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Abstract. In this article, I introduce two commands for computing the fragility
index (FI): fragility, which is used for individual randomized controlled trials,
and metafrag, which is used for meta-analyses. The FI for individual studies is
defined as the minimum number of patients whose status would have to change
from a nonevent to an event to nullify a statistically significant result. Correspond-
ingly, the FI for meta-analyses is defined as the minimum number of patients from
one or more trials included in the meta-analysis for which a modification of the
event status (that is, changing events to nonevents or nonevents to events) would
change the statistical significance of the pooled treatment effect to nonsignificant.
Whether for an individual study or for a meta-analysis, a low FI indicates a more
“fragile” study result, and a larger FI indicates a more robust result.

Keywords: st0664, fragility, metafrag, fragility index, meta-analysis, randomized
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1 Introduction
When considering the results of a randomized controlled trial (RCT), scientists and
those who rely on scientific evidence often conclude that a treatment is effective solely
based on a p-value threshold (that is, < 0.05). However, the use of a p-value threshold
to declare statistical significance has been widely criticized for being overly simplistic,
frequently misunderstood, and inappropriately interpreted (see, for example, Amrhein,
Greenland, and McShane [2019]; Colquhoun [2017]; Feinstein [1998]; Ioannidis [2005,
2018]; Sterne and Davey Smith [2001]; Wasserstein and Lazar [2016]).

As an upshot of this discourse, several supplementary measures to the p-value have
been proposed to provide more focus on the robustness of statistically significant results
from RCTs. Among these are Bayesian analyses (Quatto, Ripamonti, and Marasini
2020); the type S (“sign”) error risk and exaggeration ratio (Gelman and Tuerlinckx
2000; Gelman and Carlin 2014); S-values (Greenland 2019); second-generation p-values
(Blume et al. 2019); and the fragility index (FI) (Walsh et al. 2014).

In this article, I introduce two commands for computing the FI: the fragility
command, which is used for individual RCTs with a binary outcome (Walsh et al. 2014),
and the metafrag command for meta-analysis with a binary outcome (Atal et al. 2019).
For single studies, the FI is defined as the minimum number of patients whose status
would have to change from a nonevent to an event to nullify a statistically significant
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result. A smaller FI indicates that the statistical significance is contingent on only a small
number of events, whereas a larger FI indicates a more robust result. The FI for meta-
analysis is defined as the minimum number of patients from one or more trials included
in the meta-analysis for which a modification of the event status (that is, changing
events to nonevents or nonevents to events) would change the statistical significance of
the pooled treatment effect to nonsignificant (Atal et al. 2019). As such, an FI of zero
indicates that no modification of the event status is necessary to elicit a statistically
nonsignificant pooled treatment effect. Conversely, a large FI score indicates that many
modifications to the event status are required to change a statistically significant pooled
effect to nonsignificant (and thus, the results may be considered more robust).

2 Methods
2.1 Computing the FI for individual RCTs

The FI represents the absolute number of additional events (primary endpoints) required
to obtain a p-value greater than or equal to a predetermined statistical significance
threshold (typically set to 0.05). The FI for individual RCTs is computed by adding an
event to the study group with the smaller number of events (and subtracting a nonevent
from the same group to keep the total number of patients within that group constant)
and recomputing the two-sided significance. Events are iteratively added until the first
time the computed p-value becomes statistically nonsignificant (Walsh et al. 2014).

fragility also computes the fragility quotient as proposed by Ahmed, Fowler, and
McCredie (2016). The fragility quotient is a relative measure of fragility that simply
divides the absolute FI by the total sample size (Ahmed, Fowler, and McCredie 2016).

2.2 Computing the fragility index for meta-analyses

To evaluate the FI of a meta-analysis, one sequentially recalculates the 95% confidence
interval (CI) of the pooled estimate after performing all single event-status modifica-
tions that increase the estimate (or decrease it, depending on whether the treatment is
expected to increase or decrease the risk of the outcome) by 1) changing a nonevent to
an event for patients receiving treatment A for each single trial or 2) changing an event
to a nonevent for patients receiving treatment B for each trial (Atal et al. 2019).

This process leads to 2N newly calculated 95% CIs for the pooled estimate (where
N is the total number of studies in the meta-analysis). If one of the newly calculated
CIs overlaps 1.0, the FI of the meta-analysis is 1 because one unique event-status modi-
fication (that is, changing a nonevent to an event in arm A or an event to a nonevent
in arm B) in one specific trail changed the statistical significance of the meta-analysis.
If all the newly calculated 95% CIs for the pooled estimate remain < 1.0 (in the case of
a treatment that lowers the risk of the outcome or > 1.0 if the treatment is expected
to increase the probability of the outcome), the specific trial and specific event-status
modification that lead to the 95% CI for the pooled estimate being closer to 1.0 as a
starting point for the next iteration are selected (Atal et al. 2019).
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This process is then repeated by performing a new single event-status modification
in each arm of each trial in turn on top of the first selected modification. Similarly,
if one of these 2N event-status modifications leads to a newly calculated 95% CI for
the pooled estimate overlapping 1.0, the FI of the meta-analysis is then equal to 2.
This process is iterated until one event-status modification leads to a newly calculated
95% CI for the pooled estimate overlapping 1.0. The number of iterations needed to
find a combination of event-status modifications in specific arms and trials leading to a
modified meta-analysis with 95% CI for the pooled estimate overlapping 1.0 is thus the
FI for the meta-analysis (Atal et al. 2019).

2.3 Differences between metafrag and the R package fragility_ma

metafrag produces results consistent with those of the R package fragility_ma and
its related website http: // www.clinicalepidemio.fr / fragility_ma / . However, there
are some differences between the software programs: 1) Stata’s meta esize command
does not support the combination of random effects with the Mantel–Haenszel method
(see help meta_esize##remethod), whereas fragility_ma, which uses the R pack-
age metabin for computing pooled treatment effects, does support this combination;
2) Stata’s meta esize handles zero cells somewhat differently from metabin, possibly
leading to slightly different results between software packages when some individual
studies have zero cells; and 3) when there are ties between studies in the computed
maximum (minimum) confidence level at any iteration, fragility_ma reports the FI
that includes the modifications to all tied studies. metafrag reports both the FI for
each iteration in the loop where any event modification occurs and the total number of
modifications if there are ties.

3 The fragility command
This section describes the syntax of the fragility command and available options.
fragility is an immediate command (see [U] 19 Immediate commands).

3.1 Syntax

fragility #n11 #n12 #n21 #n22
[
, level(#) chi2 detail

]
In the syntax, variables #n11 and #n12 contain the respective numbers of events

and nonevents from individuals in group 1 (treatment), and variables #n21 and #n22
contain the respective numbers for group 2 (control).

3.2 Options

level(#) specifies the desired p-value threshold level at which to test statistical sig-
nificance. Most disciplines tend to use the p-value threshold of 0.05 to imply that

http://www.clinicalepidemio.fr/fragility_ma/
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the observed result is unlikely to occur by chance. However, some disciplines set the
threshold for statistical significance more liberally to 0.10, while others may set the
threshold more conservatively, such as to 0.01. level(#) allows users to set their
own threshold. The default is level(0.05).

chi2 calculates and displays Pearson’s χ2 for the hypothesis that the rows and columns
in a two-way table are independent. The default is Fisher’s exact test, which gener-
ally produces more conservative estimates.

detail displays all the 2×2 tables produced during the iterative process of adding events
to the group with the lowest actual number of events until the p-value threshold is
met or surpassed.

3.3 Stored results

fragility stores the following in r():

Scalars
r(fi) FI
r(fq) fragility quotient
r(pval) p-value at the FI

4 The metafrag command
This section describes the syntax of the metafrag command and available options.
metafrag is a postestimation command for meta esize (see [META] meta esize),
thereby capitalizing on the comprehensive list of options available in official Stata’s
meta suite for computing effect sizes for binary outcomes.

4.1 Syntax

metafrag
[
, eform forest

[
(forestplot)

] ]
4.2 Options

eform reports exponentiated effect sizes and transforms their respective CIs whenever
applicable. By default, the results are displayed in the metric declared with meta
esize such as log odds-ratios and log risk-ratios (RRs). eform uses odds ratios
when used with log odds-ratios declared with meta esize or RRs when used with
the declared log RRs. eform affects how results are displayed, not how they are
estimated and stored.

forest
[
(forestplot)

]
displays a forest plot of the studies after modification to the events

and nonevents of included studies to move the pooled effect from statistically sig-
nificant to nonsignificant (the user can set the level that “significance” represents
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using the level() option in meta esize). Specifying forest without options uses
the default forest plot settings (with only the column headers modified). Studies
that have event modifications are highlighted in blue (when events are added) and
red (when events are subtracted).

4.3 Stored results

metafrag stores the following in r():

Scalars
r(frag) FI for meta-analysis
r(frag_ties) FI for meta-analysis when there are ties
r(changes) number of studies in which events were modified

5 Examples
In this section, we demonstrate the use of fragility with two artificial examples and
the use of metafrag with two empirical examples. For both commands, the first example
illustrates the case of a fragile study result, and the second illustrates a more robust
result. For the metafrag examples, the presented data correspond with real meta-
analyses from Cochrane Systematic Reviews. The measures used for evaluating the
treatment effect and for deriving the pooled treatment effects were the same as those
used in the original Cochrane Systematic Reviews.

5.1 A fragile RCT

This example from Walsh et al. (2014) specifies that group 1 has 1 event and 99 non-
events and group 2 has 9 events and 91 nonevents.

. fragility 1 99 9 91

Fragility index: 1
Fragility quotient: 0.005
p-value (exact): 0.058

A fragility index of 1 indicates that group 1
would require 1 additional events to obtain
a p-value >= 0.050 using Fisher's exact test.

As shown in the output, the resulting FI of 1 suggests that the inference of a treat-
ment effect is “fragile.” That is, only one additional event is needed to flip the results
from being statistically significant to nonsignificant at the 0.05 level.
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5.2 A more robust RCT

In example 2 from Walsh et al. (2014), group 1 has 200 events and 3,800 nonevents, and
group 2 has 250 events and 3,750 nonevents:

. fragility 200 3800 250 3750

Fragility index: 9
Fragility quotient: 0.001
p-value (exact): 0.054

A fragility index of 9 indicates that group 1
would require 9 additional events to obtain
a p-value >= 0.050 using Fisher's exact test.

As shown in the output, the resulting FI of 9 suggests that the inference of a treat-
ment effect is more robust than that of example 1.

5.3 A fragile meta-analysis

This meta-analysis includes 7 individual studies, with a total of 448 patients. We first
load the data and then use meta esize to compute and declare effect sizes for a two-
group comparison of binary outcomes. The log RR is specified as the effect size, and the
fixed-effects meta-analysis is specified using the Mantel–Haenszel method.

. use example1

. meta esize events_1 noevents_1 events_2 noevents_2, esize(lnrratio) fixed(mh)
(output omitted )

Next, we plot a forest plot of these data, specifying that the results be presented
as exponentiated values, and modify some elements of the display (see [META] meta
forestplot):

. meta forestplot, eform nullrefline columnopts(_data1, supertitle(Group 1))
> columnopts(_data2, supertitle(Group 2))
> columnopts(_a _c, title("Events"))
> columnopts(_b _d, title("Nonevents"))

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se
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Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7

Overall
Heterogeneity: I2 = 0.00%, H2 = 1.00
Test of θi = θj: Q(6) = 0.69, p = 0.99
Test of θ = 0: z = 1.99, p = 0.05

Study

15
25

7
24
17
12
13

Events
Group 1

19
11
13
11
26
16
17

Nonevents

12
17

7
16
16
10
11

Events
Group 2

21
15
16
16
27
19
19

Nonevents

1/2 1 2

with 95% CI
Risk ratio

1.21 [
1.31 [
1.15 [
1.37 [
1.06 [
1.24 [
1.18 [

1.23 [

0.67,
0.88,
0.49,
0.91,
0.62,
0.64,
0.63,

1.00,

2.19]
1.93]
2.72]
2.07]
1.82]
2.40]
2.20]

1.51]

13.50
19.95

7.22
18.53
17.73
10.89
12.19

(%)
Weight

Fixed-effects Mantel–Haenszel model

As shown in the forest plot, the treatment was associated with a statistically signif-
icant increase in the risk of the outcome (RR 1.23, 95% CI [1.00 to 1.51]). Next we use
metafrag to compute the FI and specify the options forest and eform:

. metafrag, forest eform

Computing the fragility index. Please wait...
1 2 3 4 5

Fragility Index: 1

The pooled treatment effect turns statistically nonsignificant
after 1 event-status modifications

1 trial was modified:
- Study 3: subtracted 1 event from Group 1

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7

Overall
Heterogeneity: I2 = 0.00%, H2 = 1.00
Test of θi = θj: Q(6) = 0.91, p = 0.99
Test of θ = 0: z = 1.89, p = 0.06

Study

15
25
6

24
17
12
13

Events
Group 1

19
11
14
11
26
16
17

Nonevents

12
17
7

16
16
10
11

Events
Group 2

21
15
16
16
27
19
19

Nonevents

1/2 1 2

with 95% CI
Risk ratio

1.21 [
1.31 [
0.99 [
1.37 [
1.06 [
1.24 [
1.18 [

1.22 [

0.67,
0.88,
0.40,
0.91,
0.62,
0.64,
0.63,

0.99,

2.19]
1.93]
2.45]
2.07]
1.82]
2.40]
2.20]

1.49]

13.50
19.95

7.22
18.53
17.73
10.89
12.19

(%)
Weight

Fixed-effects Mantel–Haenszel model
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As shown in the output, the FI is 1, indicating that the pooled treatment effect
turns statistically nonsignificant after only one event-status modification. In this meta-
analysis, the one event modification was made by subtracting one event from group 1
in study 3. In the forest plot, this addition corresponds with the value highlighted in
gray (red on actual screen) under group 1 in study 3. The RR for the pooled effect is
now statistically nonsignificant ([RR] 1.22, 95% CI [0.99 to 1.49]).

5.4 A more robust meta-analysis

This meta-analysis includes 8 individual studies, with a total of 1,344 patients. As
before, we first load the data, then use meta esize to compute and declare effect sizes
for a two-group comparison of binary outcomes, and then plot the forest plot:

. use example2, clear

. meta esize events_1 noevents_1 events_2 noevents_2, esize(lnrratio) fixed(mh)
(output omitted )

. meta forestplot, eform nullrefline columnopts(_data1, supertitle(Group 1))
> columnopts(_data2, supertitle(Group 2))
> columnopts(_a _c, title("Events"))
> columnopts(_b _d, title("Nonevents"))

Effect-size label: Log risk-ratio
Effect size: _meta_es

Std. err.: _meta_se

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7
Study 8

Overall
Heterogeneity: I2 = 0.00%, H2 = 1.00
Test of θi = θj: Q(7) = 6.89, p = 0.44
Test of θ = 0: z = -5.53, p = 0.00

Study

7
59
31
14
45
74
27
55

Events
Group 1

11
49
69
13
57
89
26
52

Nonevents

4
73
46
21
64
86
48
67

Events
Group 2

9
37
48

4
39
76
10
34

Nonevents

1/2 1 2

with 95% CI
Risk ratio

1.26 [
0.82 [
0.63 [
0.62 [
0.71 [
0.86 [
0.62 [
0.77 [

0.75 [

0.46,
0.66,
0.44,
0.41,
0.54,
0.68,
0.46,
0.62,

0.68,

3.44]
1.02]
0.91]
0.92]
0.93]
1.07]
0.82]
0.98]

0.83]

1.13
17.60
11.54

5.31
15.50
20.99
11.15
16.77

(%)
Weight

Fixed-effects Mantel–Haenszel model

As shown in the forest plot, the treatment was associated with a statistically signif-
icant reduction in the risk of the outcome (RR 0.75, 95% CI [0.68 to 0.83]). Next, we
use metafrag to compute the FI and specify the options forest and eform:
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. metafrag, forest eform

Computing the fragility index. Please wait...
1 2 3 4 5

.................................................. 50

..............
Fragility Index: 65

The pooled treatment effect turns statistically nonsignificant
after 65 event-status modifications

A total of 4 trials were modified:
- Study 1: subtracted 4 events from Group 2
- Study 4: subtracted 19 events from Group 2
- Study 6: added 16 events to Group 1
- Study 7: added 26 events to Group 1

Study 1
Study 2
Study 3
Study 4
Study 5
Study 6
Study 7
Study 8

Overall
Heterogeneity: I2 = 83.68%, H2 = 6.13
Test of θi = θj: Q(7) = 42.90, p = 0.00
Test of θ = 0: z = -1.91, p = 0.06

Study

7
59
31
14
45
90
53
55

Events
Group 1

11
49
69
13
57
73

0
52

Nonevents

0
73
46

2
64
86
48
67

Events
Group 2

13
37
48
23
39
76
10
34

Nonevents

1/2 2 8 32 128

with 95% CI
Risk ratio

11.05 [
0.82 [
0.63 [
6.48 [
0.71 [
1.04 [
1.21 [
0.77 [

0.91 [

0.69,
0.66,
0.44,
1.63,
0.54,
0.85,
1.07,
0.62,

0.83,

177.84]
1.02]
0.91]

25.71]
0.93]
1.27]
1.36]
0.98]

1.00]

0.15
18.66
12.23

0.54
16.43
22.25
11.96
17.78

(%)
Weight

Fixed-effects Mantel–Haenszel model

As shown in the output, the FI is 65, indicating that the pooled treatment effect turns
statistically nonsignificant after 65 event-status modifications, with the event modifica-
tions occurring in 4 studies. In the forest plot, event additions correspond with values
highlighted in bold (blue on actual screen), and event subtractions correspond with val-
ues highlighted in gray (red on actual screen). The RR is now statistically nonsignificant
([RR] 0.91, 95% CI [0.83 to 1.00]). The FI suggests that the pooled estimate from this
meta-analysis is more robust than that in the previous example, where only one event
modification was necessary to nullify the statistical significance of the pooled estimate.

6 Discussion
In this article, I introduced the fragility and metafrag commands, which compute
the FI for individual randomized trials and meta-analyses with binary outcomes, respec-
tively.
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While the FI offers an intuitive supplemental measure to the p-value in interpreting
the reliability of study findings, it has its critics. In particular, Carter, McKie, and
Storlie (2017) illustrated a strong inverse relationship between the FI and the log10
of the p-value because both operate by decreasing the differences in response rates,
resulting in a quantification of how extreme the observed trial results are relative to the
null condition. Thus, as is true with p-values, the FI should not be misinterpreted as
a measure of clinical effect. In other words, a higher FI should not be interpreted to
imply greater clinical effect than a lower FI; rather, it simply illustrates the strength of
the statistical significance itself (Brown et al. 2019; Narayan et al. 2018).

In conclusion, the fragility and metafrag commands provide a convenient method
for evaluating the reliability of “statistical significance” in RCTs and meta-analyses. I
advocate the reporting of the FI in conjunction with p-values and CIs to assist investi-
gators and others in weighing the evidence for study robustness.
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-1

. net install st0664 (to install program files, if available)

. net get st0664 (to install ancillary files, if available)
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