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Abstract. The concept of Granger causality is an important tool in applied
macroeconomics. Recently, recursive econometric methods have been developed
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illustrates their use in analyzing the temporal stability of Granger causality among
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1 Introduction
Causal relationships in the econometric analysis of time series are typically based on the
concept of predictability and are established by testing for Granger causality (Granger
1969, 1988). A variable X causes a variable Y in Granger’s sense if accounting for
past values of X enables better predictions to be made for Y , other things being equal.
The popularity of Granger causality stems partly from the fact that it is not specific
to a particular structural model but depends solely on the stochastic nature of vari-
ables. Testing for Granger causality typically involves testing joint-zero restrictions on
blocks of parameters in reduced-form vector autoregressive (VAR) models. Given that
VAR models have proved to be a particularly convenient way of modeling the dynamic
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interactions between economic variables, it is not surprising that there is a volumi-
nous literature on applications of Granger causality in economics. Examples include
the money–income relationship (Friedman and Kuttner 1993; Swanson 1998; Shi, Hurn,
and Phillips 2020), the relationship between gross domestic product and energy con-
sumption (Lee 2006; Arora and Shi 2016), CO2 emissions as related to economic growth
(Grossman and Krueger 1995), economic growth and health progress (Tapia Granados
and Ionides 2008), oil prices and output (Hamilton 1983), and price dependence among
crude oil varieties (Wlazlowski, Hagströömer, and Giulietti 2011) and precious metals
(Chan and Mountain 1988).

Standard software for the estimation and analysis of VAR models provides Granger
causality tests. However, the results of these tests are often sensitive to the time period
over which the VAR is estimated. Just as with other aspects of structural stability,
the existence of Granger causality between a pair of variables may be supported over
one time frame but fragile when alternative periods are considered (see Thoma [1994],
Swanson [1998], and Psaradakis, Ravn, and Sola [2005]). Drawing on theoretical results
by Phillips, Wu, and Yu (2011) and Phillips, Shi, and Yu (2014, 2015a,b) in the context
of testing and datestamping episodes of asset price bubbles, Shi, Phillips, and Hurn
(2018) and Shi, Hurn, and Phillips (2020) revisit the notion of time variation in testing
for Granger causality. In a series of articles, they establish that it is possible to assess
the stability of causal relationships over time. The context of the 2018 article is the
stationary VAR model, while the 2020 article extends the analysis to the lag-augmented
VAR model to allow for the possibility of nonstationary variables in the VAR model (see
Toda and Yamamoto [1995] and Dolado and Lütkepohl [1996]).

Although conceptually straightforward, these change-detection algorithms offer sig-
nificant challenges in terms of computational statistics and data analysis. First, there
are large numbers of test statistics produced by these methods that must be efficiently
stored and displayed for analysis. Second, the tests also require bootstrapping to en-
sure correct inference. We illustrate how the analysis can be accomplished using a new
community-contributed command, tvgc, developed for the Stata environment.

The rest of the article is organized as follows. Section 2 lays out the Granger-causal
framework, while section 3 addresses recursive techniques for assessing time variation
in causal relationships. Section 4 is dedicated to how inference is conducted using the
bootstrap methodology. Section 5 presents details of the tvgc command. Section 6
provides an empirical example focusing on key U.S. macroeconomic series, illustrating
results in both tabular and graphical forms. Section 7 offers brief concluding comments.
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2 Granger causality
Consider, without loss of generality, the bivariate VAR(m) model given by

y1t = φ
(1)
0 +

m∑
k=1

φ
(1)
1k y1 t−k +

m∑
k=1

φ
(1)
2k y2 t−k + ε1t

y2t = φ
(2)
0 +

m∑
k=1

φ
(2)
1k y1 t−k +

m∑
k=1

φ
(2)
2k y2 t−k + ε2t

where y1t and y2t, respectively, represent economic time series of interest and ε1t and
ε2t are serially uncorrelated but possibly heteroskedastic disturbance terms. Variable
y1 is said to Granger-cause variable y2 if the past values of y1 have predictive power
for the current value of y2, conditional on the past returns of y2. Formally, the null
hypothesis of no Granger causality from y1 to y2 involves testing the joint significance
of φ(2)1k (k = 1, . . . ,m) with a Wald test.

It is useful to recast the system in matrix notation. Let yt = [ y1t y2t ]′,
xt = [ 1 y′

t−1 y′
t−2 . . . y′

t−m ]′, and Π2×(2m+1) = [ Φ0 Φ1 . . . Φm ] with
Φ0 = [ φ

(1)
0 φ

(2)
0

]′ and

Φk =

[
φ
(1)
1k φ

(1)
2k

φ
(2)
1k φ

(2)
2k

]
for k = 1, . . . ,m

The bivariate VAR(m) can then be written very simply as

yt = Πxt + εt

The null hypothesis of no Granger causality from variable y1 to y2 is R1→2π = 0, where
R1→2 is the coefficient restriction matrix that selects all coefficients on lagged y1 in the
y2 equation and π = vec(Π) using row vectorization.

The heteroskedastic-consistent Wald statistic of the null hypothesis is denoted by
W1→2 and is defined as

W1→2 = T (R1→2π̂)
′
{
R1→2

(
V̂−1Σ̂V̂−1

)
R′

1→2

}−1

(R1→2π̂)

where V̂ = In⊗ Q̂, and Q̂ = T−1
∑

t xtx
′
t, and Σ̂ = T−1

∑
t ξ̂tξ̂

′
t with ξ̂t = ε̂t⊗xt, and

ε̂t = yt − Π̂xt. Generalizing the formulation of a test for Granger causality beyond the
bivariate VAR(m) model described here is straightforward.

The recursive algorithms for dealing with testing for time-varying Granger causality
developed by Shi, Phillips, and Hurn (2018) and Shi, Hurn, and Phillips (2020) are now
described.



358 Testing for time-varying Granger causality

3 Recursive testing algorithms
To allow for time variation in Granger causal orderings and to datestamp the timing of
the changes, recursive estimation methods are required. A sequence of test statistics of
Granger causality—one for each time period of interest—must be computed, and this
information must then be used for inference. There are three algorithms that generate a
sequence of test statistics: the forward expanding (FE) window, the rolling (RO) window,
and the recursive evolving (RE) window algorithms. A schematic representation of the
different algorithms is given in figure 1, in which each of the arrows is representative of
a possible subsample over which the relevant test statistic is computed.

Consider a sample of T + 1 observations {y0, y1, . . . , yT } and a number r such that
0 < r < 1. Also consider [Tr] to denote the integer part of the product. Then Tr1,r will
be taken to denote a Wald test statistic computed over a subsample starting at y[Tr1]

and ending at y[Tr].
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Sample interval [1,T ]

τ0 = [Tr0]

1 T

(a) FE window

Sample interval [1,T ]

τ0 = [Tr0]

τ0 = [Tr0]

τ0 = [Tr0]

1 T

(b) RO window

Sample interval [1,T ]

τ0 = [Tr0]

τ0 = [Tr0]

τ0 = [Tr0]

1 T

(c) RE window

Figure 1. Sample sequences and window widths. Adapted from Phillips, Shi, and Yu
(2015b).
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3.1 The FE algorithm

The FE algorithm (Thoma 1994) is a standard forward recursion and is illustrated in
panel (a) of figure 1. The Wald test statistic is computed first for a minimum window
length, τ0 = [Tr0] > 0, and the sample size then expands sequentially by one observation
until the final test statistic is computed using the entire sample. Note that the starting
point of every subsample in this recursion is the first data point. At the conclusion of
the FE algorithm, a sequence of Wald test statistics, Tr1,r with r1 = 0 and r ∈ [r0, 1], is
obtained.

3.2 The RO algorithm

The RO algorithm (Swanson 1998; Arora and Shi 2016) is illustrated in panel (b) of
figure 1. A window of size [Tw] is rolled through the sample, advancing one observation
at a time, and a Wald test statistic is computed for each window. The output from the
RO algorithm is a sequence of test statistics Tr1,r with r1 = r−w and r ∈ [r0, 1], where
each test statistic is computed from a sample of the same size, [Tw], with 0 < w < 1.

3.3 The RE algorithm

The RE algorithm (Phillips, Shi, and Yu 2015a; Shi, Hurn, and Phillips 2020) is illus-
trated in panel (c) of figure 1. For a given observation of interest, this algorithm runs
a test regression for every possible subsample of size r0 or larger, with the observation
of interest providing the common endpoint of all the subsamples. This procedure is re-
peated, taking the observation of interest to be every point in the sample, subject only
to the minimum window size. The result is that every observation in the sample, apart
from the first subsample that defines the minimum window size, will have a set of Wald
test statistics associated with it. Phillips, Shi, and Yu (2015b) propose that inference
be based on the sequence of supremum norms of these statistics. The RE algorithm,
therefore, produces a sequence of test statistics, denoted T r1,r with r1 ∈ [0, r − r0] and
r ∈ [r0, 1], where every statistic in the sequence represents the supremum norm of the
set of Wald statistics associated with each observation.

It is clear that the RE algorithm encompasses both the FE and RO recursions as spe-
cial cases. For each observation in turn, a sequence of test statistics is defined that can
be arranged in an upper triangular square matrix with column and row dimensions equal
to the largest number of usable observations. Each column of this matrix corresponds to
a particular observation of interest, as outlined previously. The FE Wald statistic is the
leading entry in each column. The RO Wald statistic is located on the main diagonal.
Finally, the largest elements of each column of the matrix are the relevant RE statistics.

The information derived from these test statistics can be used over the full sample
or analyzed through the period to focus on the timing of these time-varying phenomena
via datestamping.
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3.4 Full-sample analysis

If the null hypothesis of interest is whether a particular variable does not Granger-
cause another variable at any time during the sample, with the alternative that there is
evidence of Granger causality at some time in the sample, then a single test statistic is
required. The maximal FE statistic is taken to be the largest element of the first row of
the matrix. The maximal RO statistic is the largest element of the main diagonal of the
matrix. The maximal RE statistic is the largest element of the entire upper triangular
matrix.

3.5 Datestamping

Beyond these summary measures for the full sample, the sequence of FE, RO, and RE
statistics can be graphed and compared with the bootstrap percentiles. These estimates
can then be used to identify periods in which the potential Granger-causal relationships
vary significantly. The estimated origination date of a change is determined as the first
instance at which the test statistic exceeds its critical value. Subsequent changes are
then identified in a similar fashion.

4 Inference
The empirical distribution of the test statistics under the null hypothesis is computed
by bootstrapping and controlling for size using the methodology described in section 3
of Shi, Hurn, and Phillips (2020); see also section 4.1 of Shi, Phillips, and Hurn (2018).
Following these authors, with a slight change of notation, we next describe the five
steps of the bootstrap procedure in the context of a simple bivariate VAR(1) for the null
hypothesis of no Granger causality from y2t to y1t:

1. Fit the bivariate VAR(1) model over the full-sample period under the null hypoth-
esis of no Granger causality from y2t to y1t:[

y1t

y2t

]
=

[
φ
(1)
11 0

φ
(2)
11 φ

(2)
21

] [
y1,t−1

y2,t−1

]
+

[
ε1t
ε2t

]
The estimates of the coefficients are denoted by φ̂

(1)
11 , φ̂

(2)
11 , and φ̂

(2)
21 , and the

residuals are denoted by e1t and e2t.

2. Denote the sample size of the bootstrapped data series by Tb = τ0 + τb − 1, where
τ0 = [Tr0] and τb = [Trb]. The bootstrap sample is generated by[

yb
1t

yb
2t

]
=

[
φ̂
(1)
11 0

φ̂
(2)
11 φ̂

(2)
21

] [
yb
1,t−1

yb
2,t−1

]
+

[
eb1t
eb2t

]
The residuals eb1t and eb2t are randomly drawn with replacement from the estimated
residuals e1t and e2t, respectively. The initial values are obtained using yb11 = y11
and yb21 = y21.
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3. Use the bootstrap series yb
1t and yb

2t to compute the test statistic sequences for
the forward (

{
T b
1,t

}τ0+τb−1

t=τ0
), RO (

{
T b
t−τ0+1,t

}τ0+τb−1

t=τ0
), and RE (

{
T b

t (τ0)
}τ0+τb−1

t=τ0
)

estimation windows, respectively. Recall that, for the first two algorithms, the
sequence comprises Wald statistics, but in the case of the RE algorithm, the se-
quence is made up of the supremum norm of the set of Wald statistics for each
observation of interest. Calculate the maximum values of each bootstrapped test
statistic sequence as

Forward : Mb
1,t = max

t∈[τ0,τ0+τb−1]
T b
1,t

RO : Mb
t−τ0+1,t = max

t∈[τ0,τ0+τb−1]
T b
t−τ0+1,t

RE : Mb

t (τ0) = max
t∈[τ0,τ0+τb−1]

{
T b

t (τ0)
}

where the notation Mb

t (τ0) is used to denote the supremum norm of a sequence
of supremum norm Wald tests.

4. Repeat steps 2 and 3 a total of b = 1, . . . , B times.

5. Estimate the 90%, 95%, and 99% critical values of the forward, RO, and RE Wald
statistics as the corresponding 90th, 95th, and 99th percentiles of the resulting B
bootstrapped statistics computed in step 4.

At this point, it is worth describing the Stata implementation of some of the steps
in the bootstrap described above. In step 1, noting that a VAR model can be viewed as
a seemingly unrelated regression model where the explanatory variables are the same
in each regression (see, for example, Judge et al. [1988]), estimation of the VAR model
under the null hypothesis of Granger causality is simplified with the use of the sureg
command, along with the constraints() option suitably defining the required exclu-
sion restrictions. Next the predict postestimation command is used to create variables
that contain the linear predictions of the model (using the option xb) and the associated
residuals (using the option residuals). The residuals are randomly drawn with replace-
ment, and the resulting bootstrapped residuals are then added to the linear predictions
of the model to produce the required bootstrapped version of the original variables (yb

1t

and yb
2t in our example above).

As for step 2, in their study of the money–income relationship, Shi, Hurn, and
Phillips (2020) set τb = 12 and 60 monthly observations, which is equivalent to control-
ling the size of the tests over periods of one and five years, respectively. Hence, there
is no need to generate the bootstrapped version of the variables over all T observations
(unless one chooses to do so) but only over the first Tb observations, which saves a lot
of computational effort when applying the different windows of estimation.
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Finally, the same bootstrapped statistics that are generated for the recursions in
step 5 are used with the datestamping part of the method and are also used to conduct
inference in the full-sample case when there is a single test statistic.

5 The tvgc command
The tvgc command calculates the time-varying Granger causality test statistics pro-
posed by Shi, Phillips, and Hurn (2018) and Shi, Hurn, and Phillips (2020).

5.1 Syntax

Before using the tvgc command, and similar to many other Stata time-series commands,
it is necessary to tsset the data. The syntax of tvgc is as follows:

tvgc varlist
[

if
] [

in
] [

, prefix(prefix) p(integer) d(integer) robust trend

matrix window(integer) boot(integer) seed(integer) sizecontrol(integer)
noprint graph eps pdf notitle restab

]
The tvgc command tests whether the first variable in the varlist is Granger-caused by
the remaining variables.

Note that varlist may not contain gaps but may contain time-series operators. tvgc
does not support the by: prefix.

The community-contributed moremata package (Jann 2005) is required; for the latest
version, type ssc install moremata.

5.2 Options

prefix(prefix) provides a “stub” with which variables created in tvgc will be named.
By default, three variables (prefix forward_varname, prefix rolling_varname, and
prefix recursive_varname) will be created for the appropriate date range. These
variables must not already exist in memory. These variables record the Wald statis-
tics that result from fitting the VAR or lag-augmented VAR model using forward
recursive, RO, and RE windows. The prefix() option must be specified to enable
the graph option, which includes 90th and 95th percentile bootstrap critical values
in the plots.

p(integer) sets the number of lags to be included in the VAR model. The default is
p(2). This can be determined using the Stata command varsoc (see [TS] varsoc).

d(integer) sets the number of lags to be included in the lag-augmented part of the VAR
model. The default is d(1). This option must be used when there are integrated
variables in the varlist. Set d(0) if no augmented lags are needed.
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robust specifies that heteroskedasticity-robust test statistics are to be computed.

trend specifies the modeling of intercepts and trends. By default, tvgc assumes varlist
is a nonzero mean stochastic process, so a constant is included in the VAR model. If
the trend option is specified, a constant and a linear trend are included in the VAR
model.

matrix specifies that the T ×T matrices of test statistics be returned. They are named
r(m_rhsvar), where rhsvar is one of the test variables.

window(integer) specifies the number of observations to be included in the RO window.
By default, 20% of the sample is used.

boot(integer) computes right-tail Monte Carlo critical values for the 90th, 95th, and
99th percentiles based on the bootstrap advocated by Shi, Phillips, and Hurn (2018)
and Shi, Hurn, and Phillips (2020), using the specified number of replications. The
default is boot(199); at least 20 must be specified. The bootstrap critical values
can be replicated if the option seed() is used.

seed(integer) sets the initial seed for random-number generation.

sizecontrol(integer) specifies the number of observations to be included in the boot-
strap computations to control the empirical size. The default is sizecontrol(12).

noprint specifies that detailed results not be printed.

graph specifies that the time series of the three test statistics be graphed along with
their 90% and 95% critical values. The graphs will be saved with names specified
by the prefix() option as prefix forward_varname, prefix rolling_varname, and
prefix recursive_varname.

eps specifies that graphs be saved as .eps files and be displayed in the Graph Window.

pdf specifies that graphs be saved as .pdf files and be displayed in the Graph Window.

notitle specifies that graph titles are to be suppressed.

restab specifies that a LATEX table containing the test statistics and their 95th and
99th percentile values be written to restab.tex. The file will be replaced if it
exists. When including this fragment in a LATEX document, the LATEX booktabs
package is required.
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5.3 Stored results

tvgc stores the following in r():

Scalars
r(T) number of observations
r(p) lag order of VAR
r(d) lag augmentation order
r(bootrepl) number of bootstrap replications
r(window) window width
r(sizecontrol) window width for bootstrapping

Macros
r(cmd) tvgc
r(depvar) target variable
r(rhsvars) test variables
r(tstart) first period in analysis
r(tend) last period in analysis

Matrices
r(gcres) matrix of test statistics
r(gccv90) matrix of critical values, 90th percentile
r(gccv95) matrix of critical values, 95th percentile
r(gccv99) matrix of critical values, 99th percentile
r(m_rhsvar) complete matrix of test statistics for test variable rhsvar

6 An empirical illustration
In this section, we illustrate the use of the command tvgc, using a three-variable VAR
specification for monthly U.S. data. The VAR includes the logarithm of industrial pro-
duction (ln i), unemployment (u), and the logarithm of the price of crude oil (ln o).1 All
three series are considered as the target variables for the Granger causality tests. The
variables in the VAR constitute a subset of those used by Hamilton (1983) to analyze
the relationship between oil and the macroeconomy using Granger causality tests. The
sample period runs from January 1959 to December 2019, which yields 732 observations.
The source of the data is FRED, the Federal Reserve Economic Data of the Federal Re-
serve Bank of St. Louis.2 Figure 2 provides time-series plots of the variables in levels.
It is apparent that the industrial production and oil price variables are trending.

1. The command tvgc was applied to the dataset used by Shi, Hurn, and Phillips (2020) in their
analysis of the money–income relationship in the United States. Our results match the MATLAB
statistics obtained by these authors to three or four decimals. In terms of speed, our command
compares favorably with their MATLAB routine.

2. The task of downloading the individual series from FRED is simplified with the command freduse;
see Drukker (2006). The dataset used in this illustration can be downloaded from the Boston
College Economics datasets by using the command bcuse us_outoil (Baum 2012).
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We commence our empirical application by examining the time-series properties of
the variables in the VAR. To this end, we apply the unit-root tests of Leybourne (1995)
and Elliott, Rothenberg, and Stock (1996). The former test achieves power gains over
the standard Dickey and Fuller (1979) testing procedure by applying the augmented
Dickey–Fuller (ADF) regression to the forward and reverse realizations of the time series
of interest and testing for the presence of a unit root based on the maximum ADF t
statistic that results from the two regressions. Hence, the test is commonly referred to as
ADFmax. In turn, Elliott, Rothenberg, and Stock (1996) are able to increase power over
the standard Dickey–Fuller approach through generalized least-squares (DFGLS) removal
of the underlying mean (or trend) in the variable of interest. In this case, the test is often
referred to as the DFGLS test. Both tests are implemented with the commands adfmaxur
and ersur developed by Otero and Baum (2018, 2017), respectively, as detailed in the
note to table 1.

Table 1. Time-series properties of the data

Variable ADFmax DFGLS

Levels First difference Levels First difference

p Statistic p Statistic p Statistic p Statistic

ln i A 12 −1.464 [0.714] 11 −7.415 [0.000] 12 −0.823 [0.895] 8 −3.271 [0.016]
S 3 −1.407 [0.737] 2 −10.343 [0.000] 3 −0.829 [0.891] 3 −4.972 [0.000]

GS5 12 −1.464 [0.714] 11 −7.415 [0.000] 12 −0.823 [0.898] 8 −3.271 [0.016]
u A 12 −2.917 [0.016] 11 −6.577 [0.000] 12 −2.920 [0.004] 11 −4.530 [0.000]

S 4 −2.950 [0.013] 3 −8.113 [0.000] 4 −2.952 [0.003] 4 −5.250 [0.000]
GS5 12 −2.917 [0.016] 11 −6.577 [0.000] 12 −2.920 [0.004] 11 −4.530 [0.000]

ln o A 1 −2.463 [0.221] 0 −20.960 [0.000] 1 −2.488 [0.119] 0 −20.911 [0.000]
S 1 −2.463 [0.209] 0 −20.960 [0.000] 1 −2.488 [0.114] 0 −20.911 [0.000]

GS5 6 −2.072 [0.396] 5 −11.818 [0.000] 6 −2.111 [0.255] 5 −11.659 [0.000]

note: adfmax and dfgls are the unit-root tests of Leybourne (1995) and Elliott, Rothenberg, and
Stock (1996), respectively. These tests are implemented with the commands adfmaxur and ersur;
see Otero and Baum (2018, 2017). The test regression for u includes a constant as the deterministic
component, while those for ln i and ln o include a constant and a trend. p is the number of lags of the
dependent variable that are included in the test regression to account for residual serial correlation. A
and S indicate that p was determined using the Akaike (1974) and Schwarz (1978) information criteria,
respectively; gs5 indicates that p was determined using the general-to-specific algorithm advocated
by Campbell and Perron (1991) and Hall (1994) using a 5% significance level. When determining the
optimal number of lags, we set pmax = 12.

To assess the robustness of our findings, the number of lags in the test regression is
determined using the information criteria put forward by Akaike (1974) and Schwarz
(1978), as well as the general-to-specific algorithm advocated by Campbell and Perron
(1991) and Hall (1994). According to our results, both the ADFmax and the DFGLS
tests support the presence of a unit root in ln i and ln o when considered in levels. In
the case of u, both tests support the view that the rate of unemployment is stationary.
Because there are variables integrated of order 1 in the VAR model under consideration,
our analysis proceeds in the context of a lag-augmented VAR model, where d = 1.
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The next task is to ascertain the optimum lag order of the VAR model by using the
Stata command varsoc. The command is applied to a model that includes a linear
trend that enters the model as an exogenous variable. The maximum number of lags
is set to 12 because the data are monthly. The results, which are not reported here
but are available upon request, indicate that the Schwartz lag-order selection statistic
recommends the use of p = 2 lags in the VAR model, while Akaike favors p = 6 lags.
The more parsimonious choice of p = 2 is adopted here.

Letting x GC?−−−→ y to denote that the direction of Granger causality being tested runs
from x to y, the following relationships are tested:

• u
GC?−−−→ ln i and ln o

GC?−−−→ ln i;

• ln i
GC?−−−→ u and ln o

GC?−−−→ u; and

• ln i
GC?−−−→ ln o and u GC?−−−→ ln o.

The required commands are, respectively, as follows:

. tvgc li u lo, trend window(72) sizecontrol(12) p(2) d(1) seed(123) boot(499)
> robust
. tvgc u li lo, trend window(72) sizecontrol(12) p(2) d(1) seed(123) boot(499)
> robust
. tvgc lo li u, trend window(72) sizecontrol(12) p(2) d(1) seed(123) boot(499)
> robust

In all three cases, the chosen options indicate the presence of a linear trend as an
exogenous variable, trend; two lags in the VAR, p(2); one lag in the lag-augmented part
of the VAR, d(1); and an initial estimation window of 72 observations, window(72). The
bootstrapped critical values are tabulated using 499 replications, boot(499), where the
size of the tests is controlled over a one-year period, sizecontrol(12). The seed of
the random-number generator is seed(123). The tests are robust to heteroskedasticity
if the option robust is applied. To produce the output reported in this article, the
options prefix(), graph, and eps are required. Note, however, that these options
are not included in the command lines above for reasons of space. The first command
produces the following output. The graphs produced by this command are included in
the first column of figure 3.



C. F. Baum, S. Hurn, and J. Otero 369

. tvgc li u lo, trend window(72) sizecontrol(12) p(2) d(1) seed(123) boot(499)
> robust prefix(LI_) graph eps notitle
Time-varying LA-VAR Granger causality test including trend, 1959m1 - 2019m12
TVGC robust test statistics for H0: li is GC

Max_Wald_forward Max_Wald_rolling Max_Wald_recursive

u 20.524 31.073 38.806
lo 12.037 28.322 31.689

90th percentile of test statistics [499 replications]
Max_Wald_forward Max_Wald_rolling Max_Wald_recursive

u 7.763 8.051 8.637
lo 6.763 7.169 7.552

95th percentile of test statistics [499 replications]
Max_Wald_forward Max_Wald_rolling Max_Wald_recursive

u 10.283 10.355 10.775
lo 8.709 8.970 9.324

99th percentile of test statistics [499 replications]
Max_Wald_forward Max_Wald_rolling Max_Wald_recursive

u 15.751 15.110 16.131
lo 12.459 13.526 14.389

The results for the full sample, summarized in table 2, show that we fail to reject
the null hypothesis of no Granger causality from income and unemployment to the
price of oil when applying the FE window. In all other cases, the joint-zero restrictions
on the relevant coefficients are rejected at the 5% level, as indicated by the computed
statistic exceeding the 95th percentile of the empirical distribution of the bootstrap test
statistics. This strong rejection of the null hypothesis is evidence of Granger causality
between all the variables of the system.
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Table 2. Wald tests of Granger causality

Direction of causality Max Wald FE Max Wald RO Max Wald RE

u
GC?−−−→ ln i 20.524 31.073 38.806

(10.283) (10.355) (10.775)
[15.751] [15.110] [16.131]

ln o
GC?−−−→ ln i 12.037 28.322 31.689

(8.709) (8.970) (9.324)
[12.459] [13.526] [14.389]

ln i
GC?−−−→ u 70.205 68.762 75.290

(10.360) (10.469) (10.544)
[15.850] [17.025] [17.892]

ln o
GC?−−−→ u 46.355 42.252 64.877

(9.673) (9.807) (10.118)
[13.607] [13.607] [13.962]

ln i
GC?−−−→ ln o 4.349 25.639 30.328

(7.913) (8.565) (9.344)
[14.964] [14.956] [14.964]

u
GC?−−−→ ln o 3.440 17.229 17.253

(9.333) (9.333) (10.121)
[15.417] [14.775] [15.417]

note: x
GC?−−−→ y indicates that the direction of Granger causality being tested runs

from x to y. The underlying var model is fit with p = 2 lags and with d = 1 lag
in the lag-augmented part, and it includes a trend. The study period is January
1959–December 2019. The minimum window size is set at 72 observations. The 95th
and 99th percentiles of the empirical distribution of the bootstrap test statistics are
shown in parentheses and brackets, respectively, and are based on 499 replications
with a one-year period to control size. Wald tests are robust to heteroskedasticity.

The time-varying Granger causality test results between income and unemployment,
income and the oil price, and unemployment and the oil price are presented in fig-
ures 3, 4, and 5, respectively. In general, these plots all support the conclusion that
Granger-causal relationships are extremely dynamic and that the patterns of causation
found in the data depend on the type of recursive algorithm used.
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(f) Recursive window: ln i
GC?−−−→ u

Figure 3. Time-varying Granger causality tests between ln i and u. x GC?−−−→ y indicates
that the direction of Granger causality being tested runs from x to y. The underlying
VAR model is fit with p = 2 lags and with d = 1 lag in the lag-augmented part, and it
includes a trend. The study period is January 1959–December 2019. The 10% and 5%
bootstrapped critical values (lower and upper horizontal dashed lines, respectively) are
based on 499 replications with a one-year period to control size. The minimum window
size is set at 72 observations. Wald statistics are heteroskedasticity robust.
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(f) Recursive window: ln o
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Figure 4. Time-varying Granger causality tests between ln i and ln o. x GC?−−−→ y indicates
that the direction of Granger causality being tested runs from x to y. The underlying
VAR model is fit with p = 2 lags and with d = 1 lag in the lag-augmented part, and it
includes a trend. The study period is January 1959–December 2019. The 10% and 5%
bootstrapped critical values (lower and upper horizontal dashed lines, respectively) are
based on 499 replications with a one-year period to control size. The minimum window
size is set at 72 observations. Wald statistics are heteroskedasticity robust.
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Figure 5. Time-varying Granger causality tests between u and ln o. x GC?−−−→ y indicates
that the direction of Granger causality being tested runs from x to y. The underlying
VAR model is fit with p = 2 lags and with d = 1 lag in the lag-augmented part, and it
includes a trend. The study period is January 1959–December 2019. The 10% and 5%
bootstrapped critical values (lower and upper horizontal dashed lines, respectively) are
based on 499 replications with a one-year period to control size. The minimum window
size is set at 72 observations. Wald statistics are heteroskedasticity robust.



374 Testing for time-varying Granger causality

There are several findings worth mentioning. For example, estimation using the
FE and RE windows indicates that, during most of the study period, there is evidence
of Granger causality from unemployment to income and vice versa. The presence of
Granger causality in figures 3(a) and 3(e) and figures 3(b) and 3(f) is indicated whenever
the value of the test statistic (solid line) exceeds the empirical critical values (dashed
lines) obtained from the bootstrap distribution. Whenever this situation arises, the
null hypothesis of no Granger causality is rejected. These results strongly support the
intuition that these two measures of economic activity are closely related.

Additionally, FE estimation shows that the price of oil Granger-causes income in the
late 1960s and early 1970s; see figure 4(b). By contrast, strong evidence of Granger
causality from income to the price of oil is apparent in the 1980s and 2000s with the RO
and RE windows; see figures 4(c) and 4(e), respectively. The fact that the FE window
fails to pick up the opening of this causal channel late in the sample period confirms a
well-known problem with the FE algorithm: namely, that it is not sensitive to changes
late in the sample period.

A particularly strong illustration of the effects of the first oil shock of October 1973
is evident in figures 5(b), 5(d), and 5(f), showing Granger causality from the oil price
to unemployment. All the algorithms identify a period of strong causality that starts at
the time of the first oil shock and lasts until the second oil shock in 1979. Interestingly,
although the causal channel from the oil price to unemployment is active at times in
the latter half of the sample period, the channel is not open during the great recession
of 2008–2009. As expected, there is little evidence of causality from unemployment to
the oil price except for a short burst in the early 2000s. The reason for this anomalous
result is unclear.

7 Conclusions
Evaluation of Granger-causal relationships among macroeconomic aggregates is an im-
portant component of macroeconometric modeling. It is crucial that the temporal sta-
bility of these relationships can be assessed formally. This article describes the imple-
mentation of a command, tvgc, to compute these test procedures, which can produce
full-sample test statistics as well as datestamping of periods during which there are sig-
nificant findings of Granger-causal relationships. Use of the tvgc command is illustrated
with an example from monthly U.S. macroeconomic data. The results obtained from
these data support the conclusion that causal relationships can change dramatically
over any given sample period. It follows that arbitrarily choosing the sample period
over which to conduct causality tests is bound to be an inferior strategy to one that
allows data-driven identification of change points.
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9 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-2

. net install st0675 (to install program files, if available)

. net get st0675 (to install ancillary files, if available)
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