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An extension to inflated CUB models is discussed. We also present a subcommand,
scattercub, for visualization of results. We then illustrate the use of cub using
a case study on students’ satisfaction for the orientation services provided by the
University of Naples Federico II in Italy.

Keywords: st0669, cub, scattercub, CUB, mixture models, rating data, maximum
likelihood estimation

1 Motivation
Several estimation commands, such as ologit, oprobit, or oglm, are available to Stata
users to analyze ordinal data based on classical modeling approaches (Tutz 2012). The
repository at http://users.stat.ufl.edu/∼aa/ordinal/ord.html reports related examples
of the benchmark reference (Agresti 2010). A command to compare distributions of
ordinal data has been recently introduced in Stata (Jenkins 2020).

In this article, we add to this literature by presenting a command implementing the
class of combination of uniform and binomial (CUB) models for ordinal data (Piccolo and
Simone 2019a,b), uniform and binomial being the two distributions used to jointly model
feeling and uncertainty of the response process via a mixture specification. Beyond this
baseline definition, this new paradigm for ordinal data modeling (Piccolo 2003; D’Elia
and Piccolo 2005) includes a richer class of models, which has shown to be of interest
to a broad audience of applied scholars because of a versatile and multifaceted range
of applications (Balirano and Corduas 2008; Arboretti Giancristofaro, Bordignon, and
Carrozzo 2014; Capecchi and Piccolo 2016; Fin et al. 2017; Capecchi, Simone, and
Ghiselli 2019) and the flexibility to perform more complex analysis (Cappelli, Simone,
and Di Iorio 2019; Simone, Cappelli, and Di Iorio 2019; Simone, Tutz, and Iannario
2020; Manisera and Zuccolotto 2014; Bonnini et al. 2012; D’Elia 2008). From the
methodological point of view, see Piccolo, Simone, and Iannario (2019) for a comparative
analysis with cumulative models.

The innovative aspect of the combination of uniform and binomial (CUB) paradigm
is the modeling of uncertainty arising from the ensemble of individuals or framing ef-
fects surrounding the evaluation on rating scales. This component is meant to convey
indecision, fuzziness, and the heterogeneity of responses (Di Nardo and Simone 2019),
yielding a twofold interpretation of response patterns. Uncertainty blurs the assessment
of respondents’ sentiments toward the trait being investigated (preference, satisfaction,
and so on). Thus, the CUB paradigm involves a mixture between the least informative
uniform distribution over the discrete support and an adequate model for feeling to an-
alyze both heterogeneity and location of the responses, respectively. Linking estimable
uncertainty and feeling parameters to subjects’ covariates adds further value. This fea-
ture allows the derivation of interpretable response profiles useful for understanding and
prediction of response behaviors.

This approach to the analysis of the rating process can be extended to account for
other response phenomena, such as overdispersion and an inflated frequency in a given
category, by modifying the baseline distributions in the model specification. Frequency

http://users.stat.ufl.edu/~aa/ordinal/ord.html
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inflation occurs when one category is a refuge or shelter option for the response choice
because of its peculiar wording, because of response styles, or to avoid the cognitive
burden of a more precise choice. Hence, we refer to this as a shelter effect. We present
an example in the illustrative case study in section 4.

CUB models have proven to be parsimonious yet valuable in research and applica-
tions in social and behavioral studies, particularly in terms of their effective visualization
features. In addition to providing a response distribution for each covariate profile, es-
timated feeling and uncertainty measures can be represented as points in the parameter
space. Hereafter, we call this representation scattercub. In this way, effective com-
parative analysis can be pursued when several rating variables or groups of respondents
are investigated jointly. Sections 3 and 4 describe this feature in detail.

Currently, the cub (Iannario, Piccolo, and Simone 2020) and fastcub (Simone
2020) libraries are available for the R environment and for the GRETL community (Si-
mone, Di Iorio, and Lucchetti 2019) as open-source software. They both include the
implementation of the expectation-maximization algorithm (McLachlan and Krishnan
2008) for maximum likelihood inference (Piccolo 2006). For Stata users, no related tool
is available. To fill this gap, we present the commands cub and scattercub to provide
Stata users with new tools for ordinal data analysis.

This article is intended to provide a concise yet comprehensive introduction of CUB
models, illustrating their applications and interpretation. Section 2 briefly reviews the
methodological background. See Piccolo and Simone (2019a,b) and the references for
an overview and a comprehensive description of the state of the art on methodology and
applications. Section 3 sets out the syntax of the cub and scattercub commands. Sec-
tion 4 provides an illustrative application from a survey carried out in 2002 to evaluate
students’ satisfaction for the orientation services at the University of Naples Federico II,
Italy. Customer satisfaction, in its broadest sense, is one of the most emblematic ap-
plications for the class of CUB models. This dataset is downloadable with the package.
Section 5 concludes the article by highlighting possible applications and identifying fu-
ture software developments that could make a more comprehensive use of CUB models
attractive for researchers.

2 CUB model specification
For a sample of size n, let Ri be the ordinal rating response provided to a given item (of
a questionnaire) by the ith subject, i = 1, . . . , n. Assume that the response is collected
on a Likert-type scale with m ordered categories, with m > 3 required for identifiability
(Iannario 2010). For convenience, categories will be coded as the first m integers to
convey their position along the scale. CUB models’ paradigm prescribes that the rating
process arise from the combination of two main components: feeling, addressing the
perception of the item being investigated (attraction, satisfaction, agreement, and so
on); and uncertainty, conveying the fuzzy elements of the response. The CUB model for
the rating response mechanism is then specified as a two-component mixture distribution
of these components. In the baseline definition, uncertainty is modeled by a uniform



198 Mixture models for rating data

discrete distribution over the first m integers to contribute to model parsimony, while
feeling is modeled by a shifted Binomial distribution of the parameter ξi ∈ (0, 1):

br(ξi) =

(
m− 1

r − 1

)
ξm−r
i (1− ξi)

r−1, r = 1, . . . ,m

Thus, if wi,yi are the row vectors of selected covariates for the ith subject, for i =
1, . . . , n, a CUB model for the response Ri is specified by the two-component mixture
on the discrete support:

Pr (Ri = r | yi, wi, θ) = πi br(ξi) + (1− πi)
1

m
, r = 1, . . . ,m (1)

Here the uncertainty parameter πi = π(yi,β) ∈ (0, 1) is introduced to weight the two
components. Specifically, an increase of πi implies a reduced impact of the uncertainty
component on the response distribution. In (1), the logit transforms1 of the feeling and
uncertainty parameters ξi and πi link these model features to subject characteristics:

logit (1− πi) = −yi β; logit (1− ξi) = −wi γ; i = 1, . . . , n (2)

Then θ = (β
′
,γ′) is the estimable parameter vector characterizing the distribution of

(R1, . . . , Rn), with β,γ denoting the column vectors of regression coefficients for the
uncertainty and feeling parameters, respectively.

Model selection for the best covariate specification can be performed by fitting several
models and choosing the one that attains the lowest values of the Akaike information
criterion (Akaike 1974) or Bayesian information criterion (Schwarz 1978). As with all
mixture models, variable-selection procedures should be based on a crossed search for
the best covariate specification for both feeling parameter ξi and uncertainty parameter
πi. This could be pursued via best-subset search algorithms as described in Simone
(2021).

A focal point of this class of models is that covariate specification is not compulsory.
A CUB model could describe a given rating distribution in terms of a global measure
of feeling ξ and uncertainty π, in which case one refers to the model as CUB(0, 0). In
this case, (1 − π) is a (normalized) measure of the uncertainty implied by the model
in terms of the overall heterogeneity of the distribution (Capecchi and Piccolo 2017).
Thus, CUB models allow characterization of different rating responses in terms of only
two parameters (π, ξ), ranging in (0, 1]×[0, 1] and leading to effective visualization tools.
Indeed, for different items or response profiles, obtained by conditioning (1) on selected
values of covariates, estimated uncertainty and feeling parameters identify a point in
the parameter space, yielding a scatterplot that gives a unified picture of the data at
hand. This can be visualized with the scattercub command. For instance, one can
identify which items or response profiles are associated with a higher feeling or more

1. The choice of the logit link is mainly motivated by the ease of interpretation of the covariates’
effect. In fact, any admissible link may be used; for instance, the probit link is considered as an
option in Hernández Barajas, Usuga Manco, and García Muñoz (2018), where the estimation steps
are carried out without resorting to expectation-maximization procedures.
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homogeneous patterns and so on, possibly determining clusters of models (Corduas
2011). We discuss an illustration of this specific feature for the case in which the model
includes covariates in section 4. Along these lines, model-based composite indicators
for multivariate rating data have been proposed (Capecchi and Simone 2019).

A further remark on interpretation is worthwhile. According to common motiva-
tions for mixture models (McLachlan and Peel 2000), CUB models should imply two
clusters of respondents such that, in the more uncertain group, people randomly se-
lect an ordinal score. Although this is a possible interpretation, in the case when no
covariates are specified, the CUB parameterization of the response variable directly on
its support is intended to be a synthesis of the overall distribution in terms of location
and heterogeneity. Otherwise, the CUB parameterization provides a method to assess
individuals’ level of uncertainty, which can be interpreted as subjective indecision and
feeling in terms of subjects’ characteristics.

2.1 Inflated CUB models

One of the major advantages of the CUB paradigm is the ease of extending the model
to encompass other circumstances that may affect the rating response process. One
typical scenario concerns the inflation in frequency for a category that attains a peculiar
meaning or role for the respondents. Inflated CUB models include a so-called shelter
effect (Corduas, Iannario, and Piccolo 2009; Iannario 2012) located at a known category
s ∈ {1, . . . ,m}. This category is excessively frequent, beyond that accounted for by the
standard CUB mixture. To fit this circumstance, the CUB model is extended with the
introduction of a degenerate distribution:2

Pr (R = r | θ) = δ
(
D(s)

r

)
+ (1− δ)

{
π∗ br(ξ) + (1− π∗)

1

m

}
, r = 1, 2, . . . ,m (3)

The estimable parameter vector is then θ = (π∗, ξ, δ)′, quantifying the shelter effect
with the parameter δ. As for CUB mixtures, covariates’ effects can be tested by specifying
a logit link with model parameters. Because the standard CUB model is nested into
specification (3), a likelihood-ratio test can be implemented to assess the potential
improvement from a shelter specification.

3 The cub and scattercub commands
3.1 Syntax for cub

The model fit by cub considers a sample of the ordinal response variable R as the main
input (outcome); notice that the response values should be coded as integers from 1
to m. Further inputs include a series of covariates (either continuous or categorical),

2. If c denotes the shelter category, the degenerate distribution D
(c)
r is such that D

(c)
r = 1 if r = c

and D
(c)
r = 0 if r 6= c, for r = 1, . . . ,m.
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possibly explaining the uncertainty (varlist_pi) and the feeling (varlist_xi) parameters,
as well as an optional shelter effect at a given category r.

cub outcome
[

if
] [

in
] [

weight
] [

, xi(varlist_xi) pi(varlist_pi) shelter(#)

m(#) prob(newvar) graph outname(name) save_graph(filename)
]

fweights and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options for cub

xi(varlist_xi) specifies the covariates explaining the feeling parameter.

pi(varlist_pi) specifies the covariates explaining the uncertainty parameter.

shelter(#) specifies the shelter, that is, the category associated with an inflated fre-
quency.

m(#) specifies the total number of categories of the dependent variable. It is important
to provide this input if any category in outcome has zero observed frequency. By
default, the procedure will set m() at the maximum observed response value.

prob(newvar) generates a new variable containing the model-fitted probabilities.

graph generates a graph displaying a plot of the actual and predicted probabilities.

outname(name) specifies a convenient name for the outcome variable to appear in the
graph when the graph option is invoked.

save_graph(filename) saves the graph generated by the graph option.

3.3 Syntax for scattercub

scattercub fits the CUB model without covariates for each element of a list of rat-
ing variables (varlist) (possibly collected on scales with different numbers of response
options) and generates the scatterplot of the corresponding feeling versus uncertainty
measures (1− ξ and 1− π, respectively) in the unit square (0, 1]× [0, 1].

scattercub varlist
[

if
] [

in
] [

weight
] [

, m(numlist) save_data(filename)
save_graph(graph_name )

]
fweights and pweights are allowed; see [U] 11.1.6 weight.

3.4 Options for scattercub

m(numlist), for each ordinal dependent variable in varlist, optionally specifies the total
number of categories. This total number comprises both observed and unobserved
categories. By default, only observed categories are used to determine the number
of response options m() needed for CUB specification and estimation.
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save_data(filename) saves in filename the dataset containing the uncertainty and feel-
ing measures.

save_graph(graph_name) saves in filename the feeling versus uncertainty scatterplot.

4 CUB models at work
This section is meant to help Stata users become familiar with the cub command by
illustrating its usage within a cross-sectional data analysis. Specifically, the goal of this
section is to show how to exploit the methodology of CUB models in the context of an
illustrative case study on customer satisfaction.

4.1 Application

universtata.dta arises from a sample survey on students’ evaluation of the orientation
services that has been administered to students across the Faculties of the University of
Naples Federico II, in Italy, in five time waves. Participants were asked to express their
ratings on a 7-point Likert-type scale (1 = very unsatisfied, 7 = extremely satisfied) on
the following aspects:

• informat: Level of satisfaction about the acquired information

• willingn: Level of satisfaction about the willingness of the staff

• officeho: Level of satisfaction about the opening hours

• competen: Level of satisfaction about the competence of the staff

• global: Level of global satisfaction

Hereafter, we consider the data collected in 2002, consisting of 2,179 observations. The
remaining 7 variables correspond with subjects’ covariates (for instance, the dichoto-
mous variable gender, equal to 0 for men and to 1 for women, and the continuous
measurement age).

As a first step, we show how to simultaneously visualize the ordinal variables included
in universtata.dta with the command scattercub by fitting a CUB(0, 0) model to ev-
ery ordinal variable. Then each fitted model is represented as a point in the parameter
space corresponding with the maximum likelihood estimates of the uncertainty 1 − π̂
and feeling 1− ξ̂ parameters. This exploratory graphical analysis reveals how response
heterogeneity and feeling vary among the different aspects of satisfaction in a compar-
ative perspective. To enhance visualization, figure 1 displays only a subspace of the
parametric space.
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. sysuse universtata

. quietly scattercub informat willingn officeho compete global, m(7 7 7 7 7)
> save_graph(mygraph1.png)

informat

willingn

officeho

compete

global

.8
.8

2
.8

4
.8

6
.8

8
F

ee
lin

g

.15 .2 .25 .3 .35
Uncertainty

Figure 1. CUB models without covariates for satisfaction items in universtata.dta
(m = 7)

From figure 1, we observe that the highest feeling has been expressed for the will-
ingness of the staff, whereas the lowest corresponds with the scheduled office hours.
Because the latter item is affected by the highest uncertainty, it deserves further inves-
tigation. Thus, we focus on the item officeho; there are no categories of the original
measurement scale (with m = 7 response options) with zero frequency, so it is redundant
to provide the option m(). We include it for illustrative purposes only.

We first show how to estimate the parameters of a CUB(0, 0) model for the officeho
item; this is the simplest model specification possible because parameters do not depend
on covariates. This goal is attained by simply typing

. cub officeho
Number of obs = 2,179
Wald chi2(0) = .

Log likelihood = -3759.9171 Prob > chi2 = .

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
_cons .7557921 .0889482 8.50 0.000 .5814568 .9301274

xi_gamma
_cons -1.403956 .0371485 -37.79 0.000 -1.476766 -1.331147

The number of categories of variable officeho is M = 7
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******************************************************************************
*************** Estimates of 'pi', and 'xi' **********************************
******************************************************************************

pi: 1/(1+exp(-_b[pi_beta:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi .6804395 .019341 35.18 0.000 .6425317 .7183472

xi: 1/(1+exp(-_b[xi_gamma:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

xi .1971891 .0058808 33.53 0.000 .1856629 .2087152

******************************************************************************

To provide a unique output format for fitted CUB models possibly with covariate
effects, we also report the logit transformation of feeling and uncertainty parameters
(2) when no covariate is specified. In this circumstance, the “constants” denoted as
pi_beta:_cons and xi_gamma:_cons are related to π and ξ, respectively, by

π =
1

1 + e−β0
; ξ =

1

1 + e−γ0

By default, the output tables report the π̂ and ξ̂ estimates (second panel) as well as
the inverse logit transformations (first panel), that is, β̂0 and γ̂0, respectively. Notice
that, given the orientation of the response scale, the actual satisfaction sentiment toward
an item is the complement to one of the feeling parameters ξ; thus, hereafter 1− ξ will
be considered as a feeling indicator, increasing with latent satisfaction.

The prob() and graph options within the cub command return the plot displayed
in figure 2, comparing the observed and fitted probabilities for variable officeho, as
well as a table setting out these probabilities:

. cub officeho, prob(_PROB) graph
(output omitted )

Actual vs. fitted probabilities
officeho fitted_~b actual_~b

1 .0456915 .0399266
2 .0466287 .0330427
3 .0555973 .0702157
4 .0996408 .1032584
5 .2105055 .2464433
6 .3141179 .2308398
7 .2278183 .2762735
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0
.1

.2
.3

1 2 3 4 5 6 7

Fitted probabilities Actual probabilities

Outcome = officeho
Shelter = Not specified

Figure 2. Plot of the observed versus fitted probabilities for variable officeho under a
CUB(0, 0) model

It follows that the model does not sufficiently fit responses observed for categories
5, 6, and 7. Specifically, a moderate inflation in frequency for the fifth category seems
unaccounted for by the model. Thus, we test for a possible shelter effect at category
s = 5 by calling

. cub officeho, shelter(5) prob(_PROB) graph save_graph(mygraph2)
> outname("OFFICEHO")

Number of obs = 2,179
Wald chi2(0) = .

Log likelihood = -3741.6643 Prob > chi2 = .

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
_cons .3800763 .1057342 3.59 0.000 .1728411 .5873114

xi_gamma
_cons -1.722511 .0860041 -20.03 0.000 -1.891076 -1.553946

lambda
_cons -2.213185 .1787122 -12.38 0.000 -2.563454 -1.862915

The number of categories of variable officeho is M = 7
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******************************************************************************
*************** Estimates of 'pi', and 'xi' **********************************
******************************************************************************

pi: 1/(1+exp(-_b[pi_beta:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi .5938915 .0255014 23.29 0.000 .5439096 .6438734

xi: 1/(1+exp(-_b[xi_gamma:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

xi .151548 .0110585 13.70 0.000 .1298737 .1732223

******************************************************************************

******************************************************************************
******** Estimation of the shelter parameters 'delta' **********************
******************************************************************************

delta: 1/(1+exp(-_b[lambda:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

delta .0985727 .0158797 6.21 0.000 .0674491 .1296963

Actual vs. fitted probabilities
officeho fitted_~b actual_~b

1 .0523032 .0399266
2 .0525146 .0330427
3 .0553459 .0702157
4 .0750582 .1032584
5 .2464432 .2464433
6 .2663273 .2308398
7 .2520075 .2762735

file mygraph2.gph saved

As indicated by both an improvement in the log likelihood and the significance of
parameter δ, it can be inferred that category 5 is perceived as a shelter for the assessment
of satisfaction on office hours. Notice that the first panel reports the logit transform
also for δ [specifically, logit(δ) = λ] to give a unified presentation of results.

The fit improvement entailed by the specification of the shelter effect can be addition-
ally inspected with a graphical comparison between observed frequencies and estimated
probabilities (see figure 3).
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0
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Outcome = OFFICEHO
Shelter = 5

Figure 3. Plot of the observed versus fitted probabilities for variable officeho under a
CUB model without covariates with shelter at category 5

Next, to enrich the interpretation of results, we introduce some covariates in the
model to identify the main determinants of satisfaction for office hours in terms of
students’ characteristics. As a first example, we test if the model components can be
explained by the dichotomous covariate freqserv, indicating the users’ frequency of
the service, with levels 0 and 1 for nonregular and regular users, respectively.

. cub officeho, pi(freqserv) xi(freqserv) prob(_PROB)
> graph save_graph(mygraph2) outname("OFFICEHO")

Number of obs = 2,179
Wald chi2(1) = 0.14

Log likelihood = -3704.2854 Prob > chi2 = 0.7057

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
freqserv -.0688113 .1822338 -0.38 0.706 -.4259829 .2883604

_cons .8144389 .1146983 7.10 0.000 .5896343 1.039243

xi_gamma
freqserv -.8253573 .0944552 -8.74 0.000 -1.010486 -.6402285

_cons -1.149044 .040662 -28.26 0.000 -1.228739 -1.069348

The number of categories of variable officeho is M = 7
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Actual vs. fitted probabilities
officeho fitted_~b actual_~b

1 .0446193 .0399266
2 .0454518 .0330427
3 .0537141 .0702157
4 .09586 .1032584
5 .2065812 .2464433
6 .3175473 .2308398
7 .2362263 .2762735

file mygraph2.gph saved

Because the regression coefficient for logit(ξi) is negative, it follows that regular users
have a higher feeling 1−ξi than occasional users, whereas there is no statistically signif-
icant difference in terms of heterogeneity between these groups. Notice that covariate
specification in CUB models can be similar or different for uncertainty and feeling pa-
rameters. In this case, one could fit a CUB model by including the freqserv covariate
only to explain feeling and considering the uncertainty parameter π not depending on
any covariate by calling

. cub officeho, xi(freqserv)
(output omitted )

If covariates are specified in the model, then the cub command returns—in addi-
tion to the estimation results—a table comparing observed relative frequencies with the
average of estimated probabilities given the covariates for each category. Indeed, the
estimated probability Pr(Ri = r|β̂, γ̂,yi,wi) for each observed individual response can
be computed once subject-specific πi and ξi are obtained via (2) from estimated pa-
rameters β̂ and γ̂ and covariates values yi,wi for the ith subject. Then the estimated
probabilities are grouped by response value, and the average of fitted probabilities for
each category is returned.

It can be insightful to compare the estimated probability distribution for the two
groups of respondents (regular and nonregular users in the case under examination).
This goal can be obtained via the following commands, returning a matrix and a plot
comparing observed relative frequencies and fitted probabilities for the two groups (see
figure 4).

. * CUB for "freqserv==1"

. quietly cub officeho if freqserv==1, prob(predicted_probs) save_graph(gr_m)
> graph
. matrix P_m=e(M)
. * CUB for "freqserv==0"
. quietly cub officeho if freqserv==0, prob(predicted_probs) save_graph(gr_f)
> graph
. matrix P_f=e(M)
. * Generate the adjoint matrix P
. matrix P=P_m,P_f
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. matrix list P
(output omitted )

. * Generate the four probabilities' variables (actual and fitted by freqserv)

. preserve

. svmat2 P, rnames(categories)

. destring categories, replace
categories: all characters numeric; replaced as byte
(2172 missing values generated)
. drop if categories==.
(2,172 observations deleted)
. keep categories P*
. * Run the graph
. sort categories
. tw (connected P1 categories) (connected P2 categories)
> (connected P3 categories) (connected P4 categories),
> legend(order(1 "freqserv_1 fitted" 2 "freqserv_1 actual"
> 3 "freqserv_0 fitted" 4 "freqserv_0 actual"))
. restore
. matrix list P
P[7,4]

fitted_prob actual_prob fitted_prob actual_prob
1 .04597005 .03800786 .04398401 .04096045
2 .04606406 .02228047 .04639857 .03884181
3 .0477008 .05635649 .06395741 .07768362
4 .06260974 .08125819 .1284419 .11511299
5 .13586293 .19003932 .24402751 .27683616
6 .30494848 .20183486 .29648811 .24646893
7 .35684395 .4102228 .17670254 .20409605

0
.1

.2
.3

.4

0 2 4 6 8
categories

freqserv_1 fitted freqserv_1 actual
freqserv_0 fitted freqserv_0 actual

Figure 4. Plot of the observed frequencies and fitted probabilities for variable officeho
under a CUB(0, 0), conditional to freqserv
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According to the fitted models, it follows that relevant differences between the two
profiles appear only in categories 4, 5, and 7; specifically, nonregular users are more
likely to score lower categories 4 and 5 than regular ones. Conversely, regular users are
more likely to score the highest grade R = 7 than the nonregular ones. In particular,
figure 4 indicates that inflation in category 5 is mainly due to regular users, whereas
inflation in the last category should be accounted for instead for the ratings assigned
by nonregular users to further improve the fit. This circumstance could be assessed
by fitting the following models and comparing classical goodness-of-fit statistics; results
are displayed in figure 5.

. cub officeho if freqserv==0, shelter(5) prob(_Prob0) graph
> save_graph(mygraph2)

Number of obs = 1,416
Wald chi2(0) = .

Log likelihood = -2458.7964 Prob > chi2 = .

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
_cons .5772791 .134363 4.30 0.000 .3139324 .8406258

xi_gamma
_cons -1.260895 .0616 -20.47 0.000 -1.381629 -1.140162

lambda
_cons -2.616979 .3055337 -8.57 0.000 -3.215814 -2.018144

The number of categories of variable officeho is M = 7

******************************************************************************
*************** Estimates of 'pi', and 'xi' **********************************
******************************************************************************

pi: 1/(1+exp(-_b[pi_beta:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi .6404411 .0309406 20.70 0.000 .5797986 .7010836

xi: 1/(1+exp(-_b[xi_gamma:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

xi .2208198 .0105988 20.83 0.000 .2000465 .241593

******************************************************************************
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******************************************************************************
******** Estimation of the shelter parameters 'delta' **********************
******************************************************************************

delta: 1/(1+exp(-_b[lambda:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

delta .0680537 .0193777 3.51 0.000 .0300741 .1060332

(763 missing values generated)
(763 missing values generated)
(763 missing values generated)
(763 missing values generated)

Actual vs. fitted probabilities
officeho fitted_~b actual_~b

1 .0479391 .0409605
2 .049335 .0388418
3 .0607937 .0776836
4 .1086733 .115113
5 .2768358 .2768362
6 .2749865 .2464689
7 .1814365 .204096

file mygraph2.gph saved
. cub officeho if freqserv==1, shelter(7) prob(_Prob1) graph
> save_graph(mygraph2)

Number of obs = 763
Wald chi2(0) = .

Log likelihood = -1208.9212 Prob > chi2 = .

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
_cons .8162676 .1832598 4.45 0.000 .4570851 1.17545

xi_gamma
_cons -1.110301 .0911449 -12.18 0.000 -1.288942 -.9316604

lambda
_cons -.8956222 .1250323 -7.16 0.000 -1.140681 -.6505634

The number of categories of variable officeho is M = 7
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******************************************************************************
*************** Estimates of 'pi', and 'xi' **********************************
******************************************************************************

pi: 1/(1+exp(-_b[pi_beta:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi .6934435 .0389573 17.80 0.000 .6170886 .7697984

xi: 1/(1+exp(-_b[xi_gamma:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

xi .2478147 .0169897 14.59 0.000 .2145156 .2811138

******************************************************************************

******************************************************************************
******** Estimation of the shelter parameters 'delta' **********************
******************************************************************************

delta: 1/(1+exp(-_b[lambda:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

delta .289951 .0257416 11.26 0.000 .2394984 .3404035

(1,416 missing values generated)
(1,416 missing values generated)
(1,416 missing values generated)
(1,416 missing values generated)

Actual vs. fitted probabilities
officeho fitted_~b actual_~b

1 .0312098 .0380079
2 .0331726 .0222805
3 .0468555 .0563565
4 .0948758 .0812582
5 .1762882 .1900393
6 .2073753 .2018349
7 .4102228 .4102228

file mygraph2.gph saved
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Figure 5. Separate fit of CUB models with shelter for ratings on officeho, given
freqserv (left: shelter at s = 5 for nonregular users; right: shelter at s = 7 for
regular users)

As an example of a more complex covariate specification, we show how to check
for possible age effects. We consider the deviation from the mean of the logarithmic
transform of age (covariate slnage) together with gender to explain uncertainty. When
covariates are included for both parameters as in the previous example, the estimates
will be the corresponding coefficients of the logistic link for the uncertainty and the
feeling parameters. Then the resulting CUB model is specified by

logit(1− πi) = −β0 − β1 slnagei − β2 genderi
logit(1− ξi) = −γ0 − γ1 slnagei − γ2 freqservi (4)

After the slnage variable is generated, the command to implement this model is

. generate lage=ln(age)

. egen mlage=mean(lage)

. generate slnage=lage-mlage

. cub officeho, pi(slnage gender) xi(slnage freqserv)

The output of the estimation procedure is given below and indicates that regular
users have a higher feeling than occasional users and that younger users have lower
feeling than older ones and higher uncertainty.3 In addition, responses provided by
women are more heterogeneous than those provided by men.

3. Here we consider as young those individuals whose age (in logarithmic scale) is lower than the
average.
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Number of obs = 2,179
Wald chi2(2) = 11.71

Log likelihood = -3693.8876 Prob > chi2 = 0.0029

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
slnage 1.237235 .6134223 2.02 0.044 .0349497 2.439521
gender .4956044 .1687882 2.94 0.003 .1647857 .8264232
_cons .564898 .1177285 4.80 0.000 .3341543 .7956417

xi_gamma
slnage -.5905128 .2409135 -2.45 0.014 -1.062695 -.1183311

freqserv -.8228392 .0849996 -9.68 0.000 -.9894353 -.6562431
_cons -1.14668 .0403469 -28.42 0.000 -1.225758 -1.067601

The number of categories of variable officeho is M = 7

Because no plot is directly provided as output for complex covariate specifications,
the results of the CUB model estimation with significant covariates on feeling and un-
certainty parameters may be represented, for instance, as in figure 6, obtained with the
following commands:

. * Run CUB with covariates

. cub officeho, pi(slnage gender) xi(slnage freqserv)
(output omitted )

. * Produce linear predictions

. predict pred_csi, equation(xi_gamma) xb

. predict pred_pai, equation(pi_beta) xb

. * Form the four groups

. generate group=.
(2,179 missing values generated)
. replace group=1 if gender==1 & freqserv==1
(385 real changes made)
. replace group=2 if gender==0 & freqserv==1
(378 real changes made)
. replace group=3 if gender==1 & freqserv==0
(664 real changes made)
. replace group=4 if gender==0 & freqserv==0
(752 real changes made)
. * Generate the "feeling" and the "uncertainty" variables
. generate feeling=invlogit(1-pred_csi)
. generate uncertainty=invlogit(1-pred_pai)
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. * Plot the graph

. sort(uncertainty)

. twoway
> (line feeling uncertainty if group==1 & age<=22, lwidth(medthick)
> lpattern(solid))
> (line feeling uncertainty if group==2 & age<=22, lwidth(medthick)
> lpattern(dash))
> (line feeling uncertainty if group==3 & age>22, lwidth(medthick)
> lpattern(longdash_dot))
> (line feeling uncertainty if group==4 & age>22, lwidth(medthick)
> lpattern(dash_dot)),
> legend(label(1 "Young man user") label(2 "Young woman user")
> label(3 "Old man not-user") label(4 "Old woman not-user"))
> scheme(s1mono) xtitle("Uncertainty (1-pi)") ytitle("Feeling (1-xi)")
> saving(mygraph3, replace)
file mygraph3.gph saved
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Figure 6. Plot of CUB model with covariates (4): age and gender effect for uncertainty,
age and frequency effect for feeling

Figure 6 is meant to display how feeling and uncertainty vary together with the
continuous variable slnage when conditioning to the selected dummy variables. For
illustrative purposes, for each of the possible four groups identified by gender and fre-
quency of service, we have plotted only a restricted set of values to identify four profiles:
young male and female regular users and older male and female nonregular users. In
light of the comments discussed above on estimated parameters, the bottom point of
each curve segment corresponds with younger ages within each group.

As discussed in section 2, the class of CUB mixture models includes a specific exten-
sion to fit the so-called shelter effect, arising in the presence of an inflated category. For
illustrative purposes, we show how to perform the analysis of a possible shelter effect
in the previous model using category 5 as the shelter choice for officeho if covariate
effects are also investigated for feeling and uncertainty measures. The code is as follows:
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. cub officeho, shelter(5) pi(slnage gender) xi(slnage freqserv)
Number of obs = 2,179
Wald chi2(2) = 13.35

Log likelihood = -3667.9995 Prob > chi2 = 0.0013

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
slnage 1.318132 .5887743 2.24 0.025 .1641556 2.472108
gender .4970248 .160193 3.10 0.002 .1830523 .8109973
_cons .270122 .117399 2.30 0.021 .0400241 .5002199

xi_gamma
slnage -.685046 .3182336 -2.15 0.031 -1.308772 -.0613196

freqserv -1.243455 .1306411 -9.52 0.000 -1.499507 -.9874033
_cons -1.301998 .0566919 -22.97 0.000 -1.413112 -1.190884

lambda
_cons -2.267073 .1447959 -15.66 0.000 -2.550868 -1.983278

The number of categories of variable officeho is M = 7

******************************************************************************
******** Estimation of the shelter parameters 'delta' **********************
******************************************************************************

delta: 1/(1+exp(-_b[lambda:_cons]))

officeho Coefficient Std. err. z P>|z| [95% conf. interval]

delta .0938869 .0123181 7.62 0.000 .0697439 .11803

The sign of the regression coefficients for the selected covariates for both uncertainty
and feeling parameters confirms, overall, the interpretations derived from inspection of
figure 6. In addition, we observe that the significance test for parameter δ suggests
that accounting for inflation in category 5 improves the fit even after controlling for the
selected covariates.

5 Categories with zero frequencies
The cub command also allows consideration of settings where the dataset presents zero-
frequency categories, that is, categories that are part of the response measurement
support but that no respondents have chosen. For illustrative purposes, we consider two
artificial scenarios assuming that the rating variable officeho was collected on a scale
with eight and nine categories and for which nonzero frequencies were observed for the
first seven categories only. We then compare the results graphically with the scattercub
command, including the original measurement, to see how feeling and uncertainty are
adjusted when specifying the complete rating scale length in case of unobserved response
options; see figure 7.
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. generate officeho8 = officeho

. generate officeho9 = officeho

. scattercub officeho officeho8 officeho9, m(7 8 9)
(0 observations deleted)

(output omitted )

The estimates are updated to account for the presence of the extra categories having
zero frequency. The total number of categories considered in the procedure (including
those with zero frequency) is reported in the last line of the first panel of the output
table (here not reported for brevity).

officeho

officeho8

officeho9
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5
.7

.7
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.15 .2 .25 .3 .35
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Figure 7. Scatterplot to display the effect of misspecification of the length of the original
rating scale in case there are categories with zero observed frequencies

To discuss the case of zero-frequency categories not at the extreme of the scales, we
consider for illustrative purposes the ratings on satisfaction for the willingness of the
staff of the orientation office, and we artificially set frequencies of the second and third
category at 0 by shifting those responses to 1. Figure 8 shows the graphical output of
the code below; also, in this case the shelter effect is tested at s = 7.

. generate w1=willingn

. replace w1=1 if willingn==2 | willingn==3
(86 real changes made)
. cub w1, prob(_PROB) graph save_graph(miss_cat.jpg) outname("w1")

(output omitted )
. cub w1, prob(_PROB) graph shelter(7) save_graph(miss_cat.jpg) outname("w1")

(output omitted )
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Figure 8. Observed and estimated distributions restricted to observed categories of
satisfaction ratings for willingness of the staff (without and with shelter at s = 7)

Accordingly, the output will report the estimated uncertainty and feeling estimation
results (given below only for the fitted CUB model with shelter at s = 7).

. cub w1, prob(_PROB) graph shelter(7)
Number of obs = 2,179
Wald chi2(0) = .

Log likelihood = -3000.0991 Prob > chi2 = .

w1 Coefficient Std. err. z P>|z| [95% conf. interval]

pi_beta
_cons 1.621426 .1010487 16.05 0.000 1.423374 1.819478

xi_gamma
_cons -1.768895 .057773 -30.62 0.000 -1.882128 -1.655662

lambda
_cons -1.616902 .19687 -8.21 0.000 -2.00276 -1.231044

The number of categories of variable w1 is M = 7

******************************************************************************
*************** Estimates of 'pi', and 'xi' **********************************
******************************************************************************

pi: 1/(1+exp(-_b[pi_beta:_cons]))

w1 Coefficient Std. err. z P>|z| [95% conf. interval]

pi .8349917 .0139225 59.97 0.000 .807704 .8622794

xi: 1/(1+exp(-_b[xi_gamma:_cons]))

w1 Coefficient Std. err. z P>|z| [95% conf. interval]

xi .1456798 .0071903 20.26 0.000 .1315871 .1597724

******************************************************************************
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******************************************************************************
******** Estimation of the shelter parameters 'delta' **********************
******************************************************************************

delta: 1/(1+exp(-_b[lambda:_cons]))

w1 Coefficient Std. err. z P>|z| [95% conf. interval]

delta .1656326 .0272071 6.09 0.000 .1123076 .2189575

Actual vs. fitted probabilities
w1 fitted_~b actual_~b

1 .0196749 .0587425
2 .0199025 0
3 .0231036 0
4 .0465297 .0426801
5 .1378123 .1560349
6 .2968046 .2863699
7 .4561725 .4561726

6 Conclusions
Compared with more consolidated approaches mainly derived from cumulative mod-
els (McCullagh 1980), which is the leading pathway to analyze ordinal data, the CUB
paradigm offers wider possibilities from both the interpretative and graphical points of
view. In addition, an important consequence is the circumstance that CUB models are
not constrained to include covariates as explanatory tools to fit consistent models for
data fitting, prediction, and classification. This opportunity allows the introduction of
more flexible methods to manage and compare rating responses.

In this framework, the cub command for ordered rating data is presented to pro-
vide a new analytical tool for Stata users interested in ordinal data modeling, thus
broadening the extent of application of the class of CUB mixture distributions. This
methodology provides measures of both latent uncertainty and feeling of the response
process, which could be possibly linked to subjects’ covariates. The command also al-
lows for the estimation of CUB models with shelter to account for an inflated frequency.
The visualization features for CUB models have been emphasized because this is one of
the most obvious advantages of this modeling approach.

Improvements of cub could include extra functions to fit model extensions, as CUB
model extensions to account for overdispersion (Piccolo 2015).

Beyond extended methodologies, CUB modeling is also under active development
for applications; in this respect, we quote original marketing research in the field of
food preferences and sensory analysis: Piccolo and D’Elia (2008), Iannario et al. (2012),
Corduas, Cinquanta, and Ievoli (2013), Capecchi et al. (2016), Mauracher, Procidano,
and Sacchi (2016), and Contini et al. (2016). We also quote recent new perspectives
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and applications (Hwang, Sohn, and Oh 2015; Low 2017; Finch and Hernández Finch
2020; Hu, Zhou, and Sharma 2020; and Xu and Zhang 2021), providing evidence of an
increasing international interest toward the CUB paradigm.

7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-1

. net install st0669 (to install program files, if available)

. net get st0669 (to install ancillary files, if available)
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