a significant pattern of
spatial autocorrelation (p is significant). MEs for the logit model are also reported for
appreciating the similarities between the two sets of ME estimates.
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. quietly spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit
. spatbinary_impact gini, dydx
Impact measures for gini

Delta-M.d
dydx std. err. z p>lzl [95 conf. intervall

gini
total 1.310977 .1250546 10.48324  1.03e-25 1.065875 1.556079
direct 1.843956 .3229716  5.709343 1.13e-08 1.210943  2.476968
indirect | -.5329786 .2662527 -2.079894 .0376352 -1.035225 -.0307325

In the output above, all the MEs are significant. Furthermore, the total effect of
gini as estimated by the probit model is equal to 1.31, meaning that, on average,
an increase of 0.01 units of gini is related to an additional 1.31% probability of high
homicide rates as a result of the summation of the direct and indirect effects. The direct
ME is equal to 1.84.* This finding suggests that an own-county 0.0l-unit increase in
the Gini index (gini) is to increase the probability of having high homicide rates by
1.84 percentage points. Furthermore, the indirect ME is equal to —0.53. Hence, the
across-county spillover effect of a 0.01-unit gini increase is associated with a reduction
of probability of having high homicide rates by 0.53%. The negative sign of this ME is
coherent with the negative sign of p: the total effect of gini is positive, but the cross-
county component opposes to the own-county effect because of the negative spatial
correlation (p = —0.375). Overall, the MEs suggest that own-county income inequality
increases the probability of having a high homicide rate, while other counties’ income
inequality reduces the probability of having a high homicide rate.

As expected, the logit MEs are remarkably similar to the corresponding probit ME
estimates. The total-effect point estimate is equal to 1.28 (1.31 in the probit model),
and the direct effect is equal to 1.88 (1.84 in the probit model); lastly, the indirect ME
is equal to —0.60. However, the last is not significant; this reflects the fact that the
nonsignificance of p in the logit model, and thus the increase of predicted probability,
is likely associated only with own-county income inequality.

. quietly spatbinary hrate_gt_p95 ln_population gini, wmat(W2)
. spatbinary_impact gini, dydx

Impact measures for gini

Delta-M.d
dydx std. err. z p>lzl [95 conf. intervall
gini
total 1.280354 .1441128  8.884388 6.43e-19 .997898 1.56281
direct 1.882478 .5316348  3.540922 .0003987 .8404925 2.924463
indirect -.6021238 .4444265 -1.354833 .1754707 -1.473184 .2689362

The same logit MEs can be obtained by coding the expression shown in the first
row of table 2 directly into the expression option of margins. This is recommended
for the more advanced Stata users who want to exploit the flexibility of margins. The

4. Usually, MEs refer to a unit increase in an explanatory variable. However, gini is defined in [0, 1].
Thus, a unit increase is very large. Because MEs refer to infinitesimal changes by definition, a
0.01-unit increase is used for reference.
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following Stata output uses margins to replicate the logit MEs obtained above with
spatbinary_impact. The reader is reminded that totalmargin, directmargin, and
indirectmargin calculate the term g; (see section 2.4).

. margins, expression(predict(totalmargin)*_b[hrate_gt_p95:ginil)

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(totalmargin)*_b[hrate_gt_p95:ginil

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons 1.280354 .1441128 8.88 0.000 .997898 1.56281

. margins, expression(predict(directmargin)#*_b[hrate_gt_p95:gini])

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(directmargin)*_b[hrate_gt_p95:gini]

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons 1.882478 .5316348 3.54 0.000 .8404925 2.924463

. margins, expression(predict(indirectmargin)*_b[hrate_gt_p95:ginil)

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(indirectmargin)*_b[hrate_gt_p95:gini]

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons -.6021238 .4444265 -1.35 0.175 -1.473184 .2689362

5.3 Example 2—Beyond default instruments, the impower() option

In this example, the linearized models of example 1 are refit by replacing the default
set of instruments with a more complex set. The task is achieved using the option
impower (). A higher impower () value captures more complex spatial autocorrelation
patterns and may result in more accurate estimates. For instance, Arbia (2014) suggests
that impower (2) would eliminate the endogeneity implied in (1). Other contributions
use impower (1) (Klier and McMillen 2008) or impower (3) (Calabrese and Elkink 2014).
As in the previous example, leaving instr () and winstr () unspecified is equivalent to
specifying instr(ln_population gini) and winstr(ln_population gini). In this
example, impower () is equal to 3; the instruments are based on the independent vari-
ables that are multiplied by the first, second, and third powers of the spatial weight
matrix W2.5

5. In keeping with the matrix notation of section 2, the resulting instrument matrix is equal to the
linearly independent columns of Z = [X, WX, W?2X, W3X].
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. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) impower(3)

instruments set as (X,WX...W™n X) where X= 1ln_population gini and W=W2 where n=3
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

LINEARIZED LOGIT

Robust
hrate_gt_p95 | Coefficient std. err. z P>zl [95% conf. intervall]
hrate_gt_p95
1n_population .2662776 .1624493 1.64 0.101 -.0521171 .5846723
gini 39.88435 6.826781 5.84 0.000 26.5041 53.26459
_cons -23.34124 4.557517 -5.12 0.000 -32.27381 -14.40867
rho
_cons -.4260932 .2674599 -1.59 0.111 -.9503049 .0981186

Test of overidentifying restriction:
Hansen's J chi2(5) = .2871224, p = .9978783

. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit impower(3)
instruments set as (X,WX...W"n X) where X= 1ln_population gini and W=W2 where n=3
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

LINEARIZED PROBIT

Robust
hrate_gt_p95 | Coefficient std. err. z P>|z| [95% conf. intervall]
hrate_gt_p95
1n_population .0898347 .0383285 2.34 0.019 .0147123 .1649571
gini 18.67784 2.281629 8.19 0.000 14.20593 23.14975
_cons -10.77687 1.309242 -8.23 0.000 -13.34294 -8.2108
rho
_cons -.3540264 .1596558 -2.22 0.027 -.666946 -.0411068

Test of overidentifying restriction:
Hansen's J chi2(5) = 1.352185, p = .9294714

Compared with example 1, the coefficients of gini and 1n_population as well as
the spatial correlation parameters are rather stable. Again, p is significant only in the
probit model, and the test of overidentification restriction is insignificant. The total
effect of gini on the predicted probability that hrate_gt_p95 = 1 is positive, and MEs
are reported to quantify such effects.

The gini ME estimates for the probit model are very close to those of example 1. A
0.01-unit increase in gini is related to a 1.297% additional probability of high homicide
rate. Again, the direct and indirect MEs have an opposing effect. The former is equal
to 1.792, and the latter is equal to —0.495. The low significance of the cross-county
(indirect) ME suggests that the dispersion in the propensity is weak; the effect of the
explanatory variables is predominantly direct.
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. quietly spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit impower(3)
. spatbinary_impact gini, dydx

Impact measures for gini

Delta-M.d
dydx std. err. z p>lzl [95 conf. intervall
gini
total 1.296701 .1279006 10.13835 3.73e-24 1.046021 1.547382
direct 1.79178 .316274  5.665277 1.47e-08 1.171894  2.411665
indirect -.4950784 .2635009 -1.952965 .0508238 -.9919311 .0017743

5.4 Example 3—N2SLS estimation

In this example, the N2SLS model with default instruments is fit (that is, they are
the same as example 1). Because the start() option is not specified, spatbinary
internally fits the linearized model of example 1 to provide initial values. For both
models, Hansen’s test for overidentification restrictions is safely insignificant, suggesting
that the instruments are relevant.

The coefficient estimates are remarkably similar to those of the previous examples.
However, rho is significant only at the 10% level of confidence, suggesting that the
underlying spatial structure is weak. Moreover, the probit model standard errors of
rho are larger than those reported in the corresponding linearized model (example 1):
this may reflect model misspecification. Indeed, as reported in section 2.3, a correctly
specified N2SLS model should produce smaller standard errors than the corresponding
linearized model.

. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) n2sls

instruments set as (X,WX...W™n X) where X= ln_population gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Iteration 1: GMM criterion Q(b) = 0.000146697964
Iteration 2: GMM criterion Q(b) = 0.000042062807
Iteration 3: GMM criterion Q(b) = 0.000041673907
Iteration 4 GMM criterion Q(b) = 0.000041671036

N2SLS LOGIT

Robust
hrate_gt_p95 | Coefficient std. err. z P>zl [95% conf. intervall]
hrate_gt_p95
1n_population .2088806 .176295 1.18 0.236 -.1366513 .5544124
gini 41.17571 6.693724 6.15 0.000 28.05625 54.29517
_cons -23.58003 4.516926 -5.22 0.000 -32.43304 -14.72702
rho
_cons -.4242538 .2173661 -1.95 0.051 -.8502837 .001776

Test of overidentifying restriction:
Hansen's J chi2(1) = .0588395, p = .8083396
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. spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit n2sls

instruments set as (X,WX...W™n X) where X= ln_population gini and W=W2 where n=1

(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Iteration
Iteration
Iteration
Iteration

N2SLS PROBIT

1: GMM criterion Q(b) =
2: GMM criterion Q(b)
3: GMM criterion Q(b)
4 GMM criterion Q(b)

0.000424593826
0.000178838091
0.000178187561
0.000178181342

Robust
hrate_gt_p95 | Coefficient std. err. z P>|z]| [95% conf. intervall
hrate_gt_p95
1n_population .0706771 .0753894 0.94 0.349 -.0770834 .2184376
gini 19.873256  3.100784 6.41 0.000 13.79583 25.95068
_cons -11.256317  2.000446 -5.63 0.000 -15.17397  -7.332368
rho
_cons -.3841139 .2059677 -1.86 0.062 -.7878033 .0195754

Test of overidentifying restriction:
Hansen's J chi2(1) = .2515921, p = .6159563
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Again, MEs for the probit model are reported. Consistent with examples 1 and 2,

. quietly spatbinary hrate_gt_p95 1ln_population gini, wmat(W2) probit n2sls

. spatbinary_impact gini, dydx

Impact measures for gini

the direct and total point estimates are positive, while indirect effects are negative. The
total effect suggests that a 0.01-unit increase of income inequality as measured by the
Gini index (gini) is associated with a 1.19% additional probability of having a high
homicide rate. This is the combination of a positive direct effect and a negative cross-
county effect (—0.50, p = 0.05). In absolute value, MEs are lower than those estimated
in examples 1 and 2 by the linearized models.

Delta-M_d
dydx std. err. z p>lzl [95 conf. intervall
gini
total 1.198613 .1923828 6.230355 4.65e-10 .8215498 1.575676
direct 1.698983 .2554343 6.65135 2.90e-11 1.198341 2.199625
indirect -.5003701 .2556695 -1.957863 .0502461 -1.001277 .0005369

5.5 Example 4—Simulated data with p = 0.7

In this example, the models are correctly specified because they are based on the data-
generating function. The first BSAR logit model is based on the linearized estimator,
and the second and third are based on N2SLS. The estimated value of p is maximum in
the first regression. This is expected because the data-generating value is higher than
0.5 (the linearized model is upwardly biased). However, the real value (0.7) is included
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in the confidence interval. In general, the true coefficients (—10 for the intercept and
22 for gini) are safely included in their related confidence intervals.

The N2SLS models have lower standard errors; this was expected because this esti-
mator is more efficient than the linearized version. In the second model, the number of
instruments (3) is equal to the number of parameters to be estimated; hence, instrument
validity cannot be tested. To perform this test, impower (2) is specified in the third
regression. Specifically, Hansen’s test in the third model implies that the second-order
instruments (a constant, gini, W2*gini, and (W2"2)*gini) are valid. Overall, the pos-
itive sign of p suggests that the propensities of Y1=1 are clustered in space: counties
with high probability of Y1=1 are located close to each other. This pattern also suggests
that the cross-county (indirect) effect of the explanatory variables have the same sign
of the direct effect.

. spatbinary Y1 gini, logit wmat(W2)

instruments set as (X,WX...W™n X) where X= gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

LINEARIZED LOGIT

Robust
Y1 | Coefficient std. err. z P>|z| [95% conf. intervall
Y1
gini 26.07231 6.827789 3.82 0.000 12.69009 39.45453
_cons -11.59576 3.3201 -3.49 0.000 -18.10303 -5.08848
rho
_cons .6625091 .1468327 4.51 0.000 .3747222 .9502959

Test of overidentifying restriction:
n2sls is just-identified, not possible to estimate Hansen's J
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. spatbinary Y1 gini, logit wmat(W2) n2sls
instruments set as (X,WX...W™n X) where X= gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

311

Iteration 1: GMM criterion Q(b) = 0.003925561540
Iteration 2: GMM criterion Q(b) = 0.000063763964
Iteration 3: GMM criterion Q(b) = 0.000000809832
Iteration 4. GMM criterion Q(b) = 0.000000000450
Iteration 5: GMM criterion Q(b) = 0.000000000000
N2SLS LOGIT
Robust
Y1 | Coefficient std. err. z P>zl [95% conf. intervall]
Y1
gini 27.87301 4.555002 6.12 0.000 18.94537 36.80065
_cons -12.77346 2.157557 -5.92 0.000 -17.00219 -8.544722
rho
_cons .6496192 .1083006 6.00 0.000 .4373539 .8618845
Test of overidentifying restriction:
n2sls is just-identified, not possible to estimate Hansen's J
. spatbinary Y1 gini, logit wmat(W2) impower(2) n2sls
instruments set as (X,WX...W™n X) where X= gini and W=W2 where n=2
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)
Iteration 1: GMM criterion Q(b) = 0.004657264068
Iteration 2: GMM criterion Q(b) = 0.000089837854
Iteration 3: GMM criterion Q(b) = 0.000002027419
Iteration 4: GMM criterion Q(b) = 0.000000448757
Iteration 5: GMM criterion Q(b) = 0.000000447104
N2SLS LOGIT
Robust
Y1 | Coefficient std. err. z P>|z| [95% conf. intervall]
Y1
gini 27.51214 4.478326 6.14 0.000 18.73478 36.2895
_cons -12.59915 2.11081 -5.97 0.000 -16.73626 -8.46204
rho
_cons .6584248 .1024808 6.42 0.000 .457566 .8592835

Test of overidentifying restriction:
Hansen's J chi2(1) = .0006313, p = .9799545

To give more precise quantitative indications about the effect of gini on the pre-
dicted probability that Y1=1, T report the four types of measures of impact (see sec-
tion 2.4). As the choice between the logit and probit models, the type of measure of
impact to be reported depends on the context of research. Measures of impact are
estimated using margins for illustrative purposes. In the following Stata outputs, the
order of reporting is total impact, direct impact, and indirect impact. The following
command calculates the MEs of gini. It is equivalent to spatbinary_impact gini,
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dydx. The MEs depict that a 0.01-unit increase in the Gini index yields to a 2.31% addi-
tional predicted probability that Y1=1. Both the direct and indirect effects are positive;
the larger component is related to the cross-county effect of gini because the indirect
effect is equal to 1.43 and the direct effect is equal to 0.88.

. margins, expression(predict(totalmargin)*_b[Yl:gini])

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(totalmargin)*_b[Y1:ginil

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons 2.311126 .2699797 8.56  0.000 1.781976 2.840277

. margins, expression(predict(directmargin)*_b[Yl:gini])

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(directmargin)*_b[Y1l:gini]

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons .8850184 .1768917 5.00 0.000 .538317 1.23172

. margins, expression(predict(indirectmargin)*_b[Y1l:gini])

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(indirectmargin)#*_b[Y1:gini]

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons 1.426108 .3510701 4.06 0.000 .7380231 2.114193

Elasticity estimates are reported below. Specifying spatbinary_impact gini, eyex
gives the same results. The elasticity represents the proportional increase of the pre-
dicted probability associated with a 1% proportional (that is, multiplicative) increase
of gini. The total elasticity is equal to 24. Again, the indirect effect (15.11) is stronger
than the direct effect (9.38).

. margins, expression(predict(totalmargin)*_b[Y1:gini]*gini/predict(pr))

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(totalmargin)*_b[Y1l:ginil*gini/predict(pr)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons 24.49555  2.748893 8.91 0.000 19.10782 29.88328
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. margins, expression(predict(directmargin)*_b[Y1l:gini]*gini/predict(pr))
Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(directmargin)*_b[Y1l:gini]*gini/predict(pr)

Delta-method

Margin  std. err. z P>|z| [95% conf. intervall

_cons 9.38348 1.874251 5.01 0.000 5.710015 13.05695

. margins, expression(predict(indirectmargin)*_b[Y1l:gini]*gini/predict(pr))

Predictive margins Number of obs = 1,412
Model VCE: Robust
Expression: predict(indirectmargin)#*_b[Y1l:ginil*gini/predict(pr)
Delta-method
Margin std. err. z P>|z| [95% conf. intervall
_cons 15.11207 3.671687 4.12 0.000 7.915697 22.30845
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The semielasticities giving the additive increase in probability that Y1=1 in response
to a proportional increase of gini are reported in the Stata output below. They can

be obtained by specifying spatbinary_impact gini, dyex.

This means that a 1%

(multiplicative) increase of gini leads to approximately a percentage point of the pre-
dicted probability that Yi=1. Specifically, this increase is mostly attributable to the
cross-county (indirect) effect: a 1% proportional increase of gini is related to a 0.62%

positive variation in terms of predicted probability.

. margins, expression(predict(totalmargin)*_b[Yl:gini]*gini)
Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(totalmargin)*_b[Y1l:gini]*gini

Delta-method

Margin std. err. z P>|z| [95% conf. intervall

_cons 1.006526 .1153539 8.73 0.000 . 7804369 1.232616

. margins, expression(predict(directmargin)*_b[Y1l:ginil*gini)
Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(directmargin)*_b[Y1:ginil*gini

Delta-method

Margin std. err. z P>|z| [95% conf. intervall

_cons .3854259 .0773847 4.98 0.000 .2337548 .5370971
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. margins, expression(predict(indirectmargin)*_b[Y1l:gini]*gini)

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(indirectmargin)*_b[Y1:ginil*gini

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons .6211004 .1515894 4.10 0.000 .3239906 .9182101

Lastly, to calculate the semielasticities giving the proportional increase in probability
of Y1=1 in response to a unit increase of gini, Stata users can plug into margins the ex-
pression predict (totalmargin) *_b[Y1l:gini]/predict (pr). The equivalent postesti-
mation command is spatbinary_impact gini, eydx. As expected, the indirect effect
is stronger than the direct effect. In quantitative terms, such an effect implies that a
0.01-unit increase in gini in other geographical units is related to a 38.7% proportional
increase in the predicted probability.

. margins, expression(predict(totalmargin)*_b[Yl:gini]/predict(pr))

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(totalmargin)*_b[Y1l:gini]/predict(pr)

Delta-method
Margin std. err. z P>|z| [95% conf. intervall

_cons 62.74073  7.048419 8.90 0.000 48.92608 76.55538

. margins, expression(predict(directmargin)*_b[Y1l:gini]/predict(pr))

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(directmargin)*_b[Y1:ginil/predict(pr)

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_cons 24.03833 4.80989 5.00 0.000 14.61112 33.46555

. margins, expression(predict(indirectmargin)*_b[Yl:gini]/predict(pr))

Predictive margins Number of obs = 1,412
Model VCE: Robust

Expression: predict(indirectmargin)*_b[Y1l:gini]/predict(pr)

Delta-method
Margin std. err. P P>|z| [95% conf. interval]

_cons 38.7024 9.398716 4.12 0.000 20.28125 57.12354
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5.6 Example 5—Simulated data with p = 0.2

As in the previous example, the models are correctly specified. Because p is small, the
linearized model estimates and the first set of N2SLS coeflicients are essentially the same,
with a gain in efficiency related to the standard errors of the independent variables.
Again, the data-generating coefficients are safely included in their related confidence
intervals. The models highlight that the total effect of gini on the propensity of Y1=1
is positive. Clustering of such propensity (p > 0) implies that the direct and indirect
effects of gini act in the same direction.

. spatbinary Y2 gini, logit wmat(W2)

instruments set as (X,WX...W'n X) where X= gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

LINEARIZED LOGIT

Robust
Y2 | Coefficient std. err. z P>|z]| [95% conf. intervall]
Y2
gini 19.56906 3.333957 5.87 0.000 13.03463 26.1035
_cons -8.935875 1.52985 -5.84 0.000 -11.93433 -5.937424
rho
_cons .1918303 .1650448 1.16 0.245 -.1316516 .5153121

Test of overidentifying restriction:
n2sls is just-identified, not possible to estimate Hansen's J

. spatbinary Y2 gini, logit wmat(W2) n2sls

instruments set as (X,WX...W™n X) where X= gini and W=W2 where n=1
(1412 observations)
(1412 observations (places) used)
(weighting matrix defines 1412 places)

Iteration 1: GMM criterion Q(b) = 0.000008245188
Iteration 2: GMM criterion Q(b) = 0.000000000197
Iteration 3: GMM criterion Q(b) = 0.000000000000
N2SLS LOGIT
Robust
Y2 | Coefficient std. err. z P>|z| [95% conf. intervall

Y2

gini 19.61657 3.114418 6.30 0.000 13.51242 25.72072

_cons -8.970221 1.432197 -6.26 0.000 -11.77728 -6.163167
rho

_cons .1921856 .1654734 1.16 0.245 -.1321363 .5165074

Test of overidentifying restriction:
n2sls is just-identified, not possible to estimate Hansen's J
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6 Conclusions

This article discussed the implementation of spatbinary, a Stata package that allows
users to fit BSAR logit and probit models. The spatbinary command extends the
suite of community-contributed and official commands for spatial regression. A possible
development of spatbinary would be its extension to multinomial outcomes.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-2
. net install st0672 (to install program files, if available)
. net get st0672 (to install ancillary files, if available)
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