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Abstract. The statistical literature is replete with calls to report standardized
measures of effect size alongside traditional p-values and null hypothesis tests.
While effect-size measures such as Cohen’s d and Hedges’s g are straightforward
to calculate for t tests, this is not the case for parameters in more complex linear
models, where traditional effect-size measures such as 1° and w? face limitations.
After a review of effect sizes and their implementation in Stata, I introduce the
community-contributed command mces. This postestimation command reports
standardized effect-size statistics for dichotomous comparisons of marginal-effect
contrasts obtained from margins and mimrgns, including with complex samples,
for continuous outcome variables. mces provides Stata users the ability to report
straightforward estimates of effect size in many modeling applications.

Keywords: st0667, mces, svysd, effect size, margins, esize, marginal effects, con-
trasts of marginal effects

1 Introduction

Classical frequentist statistical inference involves calculating p-values, or the probability
that a null hypothesis would be observed in the target population given the data. It
is well known that p-values are often misinterpreted as the probability that the null
hypothesis is true (Cohen 1994). This widespread misunderstanding, combined with
a raft of criticism admonishing both researchers and consumers that statistical signifi-
cance does not imply clinical or practical significance, has led many voices in the field
of statistics to encourage a move toward reporting standardized measures of effect size
alongside or in place of traditional null hypothesis significance tests (for example, Kline
[2013]; Trafimow and Marks [2015]; Wasserstein and Lazar [2016]; and Ziliak and Mc-
Closkey [2008]). This article begins with a brief primer on standardized effect sizes and
illustrates ways that they are traditionally estimated in Stata. Because the estimation
of marginal effects is a core Stata capability, I review various ways of manually cal-
culating effect sizes for margins results. These manual calculations are cumbersome,
and in some cases impossible, using existing methods. Accordingly, I introduce a new
command, mces, that facilitates computing contrasts of postestimation marginal effects
for continuous outcome variables using margins. I then demonstrate its use with some
of the same examples.

© 2022 StataCorp LLC st0667
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2 Overview of effect-size measures

While null hypothesis significance testing concerns whether “no effect is unlikely”, mea-
sures of effect size report whether an observed effect is “large in magnitude”. Because
of differences in ways that effects are estimated, there can be no single way that effect
sizes are calculated or reported. When researchers refer to “effect sizes”, they are al-
most always referring to standardized measures of effect size, which permit unit-neutral
comparisons across studies and are a central tool of meta-analysis (Vacha-Haase and
Thompson 2004). The literature frequently describes three “families” of effect sizes
with similar properties, depending on the nature of the variables in question and the
estimation procedure (Ellis 2010). While effect sizes are not infallible (for example,
Cheung and Slavin [2016]), they are still preferable to reporting p-values alone because
they report fundamentally different information (Kelley and Preacher 2012). While the
terms “treatment group” and “control group” are the language of experimentation and
are used in this article for exposition, the logic is the same for any binary demarcation
of group membership, such as i.male or i.collgrad.

2.1 The “d” family of effect sizes

The “d” family reports magnitudes in terms of group mean differences. For continuous
outcomes, these measures are variations on the generic formula (Mp — M¢)/SD: the
mean difference between the treatment group and the control group, standardized by
dividing by the standard deviation. The most familiar of these may be Cohen’s d (Cohen
1988), which involves dividing the differences in means by the pooled standard deviation

(1):
Myp — Mc

\/2<XT—XT>2+2<XC—XC)2

nr+nc—2

d=

(1)

While Cohen’s d is likely familiar to readers, it is not the only statistic for standardized
mean difference. Glass’s A (Glass, McGaw, and Smith 1981) reports the effect size
using the standard deviation for the control group on the theory that this estimates
average treatment effects for future untreated populations (2). It is also useful for small
samples, when estimates of the standard deviation could be unstable.

_ My — Mc
N SD¢

A (2)

Hedges’s g (Hedges 1981) uses a pooled standard deviation that is weighted by the
relative sample sizes of the two groups (3). Hedges’s g is similar to Cohen’s d, but
Cohen’s d has been shown to be positively biased in small samples.

_ My — Mc
9= \/SDZT-(nT—l)—O—SDZC-(nC—l)

nr+nc—2

3)

Hedges’s g and Cohen’s d are equivalent in large samples and will be similar to Glass’s
A when the two groups have similar standard deviations.
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2.2 The “r” family of effect sizes

In contrast to the “d” family’s emphasis on mean differences, the “r” family of effect-size
measures revolves around the “proportion of variance accounted for”. The most familiar
of these may be the squared multiple correlation coefficient (the “coefficient of deter-
mination”), or R?, and its “corrected” corollary, the adjusted R?, which incorporates
information about sample size and number of predictors. These range in value from
0 to +1. While software traditionally reports R? in regression analyses, with ANOVA
“correlation index” values n? and w? (sometimes €2) are more common, even though
in linear relationships they are functionally equivalent to R? and adjusted R? (Cohen
et al. 2003). Because they are measures of the proportion of variance accounted for,
both R? and n? are figured by dividing the variance explained by the model (which may
be as simple as a one-factor ANOVA or as complex as a structural equation model) by
the total variance observed, as in (4).

R =% = SSModel _ Variance explained ()
B SSTotal Total variance

Partial n? and w?, on the other hand, have a slightly different formula (5), which is
comparable with (4) in a one-way ANOVA. However, in complex models, they can differ
widely, and there is a great deal of published literature that appears to conflate the two
(Levine and Hullett 2002). Readers may be expecting n? and w? statistics to report the
proportion of the “total” variance explained, as calculated in (4). Levine and Hullett
recommended that partial 7 be reported, but other authors recommend the opposite
(for example, Tabachnick and Fidell [2019] and Olejnik and Algina [2003]).

Partial n? = SSExplained (5)
SSExplained + SSError

Use of measures such as 72 to report relative-effect magnitude has been criticized in the
literature on regression (for example, Pedhazur [1997]). The standardized regression
coefficient [ is also occasionally advocated as an analogue to effect size, but it is not
an ideal method to convey the magnitude of an effect across studies (Greenland et al.
1986; Pedhazur 1997).

Effect sizes for categorical outcomes are also members of the “r” family. While they
are related to r, more common measures of effect size for contingency tables (that is,
categorical data) are coefficient ¢, Cramér’s V', Kendall’s 7, and Cohen’s w. Equation 6
demonstrates the formula for these measures in a 2 x 2 table. While Cramér’s V' can be
calculated for multiway tables, ¢ is only estimated for two dichotomous variables, and
Pearson’s r is only equivalent to V' and ¢ in that case.

Vz\/fz(ﬁzr (6)

Kendall’s T is a nonparametric measure of association that does not use the y? statistic
but rather ordinal “concordances” and “discordances”. There are three formulas for
Kendall’s 7, according to whether the table is square and whether to account for ties.
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Stata reports Kendall’s 75, which is determined by the number of concordances (C'), the
number of discordances (D), the number of ties (T'), and the number of observations
(n), shown in (7).

B C-D

Vin(n = 1/2 - Tx)Hnn - 1/2 - Ty)}
Because the “d” and the “r” families are both undergirded by the same general linear
model, they imply the same meaning, and researchers can use formulas to convert not

only within families but also from one family to another (Vacha-Haase and Thompson
2004).

(7)

Ty

2.3 The “OR” family of effect sizes

Applied most commonly to categorical data and particularly generalized linear models,
the odds ratio reports the odds of an outcome given a treatment or condition, relative to
the odds of the outcome in the absence of that treatment or condition. Odds are figured
from probabilities according to the formula 7 /(1 — 7), where 7 is the probability of a
“yes” result for a dichotomous outcome variable.! Odds are accordingly the expected
number of “yes” results for every “no”.

Odds ratios report magnitudes of association as a multiplier for the increase or
decrease in odds for a one-unit change in a continuous predictor or, for categorical
variables, membership in one category relative to another. For example, an odds ratio
of 2 for a binary regression predictor variable i.urban implies that the odds of “yes” are
twice as high for cities coded as urban as they are for those not coded as urban. Relative
risk is an analogous standardized effect-size statistic measured in raw probabilities rather
than odds. However, because relative risk has skewed sampling distributions, odds ratios
are preferred in many fields.

3 Effect sizes in Stata

Stata has methods for estimating each family of effect-size measures. For an additional
overview, see Huber (2013).

3.1 The “d” family in Stata

Stata’s base esize command reports “d” family effect sizes. The unequal option, which
is generally recommended, requests that Stata use a pooled standard deviation rather
than making the (strong) assumption that both groups have equal variances.

1. Models such as ordinal and nominal logistic regression, which involve categorical outcome variables
with more than two levels, still estimate odds and odds ratios relative to one of the other levels.
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. sysuse auto
(1978 automobile data)

. esize twosample mpg, by(foreign) unequal cohensd hedgesg glass
Effect size based on mean comparison, unequal variances

Obs per group:

Domestic = 52

Foreign = 22

Effect size Estimate [95% conf. intervall
Cohen's d -.9234449 -1.466436 -.3679697
Hedges's g -.9137865 -1.451098 -.364121
Glass's Delta 1 -1.042693 -1.576083 -.5004845
Glass's Delta 2 -.7480963 -1.287558 -.1938573

Satterthwaite's degrees of freedom = 30.5463

esize reports two values of Glass’s A, one using the standard deviation from the
first group (“Glass’s Delta 17, which is Domestic in this output) and one using the
standard deviation from the second group (“Glass’s Delta 2”, which here is Foreign).
In this example, Cohen’s d and Hedges’s g values are similar,? while Glass’s A values
are quite different, even though they all use the same M — My numerator. A closer
examination of the sample statistics is instructive.

. table foreign, statistic(count mpg) statistic(sd mpg) nototals

Number of nonmissing values Standard deviation

Car origin
Domestic 52 4.743297
Foreign 22 6.611187

The standard deviations and sample sizes for the two groups are both different.
After some algebra, we determine that the pooled unweighted standard deviation used
for Cohen’s d is 5.36, while the pooled weighted standard deviation used for Hedges’s
g is similar at 5.41. Both are closer to the Domestic standard deviation because the
Domestic n is larger. The difference between SDponestic and SDroreign is Tesponsible for
the discrepancy between the two values of Glass’s A. In practice, the control group
standard deviation will typically be closer to the population standard deviation, so
the appropriate value of A is almost always the control group—in this case, “Glass’s
Delta 1.

3.2 The “r” family in Stata

Stata provides several ways to estimate the “r” family of effect sizes. The correlate
command and the related pwcorr command report the Pearson correlation coefficient,

2. According to [R] esize, Stata uses a different formula for d than the formula found on page 44 of
Cohen’s (1988) seminal text. The formula for d in the [R] esize documentation is described as the
formula for Hedges’s g elsewhere (for example, Ellis [2010] and Durlak [2009]).
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which is the archetypal r. Coefficient r is equivalent to coeflicient ¢ in a 2 x 2 table but
is less often reported for contingency tables.

. webuse nhanes2

. correlate highbp sex
(obs=10,351)

‘ highbp sex
highbp 1.0000
sex -0.0886 1.0000

Coefficient ¢, Cramér’s V, and Kendall’s 7 are obtained in Stata with the tabulate
twoway command. As expected, the value of r from the correlate command equals
the estimated Cramér’s V because both variables are dichotomous.

. tabulate highbp sex, chi V taub

High blood Sex
pressure Male Female Total
0 2,611 3,364 5,975
1 2,304 2,072 4,376
Total 4,915 5,436 10,351

Pearson chi2(1) =
Cramér's V
Kendall's tau-b

81.1787 Pr = 0.000

-0.0886

-0.0886 ASE = 0.010

The x? test indicates statistical significance, but a small p-value is not an indication
of how strongly these variables are associated with one another. The values of Cramér’s
V and Kendall’s 73, report that, on a scale from 0 (independence) to 1.0 (perfect as-
sociation), sex’s association with the incidence of high blood pressure is less than 0.1.
Coefficient ¢ is not reported, but in a 2 x 2, table it is equal to Cramér’s V. Here is
another example, this time with a 2 x 5 table:

. tabulate highbp agegrp, chi V taub

High blood Age group
pressure 20-29 30-39 40-49 50-59 60-69 Total
0 1,928 1,167 770 590 1,193 5,975
1 392 455 502 701 1,667 4,376
Total 2,320 1,622 1,272 1,291 2,860 10,351
High blood | Age group
pressure 70+ Total
327 5,975
1 659 4,376
Total 986 10,351
Pearson chi2(5) = 1.4e+03 Pr = 0.000
Cramér's V =  0.3640
Kendall's tau-b = 0.3185 ASE = 0.008
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The p-value again leads us to reject the null hypothesis of no differences between the
groups. Even though the tests for sex and age report p-values of 0.000, the estimated
effect sizes show that age has a much stronger association with blood pressure than
sex does. Taken together, these results underscore the importance of effect sizes in the
interpretation of statistical test results, because without the effect sizes, the analyst
could miss the critical differences in magnitude between the two associations.

Next we will consider the “r” family effect sizes in the context of linear models such
as regression and analysis of variance. We begin with a simple regress specification
(although typing anova hgb sex hsizgp is equivalent) followed by estat esize with
and without the omega option.

. regress hgb sex hsizgp

Source SS df MS Number of obs = 10,351
F(2, 10348) = 2327.79

Model 6157.66008 2 3078.83004 Prob > F = 0.0000
Residual 13686.7097 10,348 1.32264299 R-squared = 0.3103
Adj R-squared = 0.3102

Total 19844 .3698 10,350 1.91733041 Root MSE = 1.1501
hgb | Coefficient Std. err. t P>t [95% conf. interval]

sex -1.545825 .0226569 -68.23 0.000 -1.590237 -1.501413
hsizgp -.0309753 .0084939 -3.65 0.000 -.047625 -.0143256
_cons 16.70453 .0441952 377.97 0.000 16.6179 16.79116

The value of R? reported in the regression table is equivalent to n?, and the adjusted
R? is equivalent to w?. In this instance with few predictors, n? and w? (and R? and
adjusted R?) are similar. They will diverge with the addition of more predictors.

. estat esize

Effect sizes for linear models

Source | Eta-squared daf [95% conf. intervall
Model .3102976 2 .2965246 .3237334
sex .3102711 1 .2965655 .323773
hsizgp .0012835 1 .0002746 .0030286

Note: Eta-squared values for individual model terms are partial.
. estat esize, omega

Effect sizes for linear models

Source Omega-squared df
Model .3101436 2

sex .3101838 1
hsizgp .0011869 1

Note: Omega-squared values for individual
model terms are partial.
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The regress and anova commands report coeflicients, t-values, and significance
tests for each coefficient, along with R? and adjusted R?, but only the postestimation
estat size command reports n? or w?. These statistics can also be informative (com-
pare Pedhazur [1997]). While both the sex and hsizgrp variables have p-values of less
than 0.001 and are “statistically significant”, the partial w? shows that sex is much
more strongly associated with hemoglobin levels when controlling for house size. In this
instance, the t-values also suggest a difference in strength of association, but this is not
always the case. The community-contributed command pcorr2 (Williams 2003) also
reports partial correlation coefficients. In simple models, squared partial correlation co-
efficients from pcorr2 are equivalent to n?. Another community-contributed command,
esizereg (Linden 2019), reports Cohen’s d effect sizes for a single regression coefficient.

3.3 The “OR” family in Stata

Odds ratios are most often calculated for logistic and ordered logistic regression models
using logit or ologit. Because the default coefficients of these models are uninter-
pretable log odds, the or option requests exponentiated odds ratios instead, which
facilitates interpretation. (The logistic command requests odds ratios by default, the
same as logit, or.) Multinomial (also called “polytomous”) logistic regression models
using mlogit with the rrr option report the similarly interpreted “relative-risk ratio”,
and models for count outcomes, such as poisson and nbreg, calculate the “incidence-
rate ratio” with the irr option. As an example, consider a logistic regression analysis
modeling risk factors for diabetes. The research question might be, “Do sex, age, or
body mass index predict the likelihood of a person being diagnosed with diabetes?”

. logistic diabetes i.sex bmi i.agegrp

Logistic regression Number of obs = 10,349
LR chi2(7) = 411.88
Prob > chi2 = 0.0000
Log likelihood = -1793.8169 Pseudo R2 = 0.1030
diabetes | Odds ratio  Std. err. z P>|z| [95% conf. interval]
sex
Female 1.080252 .1031392 0.81 0.419 .8958901 1.302552
bmi 1.07604 .0089067 8.85 0.000 1.058724 1.093639
agegrp
30-39 1.770952 .6029793 1.68 0.093 .9086303 3.451649
40-49 4.459514  1.355222 4.92 0.000 2.45817 8.090271
50-59 7.403023 2.127383 6.97 0.000 4.215043 13.00218
60-69 11.81136  3.171803 9.19  0.000 6.97782 19.9931
70+ 16.80083  4.683804 10.12  0.000 9.72813 29.01564
_cons .0010223 .0003422 -20.57 0.000 .0005305 .0019702

Note: _cons estimates baseline odds.

The model reports that females in the dataset have odds of being diagnosed with
diabetes that are 1.08 times higher than males after controlling for the effects of the other
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predictors—not a huge difference. Critically, this is not the same as the “probability” of
a diabetes diagnosis being 1.08 times higher. Odds use the formula 7/(1 — ), and they
are not linearly related to predicted probabilities. To obtain predicted probabilities, we
use the margins command. Measures of effect size for regression models are elaborated
further in the next section.

The coefficient for body mass index (BMI) also rounds to 1.08, but because BMI is a
continuous predictor, the interpretation is that for each ceteris paribus one-unit increase
in BMI, the odds of a diabetes diagnosis are expected to increase by a factor of 1.08,
which would mean that a four-unit increase in BMI should predict odds of a diabetes
diagnosis that are 1.36 times higher. And, relative to the base category of 20—29-year-
olds, those aged 50-59 have odds of diabetes that are approximately 7.4 times higher.
More information on odds ratios and their interpretations in Stata are available in Long
and Freese (2014) and Mitchell (2021).

4 Effect sizes for marginal effects

The interpretation of regression coefficients is less straightforward when models be-
come complex. When transformations, interactions, and polynomials are specified and
combined, individual model coefficients can lose their clear, substantive meaning. For-
tunately, as experienced Stata users know, the ability to easily calculate postestimation
predicted values from even the most complicated models using the margins command is
one of Stata’s core capabilities. Just as interpretation of regression coefficients becomes
more difficult with increasing model complexity, so does the interpretation of the “r”
family of effect sizes. While n? and w? have straightforward interpretations in simpler
models, they offer less clarity on the magnitude of a variable’s effects on the outcome
when models become complex, especially without careful centering and hand calcula-
tions of “simple slopes” (Aiken and West 1991). n? and w? values also do not leverage
the flexible specifications of margins. The pwcompare option for margins can be used
to produce the My — M component of the formula for the “d” family of effect sizes
with many types of regression models. However, as we shall see, calculating a valid
standard deviation can be a challenge.

4.1 Marginal effect sizes for categorical regression predictors

Suppose we are interested in whether systolic blood pressure is higher for females af-
ter controlling for BMI, race, and hemoglobin levels. We might specify the following
regression model:



B. P. Shaw

. webuse nhanes2, clear

. generate log_bmi =

log(bmi

)

. regress bpsystol c.log_bmi##c.log_bmi i.race i.sex##c.hgb

Source SS df MS Number of obs 10,351
F(7, 10343) 232.00
Model 764657 .969 7 109236.853 Prob > F 0.0000
Residual 4870012.06 10,343 470.851016 R-squared 0.1357
Adj R-squared 0.1351
Total 5634670.03 10,350 544.412563 Root MSE 21.699
bpsystol | Coefficient Std. err. t P>|t] [95% conf. intervall
log_bmi -10.11869 27.98112 -0.36 0.718 -64.96711 44.72972
c.log_bmi#
c.log_bmi 8.344867  4.280715 1.95 0.051 -.0461622 16.7359
race
Black 1.6578562  .7227593 2.29 0.022 .241104 3.0746
Other .6872607  1.553159 0.44 0.658 -2.357231 3.731752
sex
Female -44.75682  5.333441 -8.39  0.000 -55.2114  -34.30224
hgb -1.114247 .2693264 -4.14 0.000 -1.642178 -.5863149
sex#c.hgb
Female 2.912048  .3710501 7.85 0.000 2.184718 3.639378
_cons 95.04859 45.79675 2.08 0.038 5.278105 184.8191

143

The regression table does not provide a simple answer to the question of whether
males or females are predicted to have higher systolic blood pressure. The command
margins, pwcompare uses all available information, including all model terms and the
proportions of the sample with each distribution of the covariates.

. margins sex, asobserved pwcompare

Pairwise comparisons of predictive margins

Model VCE: OLS

Expression: Linear prediction, predict()

Number of obs = 10,351

Delta-method Unadjusted
Contrast std. err. [95% conf. intervall
sex
Female vs Male -3.229743 .5258416 -4.260494 -2.198992
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Accounting for all model predictors, margins reports that females in the sample are
predicted to have a systolic blood pressure 3.23 points lower than that of males. This
difference is clearly statistically significant, but by default margins does not report an
effect size, and very small p-values are not an indication of a large effect. It is possible
to calculate the effect size by hand using Stata’s base esizei command. First, we need
to store the estimated contrast in the scalar we choose to name diff and then use
summarize to store the within-group means and standard deviations.

. scalar diff = el(r(b_vs),1,1)

. quietly summarize bpsystol if sex==
. scalar sdl = r(sd)

. scalar nl = r(N)

. quietly summarize bpsystol if sex==
. scalar sd2 = r(sd)

. scalar n2 = r(N)

Now that the necessary summary statistics are in memory, esizei will report the
effect size for the marginal comparison between males’ and females’ values on the out-
come after adjusting for all the predictors in the regression equation, using the values for
each group from the margins command. We use the stored coeflicient from margins,
pwcompare for the first group and a zero for the other.

. esizei "=nl1' “=diff' “=sdl' "=n2' 0 “=sd2', unequal
Effect size based on mean comparison, unequal variances

Obs per group:

Group 1 = 4,915

Group 2 = 5,436

Effect size Estimate [95% conf. intervall
Cohen's d -.1388798 -.1775009 -.100252
Hedges's g -.1388698 -.1774881 -.1002447
Satterthwaite's degrees of freedom = 1.0e+04

The regression-adjusted difference between males’ and females’ systolic blood pres-
sure is approximately 0.14 standard deviations. Field-specific context informs a judg-
ment about whether this is a large or small difference. Nevertheless, if we are confident
in our margins specification, we can be confident in the interpretation of the estimated
“d” family effect size.

4.2 Marginal effect sizes for continuous regression predictors

The approach in section 4.1 applies only to dichotomous variables. For continuous pre-
dictors, the analyst can report w? or n? statistics or use margins to create a dichotomous
comparison. Here we analyze the differences between females with high and low levels
of hemoglobin.



B. P. Shaw 145

. quietly summarize hgb if sex==

. scalar fem_hihgb = “r(mean)' + “r(sd)'

. scalar fem_lowhgb = “r(mean)' - “r(sd)'

. margins, at(hgb=("=fem_hihgb' “=fem_lowhgb') sex=2) asobserved pwcompare(effects)

Pairwise comparisons of predictive margins Number of obs = 10,351
Model VCE: OLS

Expression: Linear prediction, predict()

1._at: sex = 2
hgb = 14.66133
2._at: sex = 2
hgb = 12.39485
Delta-method Unadjusted Unadjusted
Contrast std. err. t P>|t]| [95% conf. intervall]
_at
2vs 1 -4.074689 .6022449 -6.77  0.000 -5.255206  -2.894173

The predicted difference in systolic blood pressure between female subjects with
hemoglobin levels 1-standard deviation higher than the mean and 1-standard deviation
lower than the mean is 4.07 points. This difference is statistically significant at a = 0.05.
Determining practical significance using measures of effect size necessitates figuring the
standard deviations. This is complicated by the fact that the approach used to calculate
the standard deviation in section 4.1 is not directly available when the predictor in
question is continuous. Furthermore, it usually does not make sense to estimate the
standard deviation only for cases with a very specific hemoglobin level. For example, in
this dataset containing over 10,000 cases, none have a rounded value of hgb that equals
the grand mean of 14.3.

There is no single accepted method to define the standard deviations for calculating
effect sizes when predictors are continuous. One possibility is to simply use the standard
deviation of the outcome variable for both the high and the low values of the continuous
predictor (following Cohen et al. 2003). This is analogous to Glass’s A approach, so the
delta option is specified.

. margins, at(hgb=("=fem_hihgb' “=fem_lowhgb') sex=2) asobserved pwcompare(effects)
(output omitted )

. scalar diff = el(r(b_vs),1,1)

. quietly summarize bpsystol if sex==

. scalar sdl = r(sd)

. scalar sd2 = r(sd)

. scalar nl = r(N)

. scalar n2 = r(N)
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. esizei "=nl1' “=diff' “=sdl' “=n2' 0 “=sd2', glass
Effect size based on mean comparison

Obs per group:

Group 1 = 5,436

Group 2 = 5,436

Effect size Estimate [95% conf. intervall]
Glass's Delta 1 -.1621648 -.1998752 -.1244396
Glass's Delta 2 -.1621648 -.1998752 -.1244396

The estimated difference of 0.16 standard deviations helps the analyst understand
the magnitude of the effect, which the small p-value does not.

4.3 Marginal effect sizes for recoded continuous regression predictors

There is an even simpler and more straightforward approach to find the denomina-
tor: divide cases into a small number of groups based on their value of the continuous
predictor, and then substitute the new categorical variable in the regression equation.
The advantage of this approach is that there are clearly defined groups for comparison
and for calculating the standard deviation. If theory suggests logical thresholds, then
Stata’s recode and generate commands are useful for creating the groups. If not, then
splitting the variable into quantiles with xtile would also suffice. In this example,
there is theoretical guidance for establishing a threshold: hemoglobin levels for men are
regarded as elevated when they are above 17 grams per deciliter, while the standard for
women is 15 grams per deciliter (Cleveland Clinic 2018). We can create indicator vari-
ables for a high hemoglobin level and then reestimate the regression using the indicator
variable in place of the continuous measure of hemoglobin. Moving from a continuous
measure to a categorical measure results in some loss of efficiency. Still, if a marginal
comparison is central to the analysis, the ease of calculating an effect size may justify
small reductions in R? values.

. webuse nhanes2, clear
. svyset, clear

. keep if sex==
(4,915 observations deleted)

. generate log_bmi = log(bmi)
. generate fem_hihgb = 0

. replace fem_hihgb = 1 if hgb > 15
(452 real changes made)
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. regress bpsystol c.log_bmi##c.log_bmi i.race##i.fem_hihgb

Source SS daf MS Number of obs = 5,436
F(7, 5428) = 149.29
Model 553998.315 7 79142.6164 Prob > F = 0.0000
Residual 2877433.64 5,428 530.109366 R-squared = 0.1614
Adj R-squared = 0.1604
Total 3431431.95 5,435 631.358225 Root MSE = 23.024
bpsystol | Coefficient Std. err. t P>|t] [95% conf. intervall
log_bmi 39.0894  35.34388 1.11 0.269 -30.19879 108.3776
c.log_bmi#
c.log_bmi 1.302717  5.385973 0.24 0.809 -9.25595 11.86138
race
Black 1.370566  1.038928 1.32 0.187 -.6661497 3.407282
Other -.5987116  2.466003 -0.24 0.808 -5.433066 4.235643
1.fem_hihgb 6.186013  1.175418 5.26 0.000 3.881723 8.490304
race#fem_hihgb
Black#1 -9.243625 5.951811 -1.55 0.120 -20.91156 2.424311
Other#1 3.525941  8.579992 0.41 0.681 -13.29429 20.34617
_cons -10.96456 57.8521 -0.19 0.850 -124.3779 102.4488

. margins fem_hihgb, pwcompare(effects)

Pairwise comparisons of predictive margins Number of obs = 5,436
Model VCE: OLS

Expression: Linear prediction, predict()

Delta-method Unadjusted Unadjusted
Contrast std. err. t P>t [95% conf. intervall
fem_hihgb
1vs O 5.252469 1.216172 4.32 0.000 2.868284 7.636654

. scalar diff = el(r(b_vs),1,1)
. quietly summarize bpsystol if fem_hihgb

1]
]
-

. scalar sdl = r(sd)

. scalar nl1 = r(N)

. quietly summarize bpsystol if fem_hihgb == 0
. scalar sd2 = r(sd)

. scalar n2 = r(N)
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. esizei "=n1' “=diff' “=sdl' “=n2' 0 “=sd2', hedges
Effect size based on mean comparison

Obs per group:

Group 1 = 452
Group 2 = 4,984
Effect size Estimate [95% conf. intervall]
Hedges's g .2101564 .1138004 .306493

These calculations show that females with clinically elevated hemoglobin levels are
predicted to have a systolic blood pressure that is 0.21 standard deviations higher than
those without high hemoglobin levels. However, estimating the standardized effect size
for a postestimation contrast is cumbersome, particularly with multiply imputed data.
Furthermore, esizei does not work with data that are svyset or mi svyset.

5 The mces and svysd commands

The mces command calculates one of three “d”-family effect-size measures for between-
group contrasts of marginal effects obtained after margins, pwcompare post. The
default effect size, which I am calling the root mean squared error (RMSE)-based A,
uses the RMSE of the regression as the denominator in a calculation similar to (1)—(3).
Hedges’s g and Cohen’s d can be requested as well by specifying a binary grouping
variable used to calculate the pooled standard deviations for the same equations. The
community-contributed mimrgns command?® (Klein 2016) for marginal effects with mul-
tiply imputed data is also supported, as are complex survey designs specified with
svyset or mi svyset.

Alternatively, if an estimate of only the survey-adjusted standard deviation is de-
sired, the svysd command can be used independently of any margins results.

5.1 Syntax

The syntax after margins, pwcompare post or mimrgns, pwcompare post is

mces [, sdbyvar (varname) hedgesg cohensd sdupdate nowarning iorce]

The syntax to calculate a survey-adjusted standard deviation only is

svysd depvar, sdbyvar(varname) [unweighted nowarning iorce]

The mces command should work with most models based on linear regression that
store coefficients from margins, pwcompare post and mimrgns, pwcompare post in

3. mimrgns is available from the Statistical Software Components Archive.
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the macro e(b_vs), such as regress, truncreg, sem and gsem, and tobit. mces is not
appropriate for multilevel models, because it does not account for intraclass correlation
(see Lorah [2018]) nor for categorical outcomes or generalized linear models that do not
have standard deviations or RMSEs.

A further note about mces is that it estimates the standard deviations based upon
all cases in the dataset and not only those used in the estimation. When requesting
Hedges’s g or Cohen’s d, users may wish to run keep if e(sample) prior to mces if
out-of-sample cases should not be used.

5.2 Options

sdbyvar (varname) specifies a dichotomous variable defining the comparison groups.
sdbyvar () is required with svysd.

hedgesg (mces only) requests Hedges’s g instead of the default RMSE-based A.
cohensd (mces only) requests Cohen’s d instead of the default RMSE-based A.

sdupdate (mces only) requests a recalculation of the standard deviation, which is useful
if the dataset has changed since the standard deviation was last calculated.

unweighted (svysd only) requests the unweighted pooled standard deviation used
for Cohen’s d instead of the default weighted pooled standard deviation used for
Hedges’s g.

nowarning suppresses warning messages about applicability of the standard deviation
to the estimated pairwise comparisons.

force bypasses a check of whether the outcome variable is continuous.

5.3 Stored Results

mces and svysd store the following in r():

Scalars
r (RMSE) the estimated RMSE used for RMSE-based A
r(sdstar) sd*, the pooled weighted standard deviation used for Hedges’s g
r(pooledsd) the unweighted pooled standard deviation used for Cohen’s d

r(n_sdbyvar_at_#) the sample size in the group sdbyvar (#)
r(sd_sdbyvar_at_##) the standard deviation for the group sdbyvar (#)

Macros

r(depvar) the outcome variable

r (sdbyvar) the margins variable used to mark groups for the standard deviation
Matrices

r(Delta) the estimated RMSE-based A values

r(g) the estimated Hedges’s g-values

r(d) the estimated Cohen’s d-values
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5.4 Example

mces can be used to streamline the process outlined in section 4.3.

Effect sizes for contrasts of estimated marginal effects

The reported

Hedges’s g from mces is equal to the value computed by hand in that example.

. webuse nhanes2, clear
. svyset, clear

. keep if sex==
(4,915 observations deleted)

. generate log_bmi = log(bmi)
. generate fem_hihgb = 0

. replace fem_hihgb = 1 if hgb > 15
(452 real changes made)

. regress bpsystol c.log_bmi##c.log _bmi i.race##i.fem_hihgb
Source SS df MS Number of obs 5,436
F(7, 5428) 149.29
Model 553998.315 7 79142.6164 Prob > F 0.0000
Residual 2877433.64 5,428 530.109366 R-squared 0.1614
Adj R-squared 0.1604
Total 3431431.95 5,435 631.358225 Root MSE 23.024
bpsystol | Coefficient Std. err. t P>|t] [95% conf. intervall
log_bmi 39.0894  35.34388 1.11  0.269 -30.19879 108.3776
c.log_bmi#
c.log_bmi 1.302717  5.385973 0.24 0.809 -9.25595 11.86138
race
Black 1.370566  1.038928 1.32  0.187 -.6661497 3.407282
Other -.5987116  2.466003 -0.24 0.808 -5.433066 4.235643
1.fem_hihgb 6.186013  1.175418 5.26 0.000 3.881723 8.490304
race#fem_hihgb
Black#1 -9.243625 5.951811 -1.55 0.120 -20.91156 2.424311
Other#1 3.525941  8.579992 0.41 0.681 -13.29429 20.34617
_cons -10.96456 57.8521 -0.19 0.850 -124.3779 102.4488

. margins fem_hihgb, asobserved pwcompare(effects) post

Pairwise comparisons of predictive margins
Model VCE: OLS

Expression: Linear prediction, predict()

Number of obs = 5,436

Delta-method Unadjusted Unadjusted
Contrast std. err. t P>t [95% conf. intervall
fem_hihgb
1vs O 5.252469 1.216172 4.32 0.000 2.868284 7.636654
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. mces, hedgesg sdbyvar(fem_hihgb)

Calculating values of Hedges's g...

Contrast Weighted SDx* Hedges's g

1vs O 5.25 24.99 0.21

The next example demonstrates an application of mces with data that are multiply
imputed and have a complex sampling design. The first step is to set up and fit a
regression model.

. webuse nhanes2, clear
. mi set mlong

. mi register imputed diabetes
(2 m=0 obs now marked as incomplete)

. mi impute chained (logit) diabetes = bpsystol female race age bmi, rseed(1111)
> add(5)

(output omitted )
. mi svyset [pw=finalwgt], psu(psu) strata(strata) singleunit(centered)

(output omitted )
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. mi estimate: svy: regress bpsystol i.female##i.diabetes i.race##i.female age

Multiple-imputation estimates Imputations = 5

Survey: Linear regression Number of obs = 10,351

Number of strata = 31 Population size = 117,157,513

Number of PSUs = 62

Average RVI = 0.0000

Largest FMI = 0.0000

Complete DF = 31

DF adjustment: Small sample DF: min = 29.18

avg = 29.18

max = 29.18

Model F test: Equal FMI F( 8, 29.2) = 314.32

Within VCE type: Linearized Prob > F = 0.0000

bpsystol | Coefficient Std. err. t P>|t| [95% conf. intervall
female

Female -6.85529 .5038991 -13.60  0.000 -7.885608 -5.824971
diabetes

Diabetic 5.795767  2.012836 2.88 0.007 1.680137 9.911396
female#
diabetes
Female #

Diabetic 3.745692  2.732983 1.37 0.181 -1.842418 9.333802
race

Black 1.268734 .9392677 1.356  0.187 -.65178 3.189247

Other -4.29781 1.349159 -3.19 0.003 -7.066424 -1.539196
race#female

Black#Female 3.532286  1.268824 2.78 0.009 .9379297 6.126641

Other#Female 5.756211 1.991604 2.89 0.007 1.683994 9.828429

age .6327208 .0165571 38.21  0.000 .5988667 .6665749

_cons 103.2413 .80308 128.56  0.000 101.5992 104.8833

Because the data are mi set, we use the mimrgns command to produce the pairwise
comparisons. This example uses a more complex at () statement, which mces supports.
By default, the RMSE-based A effect size is requested.
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. mimrgns female, at(diabetes=(0 1) (median) age) pwcompare post
note: option predict() not specified; predict(xb) assumed

Multiple-imputation estimates Imputations = 5
Pairwise comparisons of predictive margins Number of obs = 10,351
Number of strata = 31 Population size = 117,157,513
Number of PSUs = 62
Average RVI = 0.0000
Largest FMI = 0.0000
Complete DF = 31
DF adjustment: Small sample DF: min = 29.18
avg = 29.18
Within VCE type: Delta-method max = 29.18
Expression : Linear prediction, predict(xb)
1._at : diabetes = 0
age = 40 (median)
2._at : diabetes = 1
age = 40 (median)
Contrast  Std. err. [95% conf. intervall
_at#female
(1#Female) vs (1#Male) -6.372075 .4855671 -7.323769  -5.420381
(2#Male) vs (1#Male) 5.795767  2.012836 1.850681 9.740852
(2#Female) vs (1#Male) 3.169383 1.674325 -.1122333 6.451
(2#Male) vs (1#Female) 12.16784  2.034996 8.179323 16.15636
(2#Female) vs (1#Female) 9.541459  1.721093 6.168178 12.91474
(2#Female) vs (2#Male) -2.626383 2.676626 -7.872473 2.619707

. mces
The estimated RMSE from this regression is 18.61616698876345
Calculating values of RMSE-based A...

WARNING: Results from mces only apply to ceteris paribus comparisons between groups
defined by a single dichotomous variable. Otherwise, the results are invalid.
Ensure that this condition applies to each line of the margins results.

You may want to run margins, pwcompare post followed by mces once per dichotomous

comparison.
Contrast RMSE RMSE-based A
(_at=1 # Female) vs (1 # Male) -6.37 18.62 -0.34
(_at=2 # Male) vs (1 # Male) 5.80 18.62 0.31
(_at=2 # Female) vs (1 # Male) 3.17 18.62 0.17
(_at=2 # Male) vs (1 # Female) 12.17 18.62 0.65
(_at=2 # Female) vs (1 # Female) 9.54 18.62 0.51
(_at=2 # Female) vs (2 # Male) -2.63 18.62 -0.14

The results include a warning message that warrants explanation. mces does not
attempt to second-guess the analysis and uses the estimated RMSE or standard devia-
tion to calculate an effect-size statistic for each line in the margins output. However,
margins, pwcompare estimates all possible pairwise comparisons between the variables,
regardless of their properties. The analyst must therefore be careful to ensure that the
dichotomous grouping variable (the sdbyvar (varname) option, if specified) is the only
difference in each comparison. Otherwise, the results are invalid and should not be
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considered. For a typical six-comparison output from margins, pwcompare with two
binary grouping variables (such as one at() and one over()), the first and last lines
will be the only two that meet these conditions. For clarity and to avoid errors, separate
margins or mimrgns statements can be used to formally specify the desired comparison.

. quietly mi estimate: svy: regress bpsystol i.female##i.diabetes
> i.race##i.female age

. quietly mimrgns female, at(diabetes=(0) (median) age) pwcompare post
. mces

The estimated RMSE from this regression is 18.61616698876345
Calculating values of RMSE-based A...

Contrast RMSE RMSE-based A

Female vs 0O -6.37 18.62 -0.34

Because the post option in the margins, pwcompare command has cleared the
stored regression results, the model needs to be refit for additional comparisons using
mces. estimates store can help to save run time if the model is computationally
intensive.

. quietly mi estimate: svy: regress bpsystol i.female##i.diabetes
> i.race##i.female age

. quietly mimrgns female, at(diabetes=(1) (median) age) pwcompare post
. mces

The estimated RMSE from this regression is 18.61616698876345
Calculating values of RMSE-based A...

Contrast RMSE RMSE-based A

Female vs 0O -2.63 18.62 -0.14

6 Conclusion

Both regression-based modeling and standardized effect-size measures are increasingly
prevalent in applied quantitative research, yet existing effect sizes for complex regression
models have been unsatisfying. mces offers an additional avenue for estimating effect
sizes with linear models.

Because mces’s functionality is limited to models with continuous outcomes, this is
an area that offers possible avenues for future development. Applications to additional
types of models, such as generalized linear models, multilevel models, and longitudinal
models, would extend researchers’ abilities to report standardized effect sizes to further
complement or replace null hypothesis significance testing in more contexts.



B. P. Shaw 155

7 Acknowledgments

I thank Miguel Dorta, Daniel Klein, Chris Cheng, and the anonymous reviewers for
helpful contributions to the code and to the manuscript.

8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-1
. net install st0667 (to install program files, if available)
. net get st0667 (to install ancillary files, if available)
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