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Abstract. In this article, I discuss the method of relative distribution analysis
and present Stata software implementing various elements of the methodology.
The relative distribution is the distribution of the relative ranks that the outcomes
from one distribution take on in another distribution. The methodology can be
used, for example, to compare the distribution of wages between men and women.
The presented software, reldist, estimates the relative cumulative distribution
and the relative density, as well as the relative polarization, divergence, and other
summary measures of the relative ranks. It also provides functionality such as
location and shape decompositions or covariate balancing. Statistical inference is
implemented in terms of influence functions and supports estimation for complex
samples.
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1 Introduction
Although earlier work on relative distributions and related approaches can be found in
the statistical literature (for example, Ćwik and Mielniczuk [1989, 1993]), the method-
ology has not been popular in applied work before Mark S. Handcock, Martina Morris,
and coauthors introduced it to the social sciences in some influential applied (Morris,
Bernhardt, and Handcock 1994; Bernhardt, Morris, and Handcock 1995; and Bernhardt
et al. 2001) and methodological contributions (Handcock and Morris 1998, 1999; Hand-
cock and Janssen 2002) in the mid 1990s and early 2000s. Even today, however, relative
distribution methods do not seem to experience very widespread use, which might partly
be because of lack of user-friendly statistical software supporting such analyses (apart
from an R package by Handcock and Aldrich [2002]; see Handcock [2016]).

Nevertheless, I believe that relative distribution analysis is a valuable complement
to other approaches for distributional comparisons, which typically look at differences
in (counterfactual) density, distribution, or quantile functions (for example, DiNardo,
Fortin, and Lemieux [1996] and Chernozhukov, Fernández-Val, and Melly [2013]). A
key feature of relative distribution analysis is that it focuses on positions within dis-
tributions rather than on absolute outcome values. The methodology can be used, for
example, to study how wage distributions differ by gender or ethnic groups or how
income polarization changed over time. A few examples from the literature illustrate
the scope of potential applications: Alderson, Beckfield, and Nielsen (2005) studied
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changes in income inequality in several countries; Bliege Bird et al. (2008) analyzed
the anthropogenic influence on vegetational diversity in Australia; Del Giudice (2011)
looked at gender differences in adult romantic attachment; Eggers and Spirling (2016)
studied cohesive party voting in the British House of Commons between 1836 and 1910;
Clementi, Molini, and Schettino (2018) analyzed changes in the consumption distri-
bution over time in Ghana; and Panek and Zwierzchowski (2020) studied changes in
household income polarization in Poland.

In an attempt to improve the accessibility of the methodology to applied researchers,
I provide an overview of relative distribution methods in this article, and I present soft-
ware that makes the methodology available in Stata. The software, called reldist, can
be used to estimate and plot the relative density function (relative PDF), a histogram
of the relative distribution, or the relative distribution function (relative CDF). Further-
more, it computes relative polarization indices and distributional divergence measures,
as well as descriptive statistics of the relative data, and it supports the decomposition
of the relative distribution by adjusting for location, scale, and shape differences or
by adjusting for differences in covariate distributions. Estimation of standard errors
and confidence intervals is provided for all quantities, including support for complex
samples. I tried to make the software as versatile as possible while also maintaining
user friendliness, for example, by following official Stata standards in terms of syntax,
output, and stored results.

The article is structured as follows. In the next section, I give an overview of the
main concepts of relative distribution analysis, including definitions of relative ranks
and the relative distribution, as well as elements such as location and shape decom-
positions, distributional divergence and relative polarization summary measures, and
covariate adjustment approaches. Most of the discussed material is also covered in
Handcock and Morris (1999), but I focus on elements I consider most relevant from an
applied perspective, and I use a somewhat different notation. Furthermore, I introduce
reweighting as an additional strategy for covariate adjustment. In section 3, I then
discuss the computational details involved in the estimation of the quantities presented
in section 2. I cover different variants of how to compute relative ranks, the relative
cumulative distribution, the relative density, the relative histogram, summary measures,
and covariate balancing, and I distinguish between continuous and categorical outcomes
when relevant. Again, many of the relevant issues are also addressed by Handcock and
Morris (1999), but my exposition is more focused on specific implementation. Section 4
then introduces the software and its options, and section 5 provides several worked
examples.

The article further contains an appendix covering the estimation of sampling vari-
ances by means of influence functions (IFs). The appendix is rather technical and can
safely be ignored by readers who are only interested in the practical application of
the methods; it is not needed for obtaining an understanding of relative distribution
methods and for being able to correctly apply the software and interpret the results.
Nonetheless, I consider the appendix an important and original contribution providing
results that cannot be found elsewhere in the literature. I first illustrate how IFs can be
obtained by analogy to the method of moments and then derive specific expressions for
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all relative distribution quantities of interest, including possible covariate adjustment.
One virtue of an IF-based approach is that it leads to expressions that are compatible
with complex survey estimation.

2 Theory
In this section, I summarize the main statistical concepts that are relevant for relative
distribution analysis. For an in-depth treatment of the topic, see Handcock and Morris
(1999). For a more recent introduction, also see chapter 5 in Hao and Naiman (2010).

2.1 CDF and density

Let Y be a continuous outcome variable of interest. Y is assumed to be a random
variable with CDF

FY (y) = P (Y ≤ y), y ∈ R

That is, for any value y, the CDF provides the probability of Y taking on a value that
is smaller than or equal to y. The PDF of Y is then defined as the first derivative of the
CDF, that is,

fY (y) = F ′
Y (y) =

dFY (y)

dy

Hence, the integral of the density from −∞ to y is equal to the value of the CDF at
value y:

FY (y) =

∫ y

−∞
fY (t) dt

Likewise, the integral of the density between values a and b provides the probability
that Y falls into interval (a, b]:

P (a < Y ≤ b) = FY (b)− FY (a) =

∫ b

a

fY (y) dy

Finally, let qY (p) = F−1
Y (p) be the inverse of FY , that is, the quantile function of Y ,

such that
y = qY {FY (y)} = F−1

Y {FY (y)}

2.2 Relative ranks

Define
rY (y) = FY (y)

as the “relative rank” of outcome y in distribution FY . Because FY is a CDF, r lies
between 0 and 1. Handcock and Morris (1999) call r the “relative data”, and Ćwik and
Mielniczuk (1989) speak of the “grade transformation”.
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Relative ranks have a distribution themselves that depends on the distribution of
the y values at which rY (y) is evaluated. For example, if the y values are distributed
according to FY , then r has a uniform distribution.

2.3 The relative distribution

Let FX be a comparison distribution and FY be a reference distribution. In relative
distribution analysis, we are interested in how FX is distributed relative to FY . The
relative CDF of FX with respect to FY is defined as the distribution of the relative ranks
that outcome values distributed according to FX take on in distribution FY . That is,
we are interested in the distribution of rY (y) for y values distributed according to FX ,
which can be obtained by inverting r to y using F−1

Y and then applying FX . Hence, the
relative CDF is given as

G(r) = FX{F−1
Y (r)}, r ∈ [0, 1] (1)

Stated differently, for each value of r = FY (y), the relative CDF obtains the correspond-
ing value of FX(y), keeping y fixed, which leads to the tuples

{FX(y), FY (y)}, y ∈ R

Plotted in a diagram with r [= FY (y)] on the horizontal axis and G(r) [= FX(y)]
on the vertical axis, all points will lie on the diagonal if the two distributions are
identical [that is, G(r) = r in this case, as can easily be seen in (1)].1 If the outcome
values in the comparison distribution tend to be lower than the outcome values in
the reference distribution, the points will lie above the diagonal (and vice versa). The
relative distribution might also cross the diagonal, for example, if one of the distributions
is more polarized than the other. Figure 1 provides an illustration. On the left, three
examples of the density functions of two distributions are shown. In the middle panel,
the corresponding relative distribution functions are displayed.

1. The diagram of FX by FY is also known as “probability–probability plot” (P–P plot; for a Stata
implementation, see Cox [2004]).
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Figure 1. Illustration of the relative distribution

2.4 The relative density

Because G(r) is a CDF, we can take the first derivative to obtain the density. Employing
the chain rule, the relative PDF of FX with respect to FY can be written as

g(r) =
dG(r)

dr
=

fX{F−1
Y (r)}

fY {F−1
Y (r)}

, r ∈ [0, 1] (2)

As can be seen, the relative density is equal to the ratio of the densities of the two
distributions at a specific y value [that is, g(r) is equal to the ratio of the two densities
at the y value equal to quantile r of FY ]. Nonetheless, g(r) is a proper PDF because it
is positive and integrates to 1.
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If the two compared distributions are identical, g(r) will be equal to 1 for all r, as
is easy to see in (2). If the comparison distribution tends to have lower values than the
reference distribution, the relative density will be larger than 1 at low values of r and
smaller than 1 for large r (and vice versa). Likewise, assuming similar locations of the
two distributions, if the comparison distribution is more polarized than the reference
distribution, the relative density will be larger than 1 at small and large values of r and
below 1 in between (and vice versa). An illustration of different situations is provided
in the right panel of figure 1.

2.5 Location and shape decomposition

Distributions can have different “locations,” meaning that they differ, say, in their
mean or median. If a large location difference exists, the relative CDF and PDF will
be dominated by this difference. In many applications, it may thus be informative to
distinguish between a “location effect” and the difference in distributional shape, net of
location.

As shown by Handcock and Morris (1999), the overall relative density can be decom-
posed into a “location effect” and a “shape effect” by constructing a location-adjusted
distribution and then using this counterfactual distribution in place of either FX or FY .
For example, let

Ỹ = Y − µY + µX (3)

be a location-adjusted variant of Y , where µ is a location measure such as the median
or the mean. In general, if Ỹ = t(Y ), the distribution of Ỹ is equal to FY {t−1(y)}. This
means that

FỸ (y) = P (Y − µY + µX ≤ y) = P (Y ≤ y + µY − µX) = FY (y + µY − µX)

is a location-adjusted reference distribution that has the same location as the comparison
distribution. The overall relative density can then be written as

g(r) =
fX{F−1

Y (r)}
fY {F−1

Y (r)}
=

fỸ {F
−1
Y (r)}

fY {F−1
Y (r)}︸ ︷︷ ︸

location effect

×
fX{F−1

Y (r)}
fỸ {F

−1
Y (r)}︸ ︷︷ ︸

shape effect

(4)

The first factor, the location effect, is equal to the ratio between the density of the
location-adjusted reference distribution and the unadjusted reference distribution. The
second factor, the shape effect, is the ratio between the density of the (unadjusted)
comparison distribution and the location-adjusted reference distribution. However, note
that

fX{F−1
Y (r)}

fỸ {F
−1
Y (r)}

, r ∈ [0, 1]

is not a proper density, because it is evaluated over y values distributed according to
FY instead of FỸ . It may therefore be more useful to characterize the shape effect by
the adjusted relative PDF
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gXỸ (r) =
fX{F−1

Ỹ
(r)}

fỸ {F
−1

Ỹ
(r)}

or the corresponding adjusted relative CDF

GXỸ (r) = FX{F−1

Ỹ
(r)}

Instead of adjusting FY , the decomposition could also be defined by adjusting the
comparison distribution. That is, we could use

X̃ = X − µX + µY with FX̃(y) = FX(y + µX − µY )

such that

g(r) =
fX{F−1

Y (r)}
fY {F−1

Y (r)}
=

fX{F−1
Y (r)}

fX̃{F−1
Y (r)}︸ ︷︷ ︸

location effect

×
fX̃{F−1

Y (r)}
fY {F−1

Y (r)}︸ ︷︷ ︸
shape effect

(5)

As above, one of the components is not a proper density. To describe the location effect,
we may thus prefer

gXX̃(r) =
fX{F−1

X̃
(r)}

fX̃{F−1

X̃
(r)}

and GXX̃(r) = FX{F−1

X̃
(r)}

instead of fX{F−1
Y (r)}/fX̃{F−1

Y (r)}. Results from (4) and (5) will generally not be the
same, although for some of the measures discussed below, it does not matter whether
we adjust FX or FY .

So far, an additive location shift has been used to adjust the comparison or reference
distribution. For variables that can only be positive (for example, wages), it may be
more natural to use a multiplicative shift and hence rescale the data proportionally. A
multiplicative location adjustment of the reference distribution is given by Ỹ = Y ×
µX/µY , and hence

FỸ (y) = FY (y × µY /µX)

The comparison distribution could be adjusted analogously. Furthermore, besides the
location, we could also adjust the scale of the distributions. An (additive) location
and scale adjustment of the reference distribution could be accomplished using Ỹ =
(Y − µY )× sX/sY + µX , such that

FỸ (y) = FY {(y − µX)× sY /sX + µY }

where s is a scale measure such as the interquartile range (IQR) or the standard devia-
tion. For the multiplicative adjustment, there is no natural way to take account of the
scale. However, using logarithms we can implement a proportional location and scale
adjustment as Ỹ = exp[{ln(Y )− µln(Y )} × sln(X)/sln(Y ) + µln(X)], such that

FỸ (y) = FY (exp[{ln(y)− µln(X)} × sln(Y )/sln(X) + µln(Y )])
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2.6 Summary measures

2.6.1 Divergence

Handcock and Morris (1999) suggest Pearson’s χ2 divergence and the Kullback–Leibler
divergence (relative entropy) as measures for distributional divergence, that is, as sum-
mary measures for the overall difference between the comparison distribution and the
reference distribution. The χ2 divergence between FX and FY is defined as

χ2 =

∫ ∞

−∞

{fX(y)− fY (y)}2

fY (y)
dy =

∫ 1

0

{g(r)− 1}2 dr

The equality between the first and second expressions follows from the substitution rule
for integrals, noting that y = F−1

Y (r) and dF−1
Y (r)/ dr = 1/fY {F−1

Y (r)}. Likewise, the
Kullback–Leibler divergence, which has an information-theoretic interpretation (nega-
tive entropy of the relative density), is defined as

KL =

∫ ∞

−∞
ln

{
fX(y)

fY (y)

}
fX(y) dy =

∫ 1

0

ln{g(r)}g(r) dr

For both measures, the divergence of FX with respect to FY is not generally equal to
the divergence of FY with respect to FX . That is, the direction from which we look
at the problem matters. An example for a symmetric divergence measure2 is the total
variation distance (TVD)

TVD =

∫ ∞

−∞

1

2

∣∣∣∣fX(y)

fY (y)
− 1

∣∣∣∣ fY (y) dy =

∫ 1

0

1

2
|g(r)− 1|dr

which is equal to half the area between the relative density curve and the parity line.
Besides being symmetric, the TVD has an intuitive interpretation: it quantifies the
proportion of data mass that would have to be redistributed in one of the distributions
to make it equal to the other distribution. In the case of categorical data, the TVD
is equal to the dissimilarity index by Duncan and Davis (1953), which is often used
in analyses of segregation (for Stata implementations, see, for example, Jann [2004] or
Reardon and Townsend [1999]).

For all three measures, in a location and shape decomposition, the location-effect
divergence and the shape-effect divergence do not add up to the overall divergence. For
example, we could location-adjust the reference distribution as in (3) and then obtain
the location-effect divergence from gỸ Y (r) and the shape-effect divergence from gXỸ (r).
Unfortunately, these two divergences do not add up to the overall divergence. For the
Kullback–Leibler divergence, however, as pointed out by Handcock and Morris (1999),
the following equality holds:

KL = KLXỸ Y + KLXỸ

2. That is, the comparison and reference distribution can be swapped without changing the measure.
The equality holds in theory; in an empirical application, the agreement will only be approximate
because of the smoothing involved in density estimation.
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KLXỸ Y is a (negative) cross-entropy defined as

KLXỸ Y =

∫ ∞

−∞
ln

{
fỸ (y)

fY (y)

}
fX(y) dy =

∫ 1

0

ln
{
gỸ Y (r)

}
g(r) dr

This suggests that, in practice, it may make sense to identify the location-effect diver-
gence as the difference between the overall divergence and the shape-effect divergence.
An advantage of such an approach is also that results will not depend on whether we
adjust the reference distribution or the comparison distribution.

2.6.2 Polarization

To compare the degree of inequality between the comparison distribution and the refer-
ence distribution, Handcock and Morris (1999) suggest the median relative polarization
index (MRP). The index is positive if the comparison distribution is more unequal than
the reference distribution; if the reference distribution is more unequal than the com-
parison distribution, the index will be negative. The MRP is defined as

MRP = 4× EX{|rỸ (y)− 0.5|} − 1 MRP ∈ [−1, 1]

where EX is the expectation over the comparison distribution and rỸ (y) is the relative
rank of y in the location-adjusted reference distribution (using the median as the loca-
tion measure). The justification for the MRP is that the median of the location-adjusted
relative ranks is 0.5 and the location-adjusted relative ranks will have a uniform distri-
bution if the two distributions have the same shape. In this case, EX{|rỸ (y)− 0.5|} is
equal to 1/4, such that MRP is 0. In the extreme case that all data mass of the compari-
son distribution is located in regions below and above the range of the location-adjusted
reference distribution, rỸ (y) will be 0 or 1 for all y with positive density in FX , such
that EX{|rỸ (y)− 0.5|} = 0.5 and hence MRP = 1. In the opposite extreme, rỸ (y) will
always be 0.5, leading to an MRP of −1.

The MRP can be decomposed into a lower polarization index (LRP) and an upper
polarization index (URP) that quantify the relative polarization in the lower or upper
half of the distribution, respectively:

LRP = 4× EX [abs{rỸ (y)− 0.5}|rỸ (y) ≤ 0.5]− 1

URP = 4× EX [abs{rỸ (y)− 0.5}|rỸ (y) > 0.5]− 1

Because the conditional expectations in the definitions of LRP and URP each cover half
the distribution of the location-adjusted relative ranks, the total polarization index is
equal to the average of the lower and upper indices, that is,

MRP = 0.5× LRP + 0.5× URP

2.6.3 Other summary measures

Descriptive statistics of the relative ranks compose a further class of relative distribution
summary measures. Quantities of interest may be, for example, the mean or median of
the relative ranks, their standard deviation, or their IQR.
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Note that the mean of the relative ranks is equivalent to the Gastwirth index, which
measures the “probability that a randomly selected woman earns at least as much as a
randomly chosen man” (Gastwirth 1975, 33).3

2.7 Covariate balancing

2.7.1 Integrating over conditional distributions

Handcock and Morris (1999) discuss covariate adjustment in terms of conditional dis-
tributions integrated over covariates. I will slightly change notation for the following
exposition. Let D ∈ {0, 1} be an indicator distinguishing between a comparison group
(D = 1) and a reference group (D = 0), and let Y be an outcome variable available in
both groups. The comparison distribution is FY |D=1, that is, the distribution of Y in
group D = 1; the reference distribution is FY |D=0. Furthermore, let Z be a continuous
covariate. Our goal is to obtain the relative distribution of FY |D=1 with respect to
FY |D=0 while adjusting for possible differences in the distribution of Z between the two
groups.

The marginal distribution of Y in group d can be written as

FY |D=d(y) =

∫ ∞

−∞
fZ|D=d(z)FY |D=d,Z(y|z) dz

where fZ(z) is the density of Z and FY |Z(y|z) is the conditional distribution of Y
given Z. A counterfactual distribution can now be constructed by replacing one of the
components. For example,

FC
Y |D=0(y) =

∫ ∞

−∞
fZ|D=1(z)FY |D=0,Z(y|z) dz (6)

is the marginal distribution of Y that we would expect in the reference group if it
had the same covariate distribution as the comparison group. That is, we can obtain
the counterfactual distribution by integrating the conditional distribution of Y in the
reference group over the covariate distribution of the comparison group. The covariate-
adjusted relative distribution can then be obtained by comparing FY |D=1 with FC

Y |D=0.4

The approach can be generalized to multiple covariates by integrating over the joint
distribution of all covariates or to discrete covariates by taking weighted sums instead
of integrals.

3. To be precise, according to the formal definition given by Gastwirth (1975), the index is equal to 1
minus the average relative rank of men’s earnings in the distribution of women’s earnings. However,
because of the symmetry of the problem, this is equivalent to the average relative rank of women’s
earnings in the distribution of men’s earnings. For a discussion of the Gastwirth index, also see
Le Breton, Michelangeli, and Peluso (2012).

4. Naturally, we might as well adjust the comparison distribution and then compare the covariate-
adjusted comparison distribution with the reference distribution. The two perspectives address the
same question (that is, how the relative distribution of Y would look like if the two groups had the
same distribution of Z) but give somewhat different answers. In the decomposition literature, this
is discussed as the “index problem” (see, for example, Jann [2008]).
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2.7.2 Reweighting

An equivalent but more attractive approach from an applied perspective is to conceptu-
alize covariate adjustment as reweighting in the spirit of DiNardo, Fortin, and Lemieux
(1996). Define

P (D = 1|Z = z) = 1− P (D = 0|Z = z)

as the conditional probability of belonging to the comparison group given Z. Further-
more, define

Ψ(z) =
P (D = 1|Z = z)/P (D = 1)

P (D = 0|Z = z)/P (D = 0)

We can then write the counterfactual distribution of Y in the reference group as

FC
Y |D=0(y) =

∫ ∞

−∞
fZ|D=0(z)FY |D=0,Z(y|z)Ψ(z) dz (7)

This indicates that the counterfactual distribution can be estimated by simply reweight-
ing the data by an estimate of Ψ(z).5 Mathematically, (7) is equivalent to (6) because

Ψ(z) =
P (D = 1|Z = z)/P (D = 1)

P (D = 0|Z = z)/P (D = 0)
=

P (D = 1|Z = z)× fZ(z)
P (D=1)

P (D = 0|Z = z)× fZ(z)
P (D=0)

=
fZ|D=1(z)

fZ|D=0(z)

(using Bayes’ theorem in the last step). The practical advantage of reweighting over
integrating is that Pr(D = 1|Z = z), and therefore, Ψ(z) is relatively easy to estimate
using binary choice models even if Z is a vector of several covariates (for example,
logistic regression).6

In any case, whether we integrate over conditional distributions or we use reweight-
ing, constructing counterfactual distributions in such a way assumes that the conditional
distribution of Y is “stable”, that is, that the covariate distribution can be modified
without changing the conditional distribution. However, even if such an exogeneity
assumption is unrealistic in a given application, the “as if” scenarios based on counter-
factual distributions can still be informative.

Furthermore, note that reweighting can be used as an alternative approach to identify
location and shape effects (instead of applying adjustments as described in section 2.5)
by modeling Ψ as a function of Y . This is particularly useful if the analyzed outcome
is categorical.

3 Estimation
For the following discussion, assume that there is a random sample of size n for which
we observe two variables, X and Y . Furthermore, there is information on sampling
5. To reweight the comparison group, we would use factor 1/Ψ(z) instead of Ψ(z).
6. In their description of the implementation of relative distribution methods in R, Handcock and

Aldrich (2002) conduct covariate adjustment by resampling observations based on relative frequen-
cies of covariate values. This is equivalent, in expectation, to reweighting the data by Ψ(z).
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weights w as well as a (possibly empty) vector of covariates Z. That is, the data are
(Yi, Xi, wi, Zi), i = 1, . . . , n. Set wi = 1 for all i in case there are no sampling weights.

We intend to analyze the relative distribution of X with respect to Y between two
subsamples. Let D be an indicator for the comparison subsample (Di = 1 if observation
i belongs to the comparison subsample, 0 if it does not), and let D = {i|Di = 1} be
the set of indices for which Di = 1. Likewise, let R be an indicator for the reference
subsample (Ri = 1 if observation i belongs to the reference subsample, 0 if it does not),
and let R = {i|Ri = 1} be the set of indices for which Ri = 1. That is, we want to
compare the distribution of X in subsample D with the distribution of Y in subsample
R.

We will use FX|D to denote the former, that is, the conditional distribution of
X given D = 1, and FY |R to denote the latter. In general, we will use letter “D”
for quantities related to D and letter “R” for quantities related to R. For example,
WD =

∑
Diwi and WR =

∑
Riwi will be the sum of weights in the comparison sample

and the reference sample, respectively. Furthermore, define W =
∑

wi as the total sum
of weights.

Note that Y and X may be the same and that D and R do not have to be distinct
nor exhaustive. I use such a general setup to cover all possible cases. For example,
if the subsamples are distinct and Y = X, then we are in a setting in which a single
variable is compared between two groups (for example, a comparison of wages from a
sample of females to wages from a sample of males). Likewise, if D = R and Y 6= X,
we compare two variables within the same sample (for example, a comparison of data
on wages for the same individuals between two time points). Furthermore, if X = Y
and D is included in R, then we compare the distribution of a variable in a subsample
with the pooled distribution of that variable. Finally, if the union of D and R does not
cover the whole sample (that is, if there are observations for which D = R = 0), we are
in a subpopulation estimation setting. Taking account of the observations that do not
belong to the subpopulation may be important for standard error estimation.

3.1 The relative CDF

To obtain an estimate for the relative CDF

G(r) = FX|D{F−1
Y |R(r)}, r ∈ [0, 1]

one can compute the relative rank of Xi in distribution FY |R for each i ∈ D and then
take the value of the empirical CDF of these relative ranks at value r. That is, first
compute

r̂i =
1

WR

∑
j∈R

wj1(Yj ≤ Xi) for all i ∈ D

where 1(a) is the indicator function (1 if a is true, 0 if false). Then obtain the CDF as

Ĝ(r) =
1

WD

∑
i∈D

wi1(r̂i ≤ r) (8)
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An issue with this simple computation is that it leads to a step function with jumps
at distinct values of r̂. Let (i) refer to observations in D ordered by r̂, such that
r̂(1) ≤ r̂(2) ≤ · · · ≤ r̂(nD). If r̂(i) < r < r̂(i+1), that is, if evaluation point r falls between
two values of r̂, then Ĝ(r) will be equal to the CDF corresponding with the lower value
of r̂. Such behavior makes sense in case of an ordinary CDF. However, in the context
of the relative distribution, it appears more appropriate to linearly interpolate between
the two points because this is equivalent to breaking ties proportionally between the
comparison distribution and the reference distribution. Hence, determine Ĝ(r) as

Ĝ(r) = Ĝ(i′) +
{
Ĝ(i′+1) − Ĝ(i′)

} r − r̂(i′)

r̂(i′+1) − r̂(i′)
(9)

with
Ĝ(i) =

1

WD

∑
j∈D

wj1
(
r̂j ≤ r̂(i)

)
where i′ is selected such that r̂(i′) < r ≤ r̂(i′+1) [with r̂(0) = Ĝ(0) = 0 if r̂(1) > 0 and
r̂(nD+1) = Ĝ(nD+1) = 1 if r̂(nD) < 1]. For values of r that have an exact match in r̂i,
i ∈ D, this leads to the same result as (8). For r values without an exact match, (9)
is equivalent to picking the result from a linear segmented curve connecting the points
given by {Ĝ(i), r̂(i)}, i = 1, . . . , nD.

Equation (9) improves on (8) in that it uses interpolation in regions where (8) is flat.
It does not, however, take into account that flat regions in (8) may include outcome
values that only exist in FY |R, nor does it take into account that there might be regions
where the true G(r) is upright because of outcome values that only occur in FX|D.
To handle these issues and obtain an estimate that exactly traces the observed data
pattern, we can compute the empirical CDF for FX|D and FY |R at each observed value
in the data and then use linear interpolation to obtain Ĝ(r). Let Y = {y(1), . . . , y(J)}
be the ordered set of all distinct outcome values observed for FX|D and FY |R. We then
compute

r̂D(j) =
1

WD

∑
i∈D

wi1
(
Xi ≤ y(j)

)
and r̂R(j) =

1

WR

∑
i∈R

wi1
(
Yi ≤ y(j)

)
for all j = 1, . . . , J , add origin r̂D(0) = r̂R(0) = 0, and obtain the relative CDF as

Ĝ(r) =



r̂D(jr) if r = 0

r̂D(jr) if r = 1

0.5
{
r̂D(jr) + r̂D(jr)

}
if r = r̂R(j) for any j

r̂D(j′) +
{
r̂D(j′+1) − r̂D(j′)

}
r−r̂R

(j′)
r̂R
(j′+1)

−r̂R
(j′)

else

(10)

where jr and jr denote the smallest and largest value of j, respectively, for which
r̂R(j) = r, and where j′ is chosen such that r̂R(j′) < r < r̂R(j′+1). For graphical display, we
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may also directly plot r̂D(j) against r̂R(j) and linearly connect the points. All estimates
for Ĝ(r) obtained using (10) will lie on that curve.

If all values in Y exist in both distributions, (10) will lead to the same results as
(9). Furthermore, for continuous data, at least if the dataset is not very small, results
from the two approaches will be very similar. Equation (10), however, leads to more
appropriate results than (9) if the data are discrete.

3.2 Computing relative ranks

Relative density estimation and the estimation of summary measures of the relative
distribution are typically implemented by analyzing the relative ranks of Xi, i ∈ D in
distribution FY |R. A naïve approach is to compute the relative ranks using the values
of the empirical CDF of FY |R, that is,

r̂i =
1

WR

∑
j∈R

wj1(Yj ≤ Xi) (11)

A problem with this approach is that the empirical CDF is a step function. This is
particularly troublesome if there is heaping in the data such that there are large steps
in the CDF, as is often the case with discrete data. One improvement is to use the
so-called middistribution function instead of the regular CDF that deducts half a step
size from the ranks in regions where the CDF is upright.7 Let

P̂R(Y = y) =
1

WR

∑
j∈R

wj1(Yj = y)

be the relative frequency of outcome y in FY |R (that is, the step size in the CDF at value
y). The relative ranks computed according to the middistribution function then are

r̂i =
1

WR

∑
j∈R

wj1(Yj ≤ Xi)−
1

2
P̂R(Y = Xi) (12)

Note that (12) differs from (11) only for observations that have ties in FY |R (that is,
observations that hit a step). For all other observations, P̂R is 0, and hence the two
computations lead to the same result. The relative midranks are preferable over the
naïve relative ranks because their average is exactly 0.5 if the two empirical distributions
are identical. For the naïve relative ranks, this does not hold; their average will be larger
than 0.5 in this situation. That is, the naïve relative ranks have an upward bias. The
size of the bias depends on how much heaping there is in the data. The more heaping
there is, the larger the bias.

Using the midrank adjustment removes the bias in the relative ranks. Heaping,
however, will still lead to undesirable results such as arbitrary spikes in the relative
7. The term “middistribution function” has been coined by Emanuel Parzen (see, for example, Parzen

[2004]), but the same concept also appears in various other sources under different names. For
background information and references, see the help file of user command distplot (Cox 1998).
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density estimate. A solution to this second issue is to break ties randomly and hence
smooth out the step sizes of the CDF across tied observations. These broken relative
ranks (including midrank adjustment) can be written as

r̂i =
1

WR

∑
j∈R

wj1(Yj ≤ Xi)− P̂R(Y = Xi)
P̂D(X = Xi) + 0.5wi − δi

P̂D(X = Xi)
(13)

where P̂D(X = y) is the relative frequency of outcome y in FX|D and δi is the relative
rank of Xi among all ties of Xi in FX|D when ties are broken randomly. Let w(i)

1 , . . . , w
(i)
Ki

be the randomly ordered set of weights from the observations in FX|D that are equal to
Xi (including observation i), where Ki is the size of the set (the order is kept stable across
observations, that is, w(i)

k = w
(j)
k if Xi = Xj). Let ki be the position of observation i in

this set. The expression for δi then is

δi =
1∑Ki

k=1 w
(i)
k

ki∑
k=1

w
(i)
k

which simplifies to δi = ki/Ki if the weights are constant.8

To obtain broken relative ranks without midrank adjustment, set 0.5wi in (13) to 0.
Whereas the midrank adjustment can have a strong effect on results if relative ranks
are computed without breaking ties [(11) versus (12)], the adjustment is only of minor
importance in (13) because breaking ties makes the individual step sizes small (unless
there is large variation in weights).

For location-adjusted relative ranks, the same equations can be applied to appropri-
ately transformed input variables. For example, to compute the relative ranks based on
a location-adjusted reference distribution, use

Ỹ = Y − µ̂Y |R + µ̂X|D

instead of Y in the above equations, where µ̂Y |R is the median or mean of Y in subsample
R and µ̂X|D is the median or mean of X in subsample D. Location, scale, multiplicative,
or logarithmic adjustments can be handled analogously.

In contrast, for shape adjustment, one of the distributions has to be swapped. For
example, to compute the relative ranks based on a shape-adjusted comparison distri-
bution (that is, a comparison distribution that has the same shape as the reference
distribution but a different location), use

X̃ = Y − µ̂Y |R + µ̂X|D

instead of X, and then set the comparison sample to D̃ = R instead of D.

8. Because of the random ordering, repeated computation of (13) will lead to slightly different results
for the relative density and other estimates unless the weights are constant (or unless there are no
ties). One (arbitrary) solution to enforce stable results is to sort the observations within ties in
(ascending or descending) order of the weights.
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3.3 The relative PDF

3.3.1 Kernel density estimation for continuous data

Estimation of the relative density can be implemented by applying a univariate den-
sity estimator to the relative ranks [preferably as defined in (13)]. Compared with a
standard density estimation problem, there are two specific complications that should
be accounted for. First, the support of the relative density is bounded at 0 and 1.
Standard density estimators, however, are designed such that they smoothly approach
0 outside the support of the observed data, which leads to an underestimation of the
density at the boundaries. Second, automatic bandwidth selection should be adapted
to take account of the specific nature of relative data.

Given an evaluation point r ∈ [0, 1], a kernel density estimate of the relative density
can be written as

ĝ(r) =
1

WD

∑
i∈D

wiKc(r, r̂i, h) (14)

where Kc(r, r̂i, h) is a boundary-corrected kernel function with bandwidth h. For ex-
ample, the renormalization technique uses

Kc(r, r̂i, h) =
1

h
K

(
r − r̂i
h

)
c(r, h) with c(r, h) =

{∫ (1−r)/h

(0−r)/h

K(x) dx

}−1

where K(x) is a standard kernel function such as the Gaussian kernel. The logic of
the procedure is to rescale the density estimate by the inverse of the area of the kernel
function that lies within the support of r. For some alternative boundary correction
techniques, see Jann (2007).

The bandwidth h that determines the degree of smoothing (larger values for h lead
to a smoother PDF) can either be set manually or be determined automatically from the
data. Various suggestions for automatic bandwidth selectors exist in the literature, some
based on crude rules of thumb and some employing more sophisticated procedures (see
Jann [2007] for an overview of some of the suggestions). For relative density estimation,
these standard bandwidth selectors should be adapted to take account of the specific
nature of relative data. Suggestions for appropriate modifications are given by Ćwik and
Mielniczuk (1993). The reldist command below supports several automatic bandwidth
selectors, but we refrain from discussing their details here.9

9. Estimator (14) uses a global bandwidth that is constant across observations. A popular alternative
is the adaptive estimator based on a varying bandwidth depending on the local density of the
data (Abramson 1982). For the adaptive estimator, replace h by hi = h ×

√
g̃0/ĝ0(r̂i) where

ĝ0(r̂i) is an initial (constant-bandwidth) density estimate and g̃0 is the geometric mean of ĝ0(r̂i)
over all observations in D. The procedure may be iterated several times (each time using the
density estimate from the last step to determine the new hi), but typically additional iterations do
not change the estimate much. The adaptive estimator is attractive for regular density estimation
because there is a one-to-one relation between the density and the local sample size. For the relative
density, however, the local sample size is constant for one of the groups (the reference group), such
that the adaptive estimator appears less convincing.
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3.3.2 Histogram density estimation

A complement to kernel density estimation is to obtain a histogram of the relative
density. Let (a, b ] be an interval on the support of r. The histogram density estimate
for that interval can then be obtained as

ĝ(a, b) =
P̂D(a < r ≤ b)

b− a
=

1

WD

∑
i∈D

wi
1(a < r̂i ≤ b)

b− a

(with a modification in the case of a = 0 such that the interval includes the lower
bound). A convenient setup is to split the support of r into K evenly sized bins defining
the intervals (0, 1

K ], ( 1
K , 2

K ], . . . , (k−1
K , k

K ], . . . , (K−1
K , 1], such that each bin covers 1

K th
of the reference distribution.

The histogram density has an intuitive interpretation. For example, a value of 2
means that the fraction of the comparison distribution that falls into the bin is twice
as large as the fraction of the reference distribution. In other words, the comparison
distribution is overrepresented in the bin by a factor of 2. A value of 0.5 means that the
proportion of the comparison distribution is only half the proportion of the reference
distribution. A kernel density estimate of the relative ranks has, in principle, the same
meaning (it shows the relative overrepresentation or underrepresentation multiplier at
each level of r), but the explicit binning may make the histogram more easy to interpret.

3.3.3 Discrete relative density for categorical data

For categorical data, the relative density can be computed directly from the relative
probabilities across the levels of the data. Without loss of generality, let k = 1, . . . ,K
be these levels. The relative density for level k is then estimated as

ĝk =
P̂D(X = k)

P̂R(Y = k)

with

P̂D(X = k) =
1

WD

∑
i∈D

wi1(Xi = k) and P̂R(Y = k) =
1

WR

∑
i∈R

wi1(Yi = k)

Discrete relative density ĝk is well defined only for levels k that exist in the reference
distribution.

When plotting the relative density for categorical data, ĝk can be plotted against
P̂R(Y ≤ k) using a step function, including an additional point at coordinate (ĝ1, 0)
for the first step. Alternatively, the density can be plotted using a histogram with bar
widths equal to P̂R(Y = k) and bar midpoints equal to P̂R(Y ≤ k)− P̂R(Y = k)/2.
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3.4 Divergence

3.4.1 Continuous data

To estimate the χ2, Kullback–Leibler, and dissimilarity measures, obtain an estimate of
the relative density over a grid of evaluation points and then “integrate” the result. For
example, let rk = k/K − 1/(2K), k = 1, . . . ,K, be a regular grid of evaluation points
spanning the support of r from 1/(2K) to 1 − 1/(2K). The divergence measures can
then be estimated as

χ̂2 =
1

K

K∑
k=1

{ĝ(rk)− 1}2, K̂L =
1

K

K∑
k=1

ĝ(rk) ln{ĝ(rk)} , T̂VD =
1

2K

K∑
k=1

|ĝ(rk)− 1|

(15)
where ĝ(rk) is the density estimate at evaluation point rk (that is, the integral is ap-
proximated by using a rectangle of width 1/K around each evaluation point). The
size of the evaluation grid should not matter too much for the results, as long as it is
sufficiently dense. However, results may strongly depend on the bandwidth used for
density estimation. Divergence measures will typically increase with a decrease in the
bandwidth. Stated differently, more smoothing leads to lower divergence. In general,
TVD is less sensitive in this regard than the other two measures.

An alternative is to obtain the divergence measures from a histogram of the relative
density. Assuming K evenly sized bins covering the whole range of r, the histogram-
based estimates of the divergence measures can be obtained using (15) with ĝ(rk) re-
placed by the histogram estimate of the relative density in bin k. Results may strongly
depend on the number of bins.

3.4.2 Categorical data

Divergence measures for categorical data can be defined in terms of the categorical
relative density as introduced above. Let k = 1, . . . ,K be the levels of the data. The
divergence estimates then are

χ̂2 =

K∑
k=1

(
p̂Dk − p̂Rk

)2
p̂Rk

, K̂L =

K∑
k=1

p̂Dk ln

(
p̂Dk
p̂Rk

)
, T̂VD =

K∑
k=1

1

2

∣∣p̂Dk − p̂Rk
∣∣

where p̂Dk = P̂D(X = k) and p̂Rk = P̂R(Y = k).
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3.5 MRP

For the polarization indices, first compute location-adjusted relative ranks using one of
the above methods, where the median is used as the location measure. Let ̂̃ri be these
location-adjusted ranks. Whether we transform the reference data or the comparison
data does not matter. An estimate for MRP can then be obtained as

M̂RP =

(
4

WD

∑
i∈D

wi

∣∣∣̂̃ri − 0.5
∣∣∣)− 1

Furthermore, using

L̂RP =

{
8

WD

∑
i∈D

wi

∣∣∣̂̃ri − 0.5
∣∣∣1(̂̃ri < 0.5)

}
− 1

ÛRP =

{
8

WD

∑
i∈D

wi

∣∣∣̂̃ri − 0.5
∣∣∣1(̂̃ri > 0.5)

}
− 1

as estimates for LRP and URP ensures that

M̂RP =
L̂RP + ÛRP

2

Note that, in theory, the MRP of FX|D with respect to FY |R is equal to −MRP of FY |R
with respect to FX|D. In practice, however, heaping in the data may cause the median
of the location-adjusted relative ranks to differ from 0.5 and hence cause this relation
to be violated. Applying middistribution correction and breaking ties when computing
the ranks typically reduces the discrepancy but may not entirely remove it.

3.6 Covariate balancing

Assume that D and R are distinct and exhaustive, such that D is an indicator for the
comparison group (D = 1) versus the reference group (D = 0). A simple approach for
covariate adjustment by reweighting is to run a logistic regression of D on Z and obtain
predictions p̂i = P̂ (D = 1|Z = Zi) from the model. To reweight the reference group,
define adjusted weights

w̃i =

{
wi

p̂i

1−p̂i
cR if i ∈ R

wi else

where cR = WR/
∑

i∈R wi
p̂i

1−p̂i
is a scaling factor ensuring that the group size (that is,

its sum of weights) remains constant, and use these weights in all computations instead
of the original weights. Likewise, to reweight the comparison group, define the adjusted
weights as

w̃i =

{
wi

1−p̂i

p̂i
cD if i ∈ D

wi else
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with cD = WD/
∑

i∈D wi
1−p̂i

p̂i
. The described procedure is equivalent to what is known

as “inverse probability weighing” (IPW) in the causal inference literature (see [TE] tef-
fects ipw). Any other approach to obtain balancing weights may do as well. See, for
example, kmatch (Jann 2017) for techniques such as entropy balancing or matching.

4 The reldist command
The command reldist implements the methods discussed above. The moremata (Jann
2005) package is required. For installation, type

. ssc install reldist, replace

. ssc install moremata, replace

4.1 Syntax

4.1.1 Estimation

The command reldist has two syntaxes. Use syntax 1 if you want to analyze the
relative distribution of a single variable between two groups or subpopulations. Syntax 2
is for comparing two variables within a single sample.

Syntax 1 (two-sample relative distribution):

reldist subcmd varname
[
if
] [

in
] [

weight
]
, by(groupvar)

[
options

]
where groupvar identifies two groups to be compared.

Syntax 2 (paired relative distribution):

reldist subcmd varname refvar
[
if
] [

in
] [

weight
] [

, options
]

where varname and refvar specify two variables to be compared.
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In both cases, fweights, iweights, and pweights are allowed (see [U] 11.1.6 weight),
and subcmd can be

pdf to estimate the PDF of the relative distribution, possibly in-
cluding a histogram of the relative density

histogram to estimate a histogram of the relative density
cdf to estimate the relative CDF (equivalent to a so-called

probability–probability plot)
divergence to estimate the Kullback–Leibler divergence (entropy), the

χ2 divergence, or the dissimilarity index (TVD) of the relative
distribution

mrp to estimate the MRP as well as its decomposition into an LRP
and URP

summarize to estimate summary statistics such as the mean or median
of the relative ranks and, optionally, store the relative ranks
in a new variable

4.1.2 Creating a graph after estimation

After applying reldist pdf, reldist histogram, or reldist cdf, the command
reldist graph can be used to draw a graph of the results. The syntax is

reldist graph
[
, graph options

]
An alternative is to generate the graph directly using option graph() with reldist
pdf, reldist histogram, or reldist cdf.

4.1.3 Storing IFs after estimation

The command predict can be applied after reldist to generate the IFs of the estimated
parameters (one variable per parameter). The syntax is

predict
{

stub* | newvarlist
} [

if
] [

in
] [

, scores density options
]

where stub specifies a common prefix for the names of the generated variables; alterna-
tively, newvarlist specifies an explicit list of variable names to be used. Option scores
is allowed for compatibility reasons; it does not do anything. density options can be
used to modify how auxiliary densities are estimated during the computation of the IFs;
see page 909 for a description of available density options (option boundary() will have
no effect because unbounded support is assumed for auxiliary densities).

The command total (see [R] total) can be applied to the stored IFs to replicate the
standard errors reported by reldist.



906 Relative distribution analysis in Stata

4.2 Options for reldist

4.2.1 Main options

by(groupvar) specifies a binary variable that identifies the two groups to be compared.
By default, the group with the lower value will be used as the reference group. by()
is required in syntax 1 and not allowed in syntax 2.

swap reverses the order of the groups identified by by(). swap is only allowed in syntax 1.

pooled uses the pooled distribution across both groups as the reference distribution.
pooled is only allowed in syntax 1.

balance(spec) balances covariate distributions between the comparison group and the
reference group using reweighting. balance() is only allowed in syntax 1. The
syntax of spec is[
method:

]
varlist

[
, options

]
where method is either ipw for inverse probability weighting based on logistic regres-
sion (the default) or eb for entropy balancing (using mm ebal() from moremata),
varlist specifies the list of covariates to be balanced, and options are as follows:

reference reweights the reference group. The default is to reweight the comparison
group. Option pooled is not allowed with balance(varlist, reference).

contrast compares the balanced distribution with the unbalanced distribution. Use
this option to see how the balancing changes the distribution. If contrast is
specified together with reference, the balanced reference distribution will be
used as the comparison distribution. If contrast is specified without reference,
the balanced comparison distribution will be used as the reference distribution.

logit options are options to be passed through to logit (see [R] logit). logit options
are only allowed if method is ipw.

btolerance(#), where # ≥ 0, specifies the tolerance for the entropy balancing
algorithm. The default is btolerance(1e-5). A warning message is displayed if
a balancing solution is not within the specified tolerance. btolerance() is only
allowed if method is eb.

noisily displays the output of the balancing procedure.

generate(newvar) stores the balancing weights in variable newvar. This is useful
if you want to check whether covariates have been successfully balanced.

adjust(spec) applies location, scale, and shape adjustments to the comparison and
reference distributions. adjust() is not allowed with reldist mrp. The syntax of
spec is

adjust
[
, options

]
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where adjust specifies the desired adjustments. adjust may contain any combination
of at most two of the following keywords:

location adjust location
scale adjust scale
shape adjust shape

By default, the specified adjustments are applied to the comparison distribution.
However, a colon may be included in adjust to distinguish between distributions:
Keywords before the colon affect the comparison distribution; keywords after the
colon affect the reference distribution. For example, type adjust(location scale)
to adjust the location and scale of the comparison distribution. Likewise, you could
type adjust(:location scale) to adjust the reference distribution. Furthermore,
adjust(location : shape) would adjust the location of the comparison distribution
and the shape of the reference distribution. options are as follows:

mean uses the mean for the location adjustment. The default is to use the median.

sd uses the standard deviation for the scale adjustment. The default is to use the
IQR.

multiplicative uses a multiplicative adjustment instead of an additive adjustment.
adjust may only contain one keyword in this case, either location or shape. An
error will be returned if the location ratio between the comparison distribution
and the reference distribution is not strictly positive.

logarithmic performs the adjustments on logarithmically transformed data. An
error will be returned if the data are not strictly positive.

rank options specify the details about the computation of relative ranks. These options
are irrelevant for reldist histogram, reldist cdf, and reldist divergence un-
less option pdf is specified and for reldist pdf if discrete or categorical is
specified. The options are as follows:

nobreak changes how the relative ranks are computed in case of ties. By default,
reldist breaks ties randomly for comparison values that have ties in the refer-
ence distribution (in ascending order of weights if weights have been specified).
This leads to improved results if there is heaping in the data. Specify nobreak
to omit breaking ties.

nomid changes how the relative ranks are computed in case of ties. By default,
reldist uses midpoints of the steps in the cumulative distribution for comparison
values that have ties in the reference distribution. This ensures that the average
relative rank is equal to 0.5 if the comparison and reference distributions are
identical. Specify nomid to assign relative ranks based on full steps in the CDF.

descending sorts tied observations in descending order of weights. The default is to
use ascending sort order. Option descending has no effect if nobreak is specified
or if there are no weights.
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nostable breaks ties randomly (within unique values of weights). The default is to
break the ties in the sort order of the data (within unique values of weights).
Option nostable has no effect on the results reported by reldist. It may,
however, affect the ranks stored by option generate() or the IFs stored by
predict (unless option nobreak is specified).

replace allows the user to replace existing variables. This is relevant for generate()
with reldist summarize and generate() in balance().

4.2.2 Additional options for reldist pdf

n(#) sets the number of evaluation points for which the PDF is to be computed. A
regular grid of # evaluation points between 0 and 1 will be used. The default is
n(101) (unless option discrete or categorical is specified, in which case n() has
no default). Only one of n(), at(), and atx is allowed.

at(numlist |matname) specifies a custom grid of evaluation points between 0 and 1
by providing either a numlist (see [U] 11.1.8 numlist) or the name of a matrix
containing the values (the values will be taken from the first row or the first column
of the matrix, depending on which is larger). Only one of n(), at(), and atx is
allowed.

atx[(comparison | reference |numlist |matname)] specified without argument
causes the relative PDF to be evaluated at each distinct outcome value that exists
in the data (possibly after applying adjust()), instead of using a regular evalu-
ation grid on the probability scale. All outcome values across both distributions
will be considered. To restrict the evaluation points to outcome values from the
comparison distribution or the reference distribution, specify atx(comparison) or
atx(reference), respectively. Alternatively, specify a grid of custom values by pro-
viding either a numlist (see [U] 11.1.8 numlist) or the name of a matrix containing
the values (the values will be taken from the first row or the first column of the
matrix, depending on which is larger). Only one of n(), at(), and atx is allowed.

discrete causes the data to be treated as discrete. The relative PDF will then be
evaluated at each level of the data as the ratio of the level’s frequency between the
comparison distribution and the reference distribution instead of using kernel density
estimation, and the result will be displayed as a step function. If option n() or at()
is specified, the step function will be evaluated at the points of the corresponding
probability grid instead of returning the relative density for each outcome level.
Options nobreak, nomid, descending, and density options have no effect if discrete
is specified. Furthermore, options histogram and adjust() are not allowed.

categorical is like discrete but additionally requests that the data only contain
positive integers. Factor-variable notation will be used to label the coefficient in the
output table.

histogram[(#)] computes a histogram in addition to the PDF, where # is the number
of bins. If # is omitted, 10 bins will be used.
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alt uses an alternative estimation method for the histogram. See the histogram options
below.

density options set the details of kernel density estimation. The options are as follows:

bwidth(# |method
[
, nord

]
) determines the bandwidth of the kernel, the halfwidth

of the estimation window around each evaluation point. Use bwidth(#), # > 0,
to set the bandwidth to a specific value. Alternatively, type
bwidth(method) to choose an automatic bandwidth selection method. Choices
are silverman (optimal of Silverman), normalscale (normal scale rule),
oversmoothed (oversmoothed rule), sjpi (Sheather–Jones solve-the-equation
plugin), dpi[(#)] (Sheather–Jones direct plugin estimate, where # specifies the
number of stages of functional estimation; the default is 2), or isj (diffusion es-
timator bandwidth). The default is bw(sjpi). See Jann (2007) for information
on silverman, normalscale, oversmoothed, sjpi, and dpi. For isj, see Botev,
Grotowski, and Kroese (2010).

By default, if estimating the density of the relative data, all bandwidth selectors
include a correction for relative data based on Ćwik and Mielniczuk (1993).
Specify suboption nord to omit the correction.

bwadjust(#) multiplies the bandwidth by #, where # > 0. The default is
bwadjust(1).

boundary(method) sets the type of boundary correction method. Choices are
renorm (renormalization method; the default), reflect (reflection method), or
lc (linear combination technique). See Jann (2007) for details on boundary
correction methods.

adaptive(#) specifies the number of iterations used by the adaptive kernel density
estimator. The default is adaptive(0) (nonadaptive density estimator).

kernel(kernel) specifies the kernel function to be used. kernel may be one of
epanechnikov (Epanechnikov kernel function), epan2 (alternative Epanechnikov
kernel function), biweight (biweight kernel function), triweight (triweight ker-
nel function), cosine (cosine trace), gaussian (Gaussian kernel function),
parzen (Parzen kernel function), rectangle (rectangle kernel function), or
triangle (triangle kernel function). The default is kernel(gaussian).

napprox(#) specifies the grid size used by the binned approximation density estima-
tor (and by the data-driven bandwidth selectors). The default is napprox(512).

exact causes the exact kernel density estimator to be used instead of the binned
approximation estimator. The exact estimator can be slow in large datasets if
the density is to be evaluated at many points.

graph[(graph options)] displays the results in a graph. The coefficients table will be
suppressed in this case (unless option table is specified). Alternatively, use reldist
graph to display the graph after estimation.
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ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e(ogrid) and will be used by graph option
olabel() to determine the positions of outcome labels. Type noogrid to omit the
computation of the grid (no outcome labels will then be available for the graph).
Option ogrid() is only allowed if the relative density is computed with respect to
an evaluation grid on the probability scale. If the relative density is evaluated with
respect to specific outcome values (for example, if atx is specified), the outcome
labels will be obtained from the information stored in e(at).

4.2.3 Additional options for reldist histogram

n(#) specifies the number of histogram bars. The reference distribution will be divided
into # bins of equal width. That is, each bin will cover 1/#th of the reference
distribution. The default is n(10).

alt uses an alternative estimation method. The default method obtains the relative
histogram by computing the empirical CDF of both distributions at all values that
exist in the data (across both distributions). The alternative method obtains the
relative histogram based on the empirical CDF of the relative ranks. In both cases, if
necessary, linear interpolation will be used to map the relative CDF to the evaluation
points.

discrete causes the data to be treated as discrete. The relative density will then be
evaluated at each level of the data as the ratio of the level’s frequency between
the two distributions, and the width of bars will be proportional to the reference
distribution. Option alt has no effect and options n() and adjust() are not allowed
if discrete is specified.

categorical is like discrete but additionally requests that the data only contain
positive integers. Factor-variables notation will be used to label the coefficient in
the output table.

graph[(graph options)] displays the results in a graph. The coefficients table will be
suppressed in this case (unless option table is specified). Alternatively, use reldist
graph to display the graph after estimation.

ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e(ogrid) and will be used by graph option
olabel() to determine the positions of outcome labels. Type noogrid to omit the
computation of the grid (no outcome labels will then be available for the graph).
ogrid() is not allowed together with discrete or categorical.

4.2.4 Additional options for reldist cdf

n(#) sets the number of evaluation points for which the CDF is to be computed. A
regular grid of # evaluation points between 0 and 1 will be used. The default is
n(101) (unless option discrete or categorical is specified, in which case n() has
no default). Only one of n(), at(), and atx is allowed.
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at(numlist |matname) specifies a custom grid of evaluation points between 0 and 1
by providing either a numlist (see [U] 11.1.8 numlist) or the name of a matrix
containing the values (the values will be taken from the first row or the first column
of the matrix, depending on which is larger). Only one of n(), at(), and atx is
allowed.

atx[(comparison | reference |numlist |matname)] specified without argument
causes the relative CDF to be evaluated at each distinct outcome value that exists
in the data (possibly after applying adjust()), instead of using a regular evalua-
tion grid on the probability scale. All outcome values across both distributions will
be considered. To restrict the evaluation points to outcome values from the com-
parison distribution or from the reference distribution, specify atx(comparison) or
atx(reference), respectively. Alternatively, specify a grid of custom values by pro-
viding either a numlist (see [U] 11.1.8 numlist) or the name of a matrix containing
the values (the values will be taken from the first row or the first column of the
matrix, depending on which is larger). Only one of n(), at(), and atx is allowed.

alt uses an alternative estimation method. The default method obtains the relative
CDF by computing the empirical CDF of both distributions at all values that exist
in the data (across both distributions). The alternative method obtains the relative
CDF based on the empirical CDF of the relative ranks. In both cases, if necessary,
linear interpolation will be used to map the relative CDF to the evaluation points.

discrete causes the data to be treated as discrete. The relative CDF will then be
evaluated at each observed outcome value instead of using an evaluation grid on
the probability scale. Option discrete leads to the same result as specifying atx.
Option adjust() is not allowed if discrete is specified.

categorical is like discrete but additionally requests that the data only contain
positive integers. Factor-variables notation will be used to label the coefficient in
the output table.

graph[(graph options)] displays the results in a graph. The coefficients table will be
suppressed in this case (unless option table is specified). Alternatively, use reldist
graph to display the graph after estimation.

ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e(ogrid) and will be used by graph option
olabel() to determine the positions of outcome labels. Type noogrid to omit the
computation of the grid (no outcome labels will then be available for the graph).
Option ogrid() is only allowed if the relative CDF is computed with respect to an
evaluation grid on the probability scale. If the relative CDF is evaluated with respect
to specific outcome values (for example, if atx is specified), the outcome labels will
be obtained from the information stored in e(at).
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4.2.5 Additional options for reldist divergence

over(overvar) computes results for each subpopulation defined by the values of overvar.

entropy or kl computes the Kullback–Leibler divergence (entropy) of the relative dis-
tribution. This is the default.

chi2 or chisquared computes the χ2 divergence of the relative distribution.

tvd or dissimilarity computes the dissimilarity index (TVD) of the relative distribu-
tion.

all computes all supported divergence measures. all is equivalent to entropy chi2
tvd.

n(#) specifies the number of histogram bars or, if option pdf is specified, the number
of kernel density evaluation points used to estimate the relative distribution. The
default is n(20) or, if option pdf is specified, n(100).

alt uses an alternative estimation method for the histogram. See the histogram options
above.

pdf computes the divergence measures based on a kernel density estimate instead of a
histogram estimate.

density options set the details of the kernel density estimation. This is only relevant if
option pdf is specified. See page 909 for available options.

discrete causes the data to be treated as discrete. The relative density will then be
evaluated at each level of the data as the ratio of the level’s frequency between the
two distributions. Option alt has no effect, and options n(), pdf, and adjust()
are not allowed if discrete is specified.

categorical is like discrete but additionally requests that the data only contain
positive integers.

compare[(options)] estimates divergence measures for two models of the relative dis-
tribution, a main model and an alternative model, and also reports the difference
between the two variants. options are balance() and adjust() as described above.
balance() and adjust() specified as main options are applied to the main model;
balance() and adjust() specified within compare() are applied to the alternative
model.

4.2.6 Additional options for reldist mrp

over(overvar) computes results for each subpopulation defined by the values of overvar.

multiplicative applies multiplicative location adjustment. The default is to use ad-
ditive adjustment. Only one of logarithmic and multiplicative is allowed.

logarithmic causes the location (and, optionally, scale) adjustment to be performed
on the logarithmic scale. Only one of logarithmic and multiplicative is allowed.
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scale[(sd)] adjusts the scale of the data before computing the polarization indices.
If scale is specified without argument, the IQR is used; that is, the scale of the
data will be adjusted such that the IQR is the same in both distributions. Specify
scale(sd) to use the standard deviation instead of the IQR. scale is not allowed if
multiplicative is specified.

4.2.7 Additional options for reldist summarize

over(overvar) computes results for each subpopulation defined by the values of overvar.

statistics(statnames) specifies a space-separated list of summary statistics to be
reported. The default is statistics(mean). The following summary statistics are
supported:

mean mean
variance variance
sd standard deviation
median median; equivalent to p50
p# #th percentile, where # is an integer between 1 and 99
iqr interquartile range (p75–p25)

generate(newvar) stores the relative ranks (based on adjusted data) in variable newvar.
Depending on adjust(), different observations may be filled in.

4.2.8 Variance estimation options

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level (see [R] level).

vce(vcetype) determines how standard errors and confidence intervals are computed.
vcetype may be

analytic
[
, density options

]
cluster clustvar

[
, density options

]
svy

[
svy vcetype

] [
, svy options density options

]
bootstrap

[
, bootstrap options

]
jackknife

[
, jackknife options

]
The default is vce(analytic), which computes the standard errors based on IFs.
Likewise, vce(cluster clustvar) computes IF-based standard errors allowing for
intragroup correlation, where clustvar specifies to which group each observation be-
longs. In both cases, density options specify how auxiliary densities are estimated
during the computation of the IFs (see page 909 for details; option boundary() will
have no effect because unbounded support is assumed for auxiliary densities).
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vce(svy) computes standard errors, taking the survey design as set by svyset (see
[SVY] svyset) into account. The syntax is equivalent to the syntax of the svy prefix
command (see [SVY] svy); that is, vce(svy) is reldist’s way to support the svy
prefix. If svy vcetype is set to linearized, the standard errors are estimated based
on IFs; use density options to specify the details of auxiliary density estimation in
this case. For a svy vcetype other than linearized, density options are not allowed.

vce(bootstrap) and vce(jackknife) compute standard errors using bootstrap or
jackknife, respectively (see [R] bootstrap or [R] jackknife); see [R] vce option.

If a replication technique is used for standard error estimation (that is,
vce(bootstrap), vce(jackknife), or vce(svy) with svy vcetype other than
linearized), the bandwidth used by reldist pdf will be held fixed across repli-
cations (that is, if relevant, the bandwidth will be determined upfront and then
held constant). If you want to repeat the bandwidth search in each replication, use
bootstrap, jackknife, or svy as a prefix command.

Simulation results suggest that the IF-based standard errors work well in most sit-
uations. They may be severely biased, however, if there is heaping in the data.
Replication-based techniques may yield more valid results in this case.

nose prevents reldist from computing standard errors. This saves computer time.

4.2.9 Reporting options

citransform reports transformed confidence intervals depending on the type of reported
statistics (log transform for PDF and histogram density, logit transform for CDF
and descriptive statistics, and inverse hyperbolic tangent transform for polarization
indices). citransform only has an effect in Stata 15 or newer.

noheader suppresses the output header.[
no
]
table controls the output table containing the estimated coefficients. notable

suppresses display of the table; table enforces display of the table if option graph
has been specified.

display options are standard reporting options such as cformat() or coeflegend; see
the Reporting options in [R] Estimation options.

4.3 Options for reldist graph

4.3.1 Main graph options

refline(line options) specifies options to affect the rendition of the parity line. See
[G] line options.

norefline suppresses the parity line.
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4.3.2 Additional options after reldist pdf

cline options affect the rendition of the PDF line. See [G] cline options.

histopts(options) specifies options to affect the rendition of the histogram bars (if a
histogram was computed) and the corresponding confidence spikes. options are as
follows:

barlook options affect the rendition of the histogram bars. See [G] barlook options.

ciopts(rcap options) specifies options to affect the rendition of the confidence spikes
of the histogram bars. See [G] rcap options.

noci omits the confidence spikes of the histogram bars.

nohistogram omits the histogram bars.

4.3.3 Additional options after reldist histogram

barlook options affect the rendition of the histogram bars. See [G] barlook options.

4.3.4 Additional options after reldist cdf

noorigin prevents adding a (0, 0) coordinate to the plotted line. If the first X coordinate
of the CDF is larger than 0 and the range of the CDF has not been restricted by at()
or atx, reldist graph will automatically add a (0, 0) coordinate to the plot. Type
noorigin to override this behavior.

cline options affect the rendition of the CDF line. See [G] cline options.

4.3.5 Confidence intervals

level(#) specifies the confidence level, as a percentage, for confidence intervals.
level() and ci() are not allowed together.

citransform plots transformed confidence intervals depending on the type of reported
statistic (log transform for PDF and histogram density, and logit transform for CDF).

ci(name) obtains the confidence intervals from e(name) instead of computing them
from e(V). e(name) must contain two rows and the same number of columns as
e(b). For example, after bootstrap estimation, you could type ci(ci percentile)
to plot percentile confidence intervals. ci() and level() are not allowed together.

ciopts(options) specifies options to affect the rendition of the confidence intervals. See
[G] area options, or after reldist histogram, see [G] rcap options. Use option
recast() to change the plot type used for confidence intervals. For example, type
ciopts(recast(rline)) to use two lines instead of an area.

noci omits the confidence intervals.
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4.3.6 Outcome labels

[y]olabel[(spec)] adds outcome labels on a secondary axis. olabel() adds outcome
labels for the reference distribution; yolabel() adds outcome labels for the com-
parison distribution (only allowed after reldist cdf). The syntax of spec is[
## |numlist

] [
,
[
noprune | prune(mindist)

]
at format(%fmt)

suboptions
]

## requests that (approximately) # outcome labels be added at (approximately)
evenly spaced positions; the default is #6. Alternatively, specify numlist to gen-
erate labels for given outcome values.

prune(mindist) requests that an outcome label (but not its tick) be omitted if its
distance to the preceding label is less than mindist (an exception are labels that
have the same position; in such a case, the largest label will be printed). The
default is prune(0.1); type prune(0) or noprune to print labels at all positions.
The difference between prune(0) and noprune is that prune(0) will only print
one label per position, whereas noprune prints all labels, including labels that
have the same position.

at causes numlist to be interpreted as a list of probabilities for which outcome labels
are to be determined. Labels obtained this way will not be pruned.

format(%fmt) specifies the display format for the outcome labels. The default is
format(%6.0g). See [D] format for available formats.

suboptions are as described in [G] axis label options.

Option [y]olabel may be repeated. Use suboptions add and custom to generate
multiple sets of labels with different rendering; see [G] axis label options.

[y]otick(spec) adds outcome ticks on a secondary axis. otick() adds outcome ticks
for the reference distribution; yotick() adds outcome ticks for the comparison dis-
tribution (only allowed after reldist cdf). The syntax of spec is

numlist
[
, suboptions

]
where numlist specifies the outcome values for which ticks are to be generated and
suboptions are as described in [G] axis label options. Option [y]otick() may be
repeated. Use suboptions add and custom to generate multiple sets of ticks with
different rendering; see [G] axis label options.

[y]oline(spec) draws added lines at the positions of the specified outcome values on a
secondary axis. oline() adds outcome lines for the reference distribution; yoline()
adds outcome lines for the comparison distribution (only allowed after reldist
cdf). The syntax of spec is

numlist
[
, suboptions

]
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where numlist specifies the outcome values for which added lines be generated and
suboptions are as described in [G] added line options. Option [y]oline() may be
repeated to draw multiple sets of lines with different rendering.

[y]otitle(tinfo) provides a title for the outcome scale axis; see [G] title options.
otitle() is for the reference distribution; yotitle() is for the comparison dis-
tribution (only allowed after reldist cdf).

Technical note: The positions of the outcome labels, ticks, or lines are computed from
information stored by reldist in e(), either from the quantiles stored in e(ogrid)
or from the values stored in e(at), depending on context. There is an undocumented
command called reldist olabel that can be used to compute the positions after the
relative distribution has been estimated. Use this command, for example, if you want
to draw a custom graph from the stored results without applying reldist graph. The
syntax is

reldist olabel
[
## | numlist

] [
,
[
noprune | prune(mindist)

]
at format(%fmt)

tick(numlist) line(numlist) y
]

where ## or numlist specifies the (number of) values for which labels are to be gen-
erated, prune() determines the pruning (see above), at changes the meaning of the
main numlist (see above), format() specifies the display format for the labels, tick()
specifies values for which ticks are to be generated, line() specifies values for which
added lines are to be generated, and y requests outcome labels for the Y axis of the
relative CDF (only allowed after reldist cdf). reldist olabel stores the following
in r():

Macros
r(label) label specification for use in an xlabel() option
r(label x) expanded and sorted numlist
r(tick) tick specification for use in an xtick() option
r(tick x) expanded and sorted numlist from tick()
r(line) line specification for use in an xline() option
r(line x) expanded and sorted numlist from line()

4.3.7 General graph options

addplot(plot) provides a way to add other plots to the generated graph. See [G] ad-
dplot option.

twoway options are any options other than by() documented in [G] twoway options.

4.4 Stored results

reldist stores its results in e(), similar to official Stata’s estimation commands. See
the online documentation of reldist for details.
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5 Examples
5.1 Wage mobility in two eras

I illustrate some of the features of reldist by replicating an analysis of permanent wage
growth from Handcock and Morris (1999, chap. 8). The data cover wages of white males
from two cohorts of the National Longitudinal Survey, an “original” cohort started in
1966 and a “recent” cohort started in 1979. The variable of interest is the estimated
growth in permanent wages between age 16 and age 34 (see appendix C in Handcock
and Morris [1999]). The data further contain information on the achieved educational
level, and there is a variable providing sampling weights.10

. use nls
(NLS data from Handcock and Morris (1999))
. describe
Contains data from nls.dta
Observations: 3,937 NLS data from Handcock and

Morris (1999)
Variables: 4 15 Jun 2021 10:17

(_dta has notes)

Variable Storage Display Value
name type format label Variable label

cohort byte %15.0g cohort Cohort
chpermwage double %9.0g Estimated permanent log-wage gain

over 18-year period (age 16 to
34)

endeduc byte %9.0g Number of years of schooling
achieved in last wave

wgt double %9.0g Sampling weight

Sorted by:
. tabstat chpermwage [aw=wgt], by(cohort) stat(count mean sd med iqr) nototal
Summary for variables: chpermwage
Group variable: cohort (Cohort)

cohort N Mean SD p50 IQR

original (1966) 1834 1.085075 .4831473 1.063587 .5812791
recent (1979) 2103 .8782476 .6182544 .8535296 .8001999

Wage growth has been somewhat larger in the original cohort than in the recent
cohort. The outcome variable is defined as the difference in (constant dollar) log hourly
wages, so a value of 1.085 for the original cohort corresponds to a real wage growth of
{exp(1.085)−1}×100 = 196%. For the recent cohort, the average is only 0.878 (141%).
We can also see that inequality in wage growth has been more pronounced in the recent
cohort than in the original cohort because the standard deviation of log wage gains is
larger. Looking at the median and IQR instead of the mean and standard deviation
leads to qualitatively similar findings.

10. The data have been obtained from http: // www.stat.ucla.edu / ∼handcock / RelDist / Data / R /
RDBnls.RData.

http://www.stat.ucla.edu/~handcock/RelDist/Data/R/RDBnls.RData
http://www.stat.ucla.edu/~handcock/RelDist/Data/R/RDBnls.RData
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5.1.1 The relative CDF

The relative CDF of log wage gains between the recent cohort and the original cohort
can be obtained as follows, with the graph displayed in figure 0.2:

. reldist cdf chpermwage [pw = wgt], by(cohort) notable
Cumulative relative distribution Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834

. reldist graph, ciopts(fcolor(%50) lcolor(%0))
> xlabel(0(.1)1, grid) xtitle(Proportion of original cohort)
> ylabel(0(.1)1, grid angle(0)) ytitle(Proportion of recent cohort)
> olabel(-.5(.5)3) olabel(.2, at add custom tstyle(minor))
> yolabel(-.5(.5)3, angle(0))
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Figure 2

The horizontal axis of the graph corresponds to cumulative proportions of the orig-
inal cohort, and the vertical axis corresponds to cumulative proportions of the recent
cohort; both are ordered by the size of wage growth. Each point on the curve maps
quantiles of the two distributions. For example, the value of the 20% quantile in the
original cohort is equal to the 40% quantile in the recent cohort because the curve
crosses point (0.2, 0.4). The 20% quantile in the original cohort corresponds to a log
wage growth of 0.7118, that is, a wage growth of about 104%. In the original cohort,
20% experienced a wage growth of at most 104%; in the recent cohort, this proportion
increased to 40%. That is, relative to the original cohort, wage growth of 104% or less
is overrepresented by factor 2 in the recent cohort.

Comments on the used commands: Option notable has been applied to reldist
cdf to suppress the output table containing the CDF estimate. By default, the CDF is
evaluated at 101 points so that the table would fill a whole page. Here is an example of
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how the table looks if we use a reduced set of evaluation points; option at(0.1(0.1)0.9)
requests 9 evaluation points located at original cohort cumulative proportions 0.1, 0.2,
. . . , 0.9:

. reldist cdf chpermwage [pw = wgt], by(cohort) at(.1(.1).9)
Cumulative relative distribution Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834

chpermwage Coefficient Std. err. [95% conf. interval]

p1 .2692422 .0152101 .2394219 .2990626
p2 .40432 .01508 .3747547 .4338853
p3 .4973859 .0144863 .4689846 .5257871
p4 .5624279 .0140866 .5348102 .5900456
p5 .6321856 .0138188 .605093 .6592782
p6 .7017939 .0133607 .6755994 .7279883
p7 .769657 .0122928 .7455562 .7937579
p8 .8339943 .0112497 .8119385 .8560501
p9 .9139871 .0086089 .8971088 .9308653

(evaluation grid stored in e(at))

Coefficient p2 corresponds to cumulative proportion 0.2; as already discussed, the
value of the relative CDF is about 0.4 at this point.

Furthermore, the graph has been produced by first estimating the CDF using reldist
cdf and then plotting the result using reldist graph. We could also have drawn
the graph in a single step by including option graph() in the call to reldist cdf
(see examples farther down). Options olabel() and yolabel() have been applied
to reldist graph so that additional labels are included in the graph indicating the
approximate positions of specific outcome values. Labels are only printed if they are
not too close together; the suppressed labels are indicated by additional ticks (this
can be changed; see the description of the olabel() option above). By default, the
values provided in olabel() and yolabel() are interpreted as outcome values to be
included in the graph. However, if suboption at is specified, the provided values are
interpreted as cumulative proportions; in this case, reldist graph will include labels
for the corresponding quantiles in the graph. A second olabel() option has been used
in this way in the command above to print the outcome value of the 20% quantile of
the original cohort.11 Finally, option ciopts() has been added to make the confidence
area transparent. The options specified within ciopts() are standard options for area
plots; see [G] area options.

11. Suboption add has been specified in the second olabel() option so that the labels from both
olabel() options are printed, suboption custom has been specified to apply custom styling to the
second set of labels, and suboption tstyle(minor) selects the style. These are standard axis-labeling
suboptions; see [G] axis label options.
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5.1.2 The relative PDF

Relative overrepresentation and underrepresentation of the recent cohort with respect
to the distribution of wage growth in the original cohort can be seen more directly in
the relative PDF. The relative PDF can be obtained as follows, with the graph displayed
in figure 3:

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram notable
Relative density Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834

Bandwidth = .02710796

. reldist graph, ciopts(fcolor(%50) lcolor(%0))
> olabel(-.5(.5)3, grid) olabel(.2, at add custom tstyle(minor))
> xlabel(0(.1)1) xtitle(Proportion of original cohort)
> ylabel(0(.5)5, angle(0) grid) ytitle(Relative density)
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Figure 3

A relative density larger than 1 means the recent cohort is overrepresented at the
corresponding level of wage gains, and values lower than 1 mean the recent cohort
is underrepresented relative to the original cohort. We can now directly see that the
largest distributional differences are at the bottom of the distribution. The recent cohort
has a much larger density than the original cohort in regions below the 10% quantile
of the original cohort (overrepresentation factor of 1.5 to 4) and generally a larger
density below about the 20% quantile. At quantiles above that, the recent cohort is
underrepresented, although there is some evidence for a reduced discrepancy at the top
of the distribution (above the 80% quantile) or even a reversal at the very top (above,
say, the 97% quantile; although the confidence interval includes the parity line in this
region, which means that the relative density is not significantly different from 1).
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5.1.3 Location and shape decomposition

The difference in the distribution of wage gains between the original cohort and the
recent cohort may have various reasons. As indicated above, wage gains have been larger
on average in the original cohort than in the recent cohort, which may be because of a
general difference in economic growth between the two eras that affected all population
members similarly. In such a case, the distribution of wage gains in the recent cohort
would differ from the distribution in the original cohort only in its location. However, the
structure of wage gains might also have changed, for example, because of rising returns
on education, leading to more polarization of wage gains in the recent cohort. In this
case, the shape of the two distributions would also be different. To separate location
effects from effects of distributional differences net of location, so-called location and
shape decompositions can be useful. reldist does not perform such decompositions
directly, but it offers an option to obtain the relative distribution based on data that
have been location- or shape-adjusted.

The following commands produce a graph containing three panels, shown in fig-
ure 4.12 The first panel shows the overall (unadjusted) relative density (same as above).
The second panel shows how the relative density looks if we only allow a difference in
location but keep the distributional shape fixed. This is achieved by applying option
adjust(:shape scale). The option instructs reldist to adjust the original cohort
distribution such that it has the same shape and scale as the recent cohort distribution
but keeps its location. (Technically, this is implemented by applying a location shift
to the recent cohort distribution and then replacing the original cohort distribution by
this counterfactual distribution; specifying scale is necessary because, conceptually,
reldist treats the scale as a separate element of a distribution that can be adjusted.)
The third panel shows the relative density if the location difference between the two
distributions is removed but the distributional shapes are allowed to be different. The
corresponding option is adjust(location), which shifts the recent cohort distribution
such that it has the same location as the original cohort distribution but keeps its shape
and scale.13

. local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*
> */ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
> */ ylabel(0(.5)4, angle(0) grid) ytitle("") noci
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> graph(`gropts' title("Overall RD") name(a, replace) nodraw)

(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> adjust(:shape scale)
> graph(`gropts' title("Location shift") name(b, replace) nodraw)

(output omitted )

12. Confidence intervals for the relative density curve have been omitted using graph option noci so
that the plots are less busy.

13. Handcock and Morris (1999) do the decomposition the other way around, equivalent to specifying
adjust(shape scale) and adjust(:location).
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. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> adjust(location)
> graph(`gropts' title("Shape shift") name(c, replace) nodraw)

(output omitted )
. graph combine a b c, rows(1) imargin(zero)
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Figure 4

The results indicate that the difference between the recent cohort distribution and
the original cohort distribution is not only a matter of location; there is also a substantial
difference in distributional shape. In particular, the recent cohort distribution appears
more polarized than the original cohort (also see below).

5.1.4 Distributional divergence

To determine the relative contributions of location and shape differences to the overall
distributional divergence between the two cohorts, Handcock and Morris (1999) suggest
comparing the entropy (Kullback–Leibler divergence) of the unadjusted and adjusted
relative distributions. Such an analysis can be obtained by reldist divergence:14

14. Alternative measures offered by reldist divergence are the χ2 divergence and the dissimilarity
index (TVD).
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. reldist divergence chpermwage [pw = wgt], by(cohort)
> compare(adjust(location))
Relative distribution divergence Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834
Adjustment (alternate model) Histogram bins = 20

F1: location Statsistic = entropy
F0: (none)

chpermwage Coefficient Std. err. [95% conf. interval]

main .1726182 .021244 .1309679 .2142686
alternate .0670518 .0126801 .0421917 .091912
difference .1055664 .0179497 .0703748 .140758

Three divergence values are reported in the above output: the divergence of the
unadjusted relative distribution (labeled as main), the divergence of the relative dis-
tribution after location-adjusting the recent cohort (labeled as alternate), and the
difference between these two measures. The first value is the overall divergence, the
second value quantifies the divergence because of differences in distributional shape,
and the third value quantifies the contribution of the difference in location.15 We can
use nlcom (see [R] nlcom) to compute the percentage contributions of the location and
shape effects to the overall divergence:

. nlcom (loc:_b[difference]/_b[main]*100) (shape:_b[alternate]/_b[main]*100)
loc: _b[difference]/_b[main]*100

shape: _b[alternate]/_b[main]*100

chpermwage Coefficient Std. err. z P>|z| [95% conf. interval]

loc 61.15599 6.246685 9.79 0.000 48.91271 73.39927
shape 38.84401 6.246685 6.22 0.000 26.60073 51.08729

We see that in this example, the difference in location appears to be more relevant
(60%) than the difference in shape (40%). Qualitatively, the results are similar to the
ones reported by Handcock and Morris (1999), but note that the precise values are
different. Handcock and Morris performed a slightly different decomposition (see foot-
note 15). More importantly, however, the Kullback–Leibler divergence is quite sensitive
to the details of the computation of the underlying relative density. By default, reldist
divergence obtains the divergence from a 20-bin histogram; changing the number of
bins may change the results substantially. Furthermore, the divergence measures could
also be obtained from a kernel density estimate of the relative density (see option pdf),
which would yield yet another set of results (substantially depending on the bandwidth).

15. As discussed above, the last value has a cross-entropy interpretation. Note that reldist divergence
could also be used to compute alternative decompositions, for example, between the overall relative
distribution and a shape-adjusted relative distribution, treating the location effect as a cross-entropy
(as in Handcock and Morris [1999]).
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5.1.5 Polarization analysis

As stated above, the recent cohort distribution appears more polarized than the original
cohort distribution. A measure to quantify the polarization is the MRP computed by
reldist mrp:

. reldist mrp chpermwage [pw = wgt], by(cohort)
Median relative polarization Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834
Adjustment: location

chpermwage Coefficient Std. err. t P>|t| [95% conf. interval]

MRP .1832597 .0191808 9.55 0.000 .1456544 .220865
LRP .190353 .0303527 6.27 0.000 .1308445 .2498615
URP .1761664 .0291428 6.04 0.000 .11903 .2333029

The results indicate that the recent cohort distribution is indeed more polarized
because the value of the MRP is positive, of substantial magnitude (the possible range
of the MRP is between −1 and 1), and significantly different from 0. Furthermore,
the breakup into polarization of the lower half (LRP) and the upper half (URP) of the
distribution suggests that the degree of relative polarization is similar in both tails.

5.1.6 Covariate balancing

Education may be one important determinant of the wage distribution as well as the
distribution of wage gains over an occupational career. Hence, if the educational distri-
bution changed between the original cohort and the recent cohort, we may be comparing
apples with oranges. That is, one reason for the difference in the distribution of wage
gains in the two cohorts may be that the cohorts have a different educational composi-
tion. This indeed seems to be the case if we look at the relative density of educational
levels between the cohorts.16 The resulting graph is shown in figure 5.

16. Option categorical instructs reldist to treat endeduc as a factor variable and to compute the
relative density as the ratio of relative frequencies between the two cohorts at each level. Confidence
intervals have been suppressed in the graph using option noci.
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. replace endeduc = 8 if endeduc<8
(34 real changes made)
. reldist hist endeduc [pw = wgt], by(cohort) categorical
Relative histogram Number of obs = 3,937

F1: cohort = recent (1979) Comparison obs = 2,103
F0: cohort = original (1966) Reference obs = 1,834

endeduc Coefficient Std. err. [95% conf. interval]

endeduc
8 .9383436 .220892 .50527 1.371417
9 1.485883 .3551772 .7895346 2.182232
10 1.59819 .3734487 .8660189 2.330361
11 .9276922 .1673159 .5996581 1.255726
12 1.41295 .0657943 1.283956 1.541945
13 1.012919 .1136963 .7900094 1.235828
14 .7208455 .0737943 .5761668 .8655241
15 .6660931 .0984461 .473083 .8591032
16 .8683801 .0644533 .7420152 .994745
17 .5069374 .0751882 .3595259 .6543489
18 .7644302 .0823954 .6028885 .9259719

(evaluation grid stored in e(at))
. reldist graph, noci olabel(8(1)18, prune(.05)) color(%50)
> xlabel(0(.1)1) xtitle(Proportion of original cohort)
> ylabel(0(.2)1.6, angle(0) grid) ytitle(Relative density)
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Figure 5

Lower educational levels appear to be more frequent in the recent cohort than in
the original cohort (relative density mostly larger than 1), and higher educational levels
appear to be less frequent (relative density below 1). Looking at the table, we see that
in many cases the confidence interval does not include 1, meaning that these differences
between the cohorts are statistically significant.
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The question now is whether these differences in educational composition affect the
relative distribution of wage gains. Similarly to above in the context of location and
shape effects, we can identify the contribution of compositional differences by comparing
unadjusted and adjusted relative distributions. The adjustment, however, is now ac-
complished by reweighting one of the distributions such that its educational composition
becomes equal to the educational composition in the other cohort. Option balance()
can be used in reldist to apply such balancing. Here is an example (graph in figure 6)
that displays the overall relative distribution (left panel), the relative distribution after
the recent cohort has been reweighted (right panel), and the relative distribution be-
tween the raw and reweighted recent cohort (middle panel; the purpose of the middle
panel is to show how reweighting changes the distribution of the recent cohort):

. local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*
> */ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
> */ ylabel(0(.5)4, angle(0) grid) ytitle("") noci
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> graph(`gropts' title("Overall RD") name(a, replace) nodraw)

(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> balance(i.endeduc, contrast)
> graph(`gropts' title("Education effect") name(b, replace) nodraw)

(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> balance(i.endeduc)
> graph(`gropts' title("Education-adjusted RD") name(c, replace) nodraw)

(output omitted )
. graph combine a b c, rows(1) imargin(zero)
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Adjusting the educational composition does seem to make the distribution of wage
gains somewhat more equal between the two cohorts. The comparison between the raw
recent cohort and the reweighted recent cohort (middle panel) shows that low (high)
wage gains are more (less) frequent in the raw data than in the reweighted data. That
is, as expected, reweighting the recent cohort generally shifts the distribution of wage
gains upward, thus making it more equal to the distribution of wage gains in the original
cohort (the effect of the reweighting is statistically significant, as can be inferred from
the confidence intervals that have been included for the histogram). Overall, however,
the contribution of the difference in educational composition only seems to be of minor
importance: there is only a small difference between the overall relative distribution
(left panel) and the education-adjusted relative distribution (right panel).

5.1.7 Location adjustment by means of covariate balancing

Note that reweighting can be used as an alternative method for location adjustments.
The default method, provided by option adjust(), implements the adjustments by
transforming the outcome values. The same goal, however, can also be reached by
altering the PDF of the data while leaving the outcome values unchanged. This is what
reweighting does if we include the outcome variable in the balancing equation. Here
is a replication of the location and shape decomposition from above using balance()
instead of adjust(). I use entropy balancing to obtain the weights, which ensures that
the means of the two distributions will be exactly the same. The graph is shown in
figure 7.

. local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*
> */ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
> */ ylabel(0(.5)4, angle(0) grid) ytitle("") noci
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> graph(`gropts' title("Overall RD") name(a, replace) nodraw)

(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> balance(eb: chpermwage, contrast)
> graph(`gropts' title("Location shift") name(b, replace) nodraw)

(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram
> balance(eb: chpermwage)
> graph(`gropts' title("Shape shift") name(c, replace) nodraw)

(output omitted )
. graph combine a b c, rows(1) imargin(zero)
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Figure 7

The two approaches lead to qualitatively similar results.17 One advantage of the
reweighting approach, however, is that heaping in the data will have fewer adverse
effects on the results.18

5.2 Processing results from reldist

5.2.1 Postestimation hypothesis testing

reldist stores its results in e() just like any other estimation command. Hence, we
can use postestimation commands such as test (see [R] test) to test hypotheses, or we
can use coefplot (Jann 2014) to draw graphs.

I use the National Longitudinal Study of Young Women 1988 data shipped with
Stata to analyze wages of unionized and nonunionized workers. For example, we might
be interested in relative wage polarization. An obvious hypothesis is that wages are
more polarized among nonunionized workers than among the unionized, but the pattern
may be different depending on education. Here are the results for the MRP between
nonunionized and unionized workers for different levels of qualification:

17. Although, note that adjust(), as used above, adjusts the medians of the distributions, whereas
balance() adjusts the means. For a more valid comparison, suboption mean could be specified
within adjust().

18. Note that reweighting could be used for location and scale adjustment by including the square of
the outcome variable as an additional covariate in the balancing equation.
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. sysuse nlsw88, clear
(NLSW, 1988 extract)
. reldist mrp wage, by(union) swap over(collgrad) multiplicative
Median relative polarization Number of obs = 1,878

F1: union = Nonunion Comparison obs = 1,417
F0: union = Union Reference obs = 461
Adjustment: location (mult)

0: collgrad = Not college grad
1: collgrad = College grad

wage Coefficient Std. err. t P>|t| [95% conf. interval]

0
MRP .0654444 .0358179 1.83 0.068 -.0048027 .1356916
LRP -.0015699 .0572336 -0.03 0.978 -.113818 .1106783
URP .1324587 .0571956 2.32 0.021 .020285 .2446324

1
MRP .1486059 .0591766 2.51 0.012 .032547 .2646647
LRP .1985118 .0818497 2.43 0.015 .0379858 .3590378
URP .0987 .0920773 1.07 0.284 -.0818847 .2792846

Option swap has been specified to flip the two groups so that the nonunionized
are the comparison group and the unionized are the reference group. The option
multiplicative has been specified because—based on economic theory—a proportional
location shift makes more sense for wages than an additive shift. As hypothesized, the
results suggest that wage polarization is generally more pronounced among nonunion-
ized workers, although the MRP is only marginally significant for respondents without
a college degree. A follow-up question might thus be whether we can conclude from the
data that relative polarization between nonunionized and unionized workers is stronger
among college graduates than among workers without a college degree. We can use
test to test the two MRP estimates against each other:

. test [0]MRP = [1]MRP
( 1) [0]MRP - [1]MRP = 0

F( 1, 1877) = 1.45
Prob > F = 0.2294

The test is negative; that is, we cannot reject the null hypothesis that the two MRP
estimates are the same (p-value of 0.229). The same result could also be obtained using
lincom (see [R] lincom) instead of test.

5.2.2 Creating graphs from multiple results

When comparing wages between unionized and nonunionized workers, it may be rel-
evant to make the two groups more comparable by taking background characteristics
into account. Possibly, some of the difference in the wage distributions is because of
differential composition with respect to these characteristics and not because of union-
ization status per se. Here is how you could plot the relative density curves based on
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raw data and on balanced data in a single graph (figure 8) using estimates store (see
[R] estimates store) and coefplot (Jann 2014):

. reldist pdf wage, by(union) notable balance(grade i.race i.south tenure)
(output omitted )

. estimates store balanced

. reldist pdf wage if e(sample), by(union) notable
(output omitted )

. estimates store unbalanced

. coefplot balanced unbalanced, at recast(line)
> ciopts(recast(rarea) color(%50) lcolor(%0))
> xtitle("Proportion of non-unionized workers")
> ytitle("Relative density") yline(1)
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We see that the wage distributions of unionized and nonunionized workers become
more similar once we control for background characteristics, especially in the upper part
of the distribution.

5.2.3 Working with IFs

The predict command can be used to store the IFs that reldist uses for standard error
estimation. For example, we may want to test whether relative polarization between
nonunionized and unionized workers is more pronounced for wages than for working
hours. reldist does not support analyzing two variables at the same time. However,
we can store the IFs and then use them to test the MRP for wages against the MRP for
working hours:
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. reldist mrp wage if hours<., by(union) swap multiplicative
Median relative polarization Number of obs = 1,877

F1: union = Nonunion Comparison obs = 1,416
F0: union = Union Reference obs = 461
Adjustment: location (mult)

wage Coefficient Std. err. t P>|t| [95% conf. interval]

MRP .123268 .0303101 4.07 0.000 .063823 .182713
LRP .0573649 .0494239 1.16 0.246 -.0395667 .1542964
URP .1891712 .0482137 3.92 0.000 .094613 .2837294

. predict MRPwage

. replace MRPwage = MRPwage + _b[MRP] / e(N)
(1,877 real changes made)
. reldist mrp hours if wage<., by(union) swap
Median relative polarization Number of obs = 1,877

F1: union = Nonunion Comparison obs = 1,416
F0: union = Union Reference obs = 461
Adjustment: location

hours Coefficient Std. err. t P>|t| [95% conf. interval]

MRP .0712359 .0261141 2.73 0.006 .0200202 .1224516
LRP .1601944 .0644048 2.49 0.013 .0338818 .286507
URP -.0177227 .0421322 -0.42 0.674 -.1003535 .0649082

. predict MRPhours

. replace MRPhours = MRPhours + _b[MRP] / e(N)
(1,877 real changes made)
. total MRPwage MRPhours
Total estimation Number of obs = 1,877

Total Std. err. [95% conf. interval]

MRPwage .123268 .0303101 .063823 .182713
MRPhours .0712359 .0261141 .0200202 .1224516

. lincom MRPwage - MRPhours
( 1) MRPwage - MRPhours = 0

Total Coefficient Std. err. t P>|t| [95% conf. interval]

(1) .0520321 .0378415 1.38 0.169 -.0221838 .1262481

. drop MRPwage MRPhours

The MRP is higher for wages than for working hours, but the difference does not
appear to be statistically significant. In the example, I first stored the IFs and then
recentered them by adding the point estimates back in (on the use of recentered IFs, see,
for example, Firpo, Fortin, and Lemieux [2009] and Rios-Avila [2020]). The IFs returned
by reldist are scaled such that total (see [R] total) can be used for estimation of
standard errors (note how total reproduced the results from reldist in the example).
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This is why I divided the point estimate by N before adding it back in. Alternatively,
multiply the IF by N , add the point estimate as is, and then use mean (see [R] mean)
instead of total. Furthermore, note that weights are not incorporated into the IFs.
That is, if weights have been applied to reldist, the weights will also have to be
applied when calling total or mean (the same is true for clustering).

5.3 Survey estimation

reldist fully supports estimation for complex survey data, but the svy prefix command
(see [SVY] svy) cannot be used for technical reasons if the variance estimation method is
set to linearized (Taylor-linearized variance estimation). You can use option vce(svy)
instead of the svy prefix in this case. Here is an example:

. webuse nmihs, clear

. svyset [pweight=finwgt], strata(stratan)
Sampling weights: finwgt

VCE: linearized
Single unit: missing

Strata 1: stratan
Sampling unit 1: <observations>

FPC 1: <zero>
. reldist mrp birthwgt, by(childsex) vce(svy)
(running reldist_svyr on estimation sample)
Survey: Median relative polarization
Number of strata = 6 Number of obs = 9,946
Number of PSUs = 9,946 Population size = 3,895,562

Design df = 9,940
F1: childsex = 2 Comparison obs = 4,911
F0: childsex = 1 Reference obs = 5,035

Linearized
birthwgt Coefficient std. err. t P>|t| [95% conf. interval]

MRP -.0349405 .0155133 -2.25 0.024 -.0653496 -.0045313
LRP .0024726 .0233231 0.11 0.916 -.0432454 .0481907
URP -.0723535 .0252147 -2.87 0.004 -.1217795 -.0229275

Results indicate that the birthweight distribution is somewhat less polarized for girls
(childsex = 2) than for boys (childsex = 1) and that this is because of a difference
in distributional shape in the upper part of the distribution (overall relative polarization
is driven by the URP). Option vce(svy) also works with variance estimation methods
other than linearized (for example, see [SVY] svy brr), although in these cases one
could also apply svy as a prefix command.19

19. A fine distinction is that with vce(svy), the bandwidth for kernel density estimation (relevant for
reldist pdf and reldist divergence with option pdf) will only be estimated once and then held
constant across replications. With svy as a prefix command, bandwidth estimation will be repeated
in each replication.
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-4

. net install st0656 (to install program files, if available)

. net get st0656 (to install ancillary files, if available)
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A Appendix
A.1 Variance estimation by means of influence functions (IFs)

Influence functions (IFs; Hampel 1974) provide a convenient approach to estimate the
sampling variances of the different statistics discussed above. Intuitively, an IF is an
approximation of how a function of a distribution changes once some data mass is
added at a specific point in the distribution. Random sampling can be seen as a process
that modifies the distribution in such a way and hence leads to variation in statistics
computed from the distribution. It can be shown that, asymptotically, this variation
(that is, the sampling variance) is equal to the expectation of the square of the IF divided
by the sample size (for example, Deville [1999]). Therefore, to obtain an estimate of
the sampling variance from a given sample, we can evaluate the IF at each observation
in the data and then compute the sampling variance of the mean of these values using
textbook formulas.20 More generally, once IFs are available for a set of statistics, the
variance matrix of these statistics can be obtained by taking a mean estimate (using
mean) of the IFs (or a total estimate using total, depending on the scaling of the IFs).
Sampling weights or other complex survey characteristics do not change the form of the
IF and can be accounted for when computing the mean (or total) estimate. This makes
the IF approach very general.

A.1.1 One-parameter setting

There is a close connection between IFs and the method of moments (see Jann [2020]).
Let hθ

i be the moment condition for estimating θ in a simple one-parameter setting,
such that θ̂ satisfies

0 =
1

W

n∑
i=1

wiĥ
θ
i

where ĥθ
i denotes hθ

i with θ set to θ̂. Observation i’s value of the empirical IF of θ̂ can
then be obtained as

IFi(θ̂) =
1

−∆̂θ
ĥθ
i

where

∆̂θ =
1

W

n∑
i=1

wi
∂hθ

i

∂θ

∣∣∣∣
θ=θ̂

is an estimate of the expectation of the derivative of hθ at point θ = θ̂. Consider the
mean estimator

ŷ =
1

W

n∑
i=1

wiYi

for which the moment condition is given as

hy
i = Yi − y

20. Because the mean of an IF is 0 by definition, the expectation of the squared IF is equal to the
variance of the IF.
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Because

∆̂y =
1

W

n∑
i=1

wi
∂hy

i

∂y

∣∣∣∣∣
y=ŷ

=
1

W

n∑
i=1

wi(−1) = −1

the IF simplifies to
IFi(ŷ) = Yi − ŷ

Assuming a survey design without clustering or stratification, the sampling variance of
ŷ can then be estimated as

V̂ (ŷ) =
1

W (W −W/n)

n∑
i=1

w2
i

{
IFi(ŷ)

}2

This is equivalent to the textbook formula for the variance of the mean, as can easily
be seen if IFi(ŷ) is replaced by its definition. The general point is that we can use the
same variance formula also in other situations. That is, the variance of a statistic can be
obtained by applying the above formula (or a variant of it depending on survey design)
to its IF, whatever the statistic might be.

A.1.2 Multiple-parameter setting

Deriving the IF becomes more involved if a statistic includes auxiliary parameters that
are estimated from the data. Think of a system of equations with moment conditions
hθ1 , hθ2 , . . . , hθp where θ1 depends on θ2, . . . , θp (that is, all θj appear as arguments in
the moment condition for θ1). The IF for θ1 can then be written as

IFi(θ̂1) =
1

−∆̂θ1

ĥθ1
i +

p∑
j=2

∆̂θ1
θj

IFi(θ̂j)

 (16)

where ĥθ1
i denotes the value of hθ1

i with θ = (θ1, . . . , θp) set to θ̂ = (θ̂1, . . . , θ̂p) and

∆̂θ1
θj

=
1

W

n∑
i=1

wi
∂hθ1

i

∂θj

∣∣∣∣∣
θ=θ̂

is an estimate of the expectation of the partial derivative of hθ1 by θj at point θ̂. If
parameters θj , j ≥ 2, themselves depend on further parameters, their IFs will have
an analogous form. That is, multiple-parameter problems can be solved recursively by
applying (16) repeatedly.

One implication of (16) is that, if γ = t(θ), where t(θ) is a simple transformation
function of θ = (θ1, . . . , θp) that does not involve the data (that is, a linear or nonlinear
combination of the elements in θ), the IF for γ̂ can be written as

IFi(γ̂) =
∂t(θ)

∂θ1

∣∣∣∣
θ=θ̂

IFi(θ̂1) + · · ·+ ∂t(θ)

∂θp

∣∣∣∣
θ=θ̂

IFi(θ̂p)

This means that the IF of a statistic that is defined as an aggregate of other statistics
can be obtained as an aggregate of the IFs of these statistics.
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A.1.3 Subpopulation estimation

Because the relative size of a subsample is subject to sampling error, IFs should always be
evaluated for all observations in the data and also when only a subpopulation is analyzed
(even though for many statistics, this may not change the results). Furthermore, the
relative distribution is typically computed using data from two subsamples so that the
IFs below will inherently contain multiple components based on different observations.
Using a full-sample approach is thus inevitable. Subpopulation IFs defined in terms of
all observations can be obtained by including appropriate subpopulation indicators in
the moment conditions.

Consider the IF for subpopulation mean

ŷS =
1

WS

∑
i∈S

wiSiYi

where Si is an indicator for whether observation i belongs to subsample S and WS is
the sum of weights in the subsample. The full-sample moment condition for ŷS can be
written as

h
yS
i = Si(Yi − yS)

Because

∆̂yS =
1

W

n∑
i=1

wi(−Si) = −WS

W

the IF for ŷS becomes
IFi(ŷS) =

W

WS
Si(Yi − ŷS)

The IF will be 0 for observations outside subsample S. However, taking the standard
error of the mean of this IF across all observations will provide a consistent standard
error for ŷS .

In practice, it may be convenient to omit the global W from the definition of the
IF and only divide by the relevant subpopulation size. In this case, the appropriate
standard error is provided by the standard error of the total of the IF. An advantage of
defining IFs in this way is that they can be computed from the subsample data alone
without knowing the total sum of weights.

A.1.4 Overview of IFs for various statistics

Using the methods above, we can obtain IFs for various statistics that are relevant in
the context of relative distribution analysis. Table 1 provides an overview. The IFs have
been derived for statistics that are conditional on S = 1, where S is an indicator for
whether an observation belongs to subsample S. For unconditional statistics, set S to
1 for all observations.
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Table 1. IFs for various statistics

Statistic (conditional on S = 1) Empirical IF

Mean
ŷS =

1

WS

∑
i∈S

wiYi IFi =
W

WS
Si

(
Yi − ŷS

)

Empirical CDF

F̂Y |S(y) =
1

WS

∑
i∈S

wi1(Yi ≤ y) IFi =
W

WS
Si

{
1(Yi ≤ y)− F̂Y |S(y)

}

Kernel PDF (assuming h fixed)

f̂Y |S(y) =
1

WS

∑
i∈S

wi
1

h
K

(
y − Yi

h

)
IFi =

W

WS
Si

{
1

h
K

(
y − Yi

h

)
− f̂Y |S(y)

}

Histogram PDF

f̂Y |S(a, b) =
1

WS

∑
i∈S

wi
1(a < Yi ≤ b)

b− a
IFi =

W

WS
Si

{
1(a < Yi ≤ b)

b− a
− f̂Y |S(a, b)

}

Quantile

q̂Y |S(p) = F̂−1
Y |S(p) IFi =

W

WS
Si

[
p− 1

(
Yi ≤ q̂Y |S(p)

)
f̂Y |S{q̂Y |S(p)}

]

Median̂̃yS = q̂Y |S(0.5) IFi =
W

WS
Si

{
0.5− 1(Yi ≤ ̂̃yS)

f̂Y |S(̂̃yS)

}

Variance
σ̂2
Y |S =

1

WS − WS
nS

∑
i∈S

wi(Yi − ŷS)
2 IFi =

W

WS
Si

{
c× (Yi − ŷS)

2 − σ̂2
Y |S

}
, c = 1

1− 1
nS

Standard deviation

σ̂Y |S =
√

σ̂2
Y |S IFi =

W

WS
Si

{
c× (Yi − ŷS)

2 − σ̂2
Y |S

2σ̂Y |S

}
, c = 1

1− 1
nS

IQR
IQRY |S = q̂Y |S(0.75)− q̂Y |S(0.25) IFi = IFi{q̂Y |S(0.75)} − IFi{q̂Y |S(0.25)}
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The variance is an example of a multiparameter statistic, but it is a special case
because the IF for the auxiliary parameter drops out of the equation. Furthermore,
note that a quantile can be defined as the value q̂Y (p) that solves

0 =
1

W

n∑
i=1

wi[1(Yi ≤ qY (p))− p]

so that f̂Y {q̂Y (p)} provides an estimate of the expectation of the derivative of the
relevant moment condition.

A.2 IF for the relative CDF

Using notation as introduced in section 3, the empirical CDF of the relative ranks can
be written as

Ĝ(r) = F̂X|D(q̂r) =
1

WD

∑
i∈D

wi1(Xi ≤ q̂r)

where q̂r is shorthand notation for q̂Y |R(r) = F̂−1
Y |R(r). The moment conditions for G(r)

and qr are

hG
i = Di{1(Xi ≤ qr)−G(r)}
hq
i = Ri{1(Yi ≤ qr)− r}

Working through (16) yields

IFi

{
Ĝ(r)

}
=

W

WD
ĥG
i + f̂X|D(q̂r)IFi(q̂r) (17)

Because, according to table 1,

IFi(q̂r) =
W

WR
Ri

{
r − 1(Yi ≤ q̂r)

f̂Y |R(q̂r)

}

equation (17) can be written as

IFi{Ĝ(r)} = W
Di

WD
{1(Xi ≤ q̂r)− Ĝ(r)}+W

Ri

WR

f̂X|D(q̂r)

f̂Y |R(q̂r)
{r − 1(Yi ≤ q̂r)}

The density ratio in the second term is equal to the relative density by definition, so
we could replace it by ĝ(r). Both variants should yield a consistent estimate of the
standard error.

A.2.1 Location and scale adjustment

For the relative CDF based on location-adjusted (and possibly scale-adjusted) data,
replace qr by q̃r = t(qr, θ) in the above formulas, where t(y, θ) is a scalar transformation



B. Jann 943

function depending on a set of location and scale parameters θ = (θ1, . . . , θK). More
specifically, if tD(y, θ) is the transformation function applied to the comparison data
and tR(y, θ) is the transformation function applied to the reference data, we have

q̃r = t(qr, θ) = t−1
D {tR(qr, θ), θ} (18)

The adjusted relative CDF then becomes

̂̃
G(r) = F̂D(̂̃qr) = 1

WD

∑
i∈D

wi1(Xi ≤ ̂̃qr)
with ̂̃qr = t(q̂r, θ̂) and q̂r = F̂−1

Y |R(r), such that the IF can be written as

IFi{
̂̃
G(r)} =

W

WD
ĥG̃
i + f̂X|D(̂̃qr)IFi(̂̃qr) (19)

with
hG̃
i = Di{1(Xi ≤ q̃r)− G̃(r)} (20)

and

IFi(̂̃qr) = τqr IFi(q̂r) +

K∑
k=1

τθk IFi(θ̂k) (21)

where
τqr =

∂t(qr, θ)

∂qr

∣∣∣∣
qr=q̂r,θ=θ̂

and τθk =
∂t(qr, θ)

∂θk

∣∣∣∣
qr=q̂r,θ=θ̂

For example, in the case of an additive location adjustment (of either the reference
distribution or the comparison distribution), we have t(qr, θ) = qr − µY |R + µX|D, such
that

IFi(̂̃qr) = IFi(q̂r)− IFi(µ̂Y |R) + IFi(µ̂X|D)

where expressions for the three IFs included in IFi(̂̃qr) can be found in table 1 (µ is
either the median or the mean). Likewise, in the case of a multiplicative adjustment,
we have t(qr, θ) = qr × µX|D/µY |R, such that

IFi(̂̃qr) = µ̂X|D

µ̂Y |R
IFi(q̂r) +

q̂r
µ̂Y |R

IFi(µ̂X|D)−
q̂rµ̂X|D

(µ̂Y |R)2
IFi(µ̂Y |R)

In the case of additive location and scale adjustment, we have t(qr, θ) = (qr − µY |R)×
sX|D/sY |R + µX|D, such that

IFi(̂̃qr) = ŝX|D

ŝY |R
IFi(q̂r)−

ŝX|D

ŝY |R
IFi(µ̂Y |R) +

q̂r − µ̂Y |R

ŝY |R
IFi(ŝX|D)

−
(q̂r − µ̂Y |R)ŝX|D

(ŝY |R)2
IFi(ŝY |R) + IFi(µ̂X|D)
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where s is either the IQR or the standard deviation. Finally, for a logarithmic location
and scale adjustment, we have t(qr, θ) = exp[{ln qr − µln(Y )|R} × sln(X)|D/sln(Y )|R +
µln(X)|D], such that

IFi(̂̃qr) = ̂̃qr[ ŝln(X)|D

q̂r ŝln(Y )|R
IFi(q̂r)−

ŝln(X)|D

ŝln(Y )|R
IFi{µ̂ln(Y )|R}+

ln q̂r − µ̂ln(Y )|R

ŝln(Y )|R
IFi{ŝln(X)|D}

−
{ln q̂r − µ̂ln(Y )|R}ŝln(X)|D

{ŝln(Y )|R}2
IFi{ŝln(Y )|R}+ IFi{µ̂ln(X)|D}

]
In the case of a shape adjustment, one of the two distributions is replaced by a location-
adjusted (and possibly shape-adjusted) variant of the other distribution. The same
formulas as above can be applied after choosing the appropriate transformation function
and replacing some of the components. For example, if the comparison distribution
is shape- and scale-adjusted (and the reference distribution remains unchanged), the
relevant transformation functions are tD(y, θ) = y − µX|R + µX|D and tR(y, θ) = y,
such that t(qr, θ) = qr − µX|D + µX|R. The main moment condition will be conditional
on subsample R instead of D, meaning that Di and Xi in (20) have to be replaced by
Ri and Yi. This further implies that WD in the first term of (19) has to be replaced
by WR and that the density in the second term is f̂Y |R(̂̃qr) instead of f̂X|D(̂̃qr). If
the reference distribution is shape- and scale-adjusted (and the comparison distribution
remains unchanged), the transformation function again is t(qr, θ) = qr − µX|D + µX|R,
but q̂r is now based on the comparison distribution, that is, q̂r = F̂−1

X|D(r), such that
the definition of IFi(q̂r) in (21) changes.

A.3 IF for the relative histogram

For the IF of a histogram estimate of the relative density, note that for each bin the
histogram density is equal to the difference between two points on the relative CDF
divided by the bin width. That is,

ĝ(a, b) =
Ĝ(b)− Ĝ(a)

b− a

The IF for ĝ(a, b) can thus be obtained as

IFi{ĝ(a, b)} =
IFi{Ĝ(b)} − IFi{Ĝ(a)}

b− a

A.4 IF for the relative PDF

The relative density estimate for continuous data can be written as

ĝ(r) =
1

WD

∑
i∈D

wiKc(r, r̂i, h) with r̂i = F̂Y |R(Xi)
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where Kc(·) is a boundary-corrected kernel function as described in section 3.3.1. Note
that each individual r̂i, i ∈ D, has its own moment condition:

hg
i = Di{Kc(r, ri, h)− g(r)}

h
rj
i = Ri{1(Yi ≤ Xj)− rj} for each j ∈ D

This leads to

IFi{ĝ(r)} =
W

WD

ĥg
i +

∑
j∈D

∆̂g
rj IFi(r̂j)


=

W

WD

ĥg
i +

Ri

WR

∑
j∈D

δj{1(Yi ≤ Xj)− r̂j}


with ∆̂g

rj = δj/W and δj = wjK
′
c(r, r̂j , h), where K ′

c(r, r̂j , h) is the derivative of
Kc(r, rj , h) with respect to rj at point r̂j . The sum in the second part of the equa-
tion looks computationally burdensome [complexity O(nRnD) once we evaluate the IF
for all observations], but it can be simplified. Let

λi =
∑
j∈D

δj1(Yi ≤ Xj) and Λ =
∑
j∈D

δj r̂j

such that
IFi{ĝ(r)} =

W

WD

{
ĥg
i +

Ri

WR
(λi − Λ)

}
Term λi is equivalent to a “reverse” (summation from the top) and nonnormalized CDF
of X weighted by δj and can be obtained for all observations in a single run across the
data.21

A.4.1 Location and scale adjustment

For the relative PDF based on location-adjusted (and possibly scale-adjusted) data,
define x̃i = t−1(Xi, θ) and replace ri by r̃i = FY |R(x̃i) in the above formulas. Function
t(x, θ) is as defined in (18); if tD(x, θ) is the transformation function applied to the
comparison data and tR(x, θ) is the transformation function applied to the reference
data, then

t−1(x, θ) = t−1
R {tD(x, θ), θ} (22)

The adjusted relative PDF can thus be written as

̂̃g(r) = 1

WD

∑
i∈D

wiKc(r, ̂̃ri, h) with ̂̃ri = F̂Y |R(̂̃xi) and ̂̃xi = t−1(Xi, θ̂)

21. For the adaptive kernel (see footnote 9), a complication arises because the local bandwidth depends
on preliminary density estimates. This should only be of secondary importance for the variance
estimate so that applying the above equation with h replaced by the relevant local bandwidth (that
is, treating the local bandwidth as fixed) should produce acceptable results in practice.
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such that the IF becomes

IFi{̂̃g(r)} =
W

WD

ĥg̃
i +

∑
j∈D

∆̂g̃
r̃j

IFi(̂̃rj)


with

ĥg̃
i = Di{Kc(r, ̂̃ri, h)− ̂̃g(r)}

∆̂g̃
r̃j

= δj/W with δj = wjK
′
c(r,

̂̃rj , h)
IFi(̂̃rj) = W

WR

{
ĥ
r̃j
i + ∆̂

r̃j
x̃j

IFi(̂̃xj)
}

ĥr̃j = Ri{1(Yi ≤ ̂̃xj)− ̂̃rj}
∆̂

r̃j
x̃j

=
WR

W
f̂Y |R(̂̃xj)

IFi(̂̃xj) =

K∑
k=1

τjkIFi(θ̂k) with τjk =
∂t−1(Xj , θ)

∂θk

∣∣∣∣
θ=θ̂

Similar to above, computational complexity can be reduced by rewriting the IF as

IFi{̂̃g(r)} =
W

WD

{
ĥg̃
i +

Ri

WR
(λi − Λ) +

K∑
k=1

κkIFi(θ̂k)

}
(23)

with

λi =
∑
j∈D

δj1(Yi ≤ ̂̃xj), Λ =
∑
j∈D

δj ̂̃rj , κk =
1

W

∑
j∈D

δj f̂Y |R(̂̃xj)τjk

In the case of a shape adjustment, the same formulas can be used, but various compo-
nents have to be replaced to account for the switch in subsamples.

A.5 IF for the discrete relative density

The categorical relative density is defined as

ĝk = p̂Dk /p̂Rk

with moment conditions

h
pk
D

i = Di{1(Xi = k)− pDk } and h
pk
R

i = Ri{1(Yi = k)− pRk }

where p̂Dk = P̂D(X = k) and p̂Rk = P̂R(Y = k). The IF can thus be written as

IFi(ĝ
k) =

1

p̂Rk
IFi(p̂

D
k )− p̂Dk

(p̂Rk )
2

IFi(p̂
R
k )

with

IFi(p̂
D
k ) =

W

WD
Di{1(Xi = k)− p̂Dk } and IFi(p̂

R
k ) =

W

WR
Ri{1(Yi = k)− p̂Rk } (24)
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A.6 IFs for divergence measures

Divergence measures are obtained as aggregates of relative density estimates. Hence,
their IFs can be written as aggregates of the IFs of the density estimates. Assuming the
divergence measures are computed from a kernel density estimate on a regular grid or
from a histogram density with K evenly sized bins, as described in section 3.4, we get

IFi(χ̂
2) =

2

K

K∑
k=1

(ĝk − 1)IFi(ĝk)

IFi(K̂L) =
1

K

K∑
k=1

{1 + ln(ĝk)}IFi(ĝk)

IFi(T̂VD) =
1

2K

K∑
k=1

sign(ĝk − 1)IFi(ĝk)

where ĝk is the kernel density estimate at evaluation point rk or the histogram estimate
for bin k. For divergence measures computed from categorical data, the IFs can be
written as

IFi(χ̂
2) =

K∑
k=1

2

(
p̂Dk
p̂Rk

− 1

)
IFi(p̂

D
k ) +

{
1−

(
p̂Dk
p̂Rk

)2
}

IFi(p̂
R
k )

IFi(K̂L) =
K∑

k=1

{
1 + ln

(
p̂Dk
p̂Rk

)}
IFi(p̂

D
k )− p̂Dk

p̂Rk
IFi(p̂

R
k )

IFi(T̂VD) =
1

2

K∑
k=1

sign(p̂Dk − p̂Rk )
{

IFi(p̂
D
k )− IFi(p̂

R
k )
}

where IFi(p̂
D
k ) and IFi(p̂

R
k ) are as defined in (24).

A.7 IFs for polarization indices

The MRP can be written as

MRP =
1

WD

∑
i∈D

wi(4|̂̃ri − 0.5| − 1) with ̂̃ri = F̂Y |R(̂̃xi) and ̂̃xi = t−1(Xi, θ̂)

where t−1(x, θ) is as defined in (22). We see that the MRP has the same structure as an
estimate of the relative PDF based on location-adjusted (and possibly scale-adjusted)
data. We can thus obtain the IF using (23) with hg̃

i replaced by

hMRP
i = Di{(4|r̃i − 0.5| − 1)− MRP}

and δj set to
δj = wj 4 sign(̂̃rj − 0.5)
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Likewise, the IF for the LRP can be obtained by using

hLRP
i = Di[{8|r̃i − 0.5|1(r̃i < 0.5)− 1} − LRP]

and
δj = wj 8 sign(̂̃rj − 0.5)1(̂̃rj < 0.5)

Note that 1(r̃i < 0.5) always selects half the comparison data because the data have
been median-adjusted. Assuming that it is fixed should not introduce significant bias
into the variance estimates. The IF for the URP can be derived analogously.

A.8 IFs for descriptive statistics

Like the MRP, summary statistics of the relative ranks such as the mean or the standard
deviation have a structure that is very similar to the relative PDF. For the mean µ̂ of
the (possibly adjusted) relative ranks, the IF can be obtained by replacing hg̃

i in (23) by

hµ
i = Di(r̃i − µ)

and setting δj to
δj = wj

Likewise, for the variance σ̂2 of the relative ranks, we can use

hσ2

i = Di{(r̃i − µ)2 − σ2} and δj = 2wj(̂̃rj − µ̂)

The IF for the standard deviation σ̂ is given as

IFi(σ̂) =
1

2σ̂
IFi(σ̂

2)

For quantile q̂(p) of the relative ranks, it is easier to follow a different approach. Note
that the quantile can be written as

q(p) = G−1(p) = FY |R{F−1
X|D(p)}

That is, a quantile of the relative ranks of FX|D with respect to FY |R is equivalent to
a point on the relative CDF of FY |R with respect to FX|D. We can thus obtain the IF
in the same way as for the relative CDF (see page 942) but with swapped distributions.
Finally, the IF for the IQR is given as

IFi(IQR) = IFi{q̂(0.75)} − IFi{q̂(0.25)}

A.9 IFs in case of covariate balancing

If covariates are balanced using the reweighting approach, the IFs need to be adjusted
to account for the fact that the balancing weights have been estimated. I will discuss
two reweighting methods below: IPW based on logistic regression and IPW based on
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entropy balancing. Deriving the IFs is relatively easy in these cases because the weights
are obtained from a parametric model. Nonparametric reweighting methods such as
matching are more challenging; I leave it to future research to work out the details for
such methods.

Given covariates Z, logit IPW and entropy balancing both estimate a vector of co-
efficients γ from which the balancing weights w̃ are computed. To obtain the IF for a
reweighted relative distribution statistic, we could follow the procedures outlined above
but additionally incorporate γ by applying (16) to each of the parameters within the
definition of the statistic that depends on the balancing weights. However, working
through the math shows that this can be simplified. Let θ be a covariate-adjusted rela-
tive distribution statistic, and let IF∗

i (θ̂) be a provisional IF that assumes the balancing
weights as fixed (the provisional IF is obtained in the same way as without covariate
adjustment, only that the base weights w are replaced by the balancing weights w̃). The
final IF that no longer assumes the balancing weights as fixed can then be computed as

IFi(θ̂) =
w̃i

wi
IF∗

i (θ̂) + ∆̂IF∗

γ IFi(γ̂)

For both logit IPW and entropy balancing, the vector of partial derivatives of IF∗
i (θ̂) by

γ can be written as
∂IF∗

i (θ̂)

∂γ′ =
w̃i

wi
(1− Ti)IF

∗
i (θ̂)Zi

such that

∆̂IF∗

γ =
1

W

N∑
i=1

w̃i(1− Ti)IF
∗
i (θ̂)Zi

where T is an indicator for the “treatment” group (T = R if the comparison group is
reweighted, T = D if the reference group is reweighted; the two groups are assumed
distinct and exhaustive). The definition of the balancing weights and the expression for
IFi(γ̂) differ between the two procedures, as is described next.

A.9.1 Logit IPW

In the case of logit IPW, the balancing weights are defined as

w̃i =

{
wi

p̂i

1−p̂i
c if Ti = 0

wi if Ti = 1
with p̂i =

eZiγ̂

1 + eZiγ̂

where Zi is a row vector of covariates (typically including a constant), γ̂ is the cor-
responding coefficient vector estimated by logistic regression, and c is a scaling factor
ensuring that the sum of weights remains constant (see section 3.6; c can be treated as
fixed). As discussed in Jann (2020), the logistic regression moment conditions for γ can
be written as

hγ
i = Z ′

i(Ti − pi)
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such that

IFi(γ̂) = (−∆̂γ)−1Z ′
i(Ti − p̂i) with ∆̂γ =

1

W

N∑
i=1

wiZ
′
ip̂i(1− p̂i)Zi

A.9.2 Entropy balancing

For entropy balancing, the weights are given as

w̃i =

{
wie

ziβ̂+α̂c if Ti = 0

wi if Ti = 1

where zi is a row vector of k covariates without constant and β̂ and α̂ are the entropy-
balancing coefficients. The estimation of β involves a vector of auxiliary parameters µ,
the means of Z in the treatment group. Furthermore, α involves auxiliary parameter
p, the treatment probability. Based on Jann (2020), the entropy-balancing moment
conditions can be written as

hβ
i = (1− Ti)

w̃i

wic
(z′i − µ), hα

i = (1− Ti)

(
w̃i

wic
− p

1− p

)
,

hµ
i = Ti(z

′
i − µ), hp

i = Ti − p

such that

IFi(β̂) = (−∆̂β)−1{ĥβ
i + ∆̂β

µ(−∆̂µ)−1ĥµ
i } = (−∆̂β)−1

(
ĥβ
i − ĥµ

i

)
(25)

with

∆̂β =
1

W

N∑
i=1

wiĥ
β
i zi =

1

W

N∑
i=1

w̃i

c
(1− Ti)(z

′
i − µ̂)zi

The simplification on the right in (25) follows from

∆̂µ =
1

W

N∑
i=1

−wiTi diagk(1) = −diagk(WT )/W

∆̂β
µ =

1

W

N∑
i=1

− w̃i

c
(1− Ti)diagk(1) = −diagk(Ω)/W

where Ω =
∑

i:Ti=0 w̃i/c because moment condition hα ensures that Ω = WT . Further-
more, for α we get

IFi(α̂) =
1

−∆̂α

{
ĥα
i + ∆̂α

p

1

−∆̂p
ĥp
i + ∆̂α

β IFi(β̂)

}
= − Ω

W

{
ĥα
i − Ti − p̂

1− p̂
+ ∆̂α

β IFi(β̂)

}
with ∆̂α

β =
1

W

N∑
i=1

w̃i

c
zi



B. Jann 951

Finally, let

Zi = (zi, 1), γ̂ = (β̂′, α̂)′, IFi(γ̂) = {IFi(β̂)
′, IFi(α̂)}′

so that the results have the same format as for the logit IPW.
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