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Abstract. In this article, we present commands to enable fixing the value of the
correlation between the unobservables in Heckman models. These commands can
solve two practical issues. First, for situations in which a valid exclusion restriction
is not available, these commands enable exploring how the results could be affected
by sample-selection bias. Second, stepping through values of this correlation can
verify whether the global maximum of the likelihood function has been found. We
provide several commands to fit these and related models with a fixed value of the
correlation between the unobservables.

Keywords: st0658, heckman_fixedrho, heckman_scanrho, heckprobit_fixedrho,
heckprobit_scanrho, etregress_fixedrho, etregress_scanrho, biprobit_fixedrho, bipro-
bit_scanrho, Heckman model, sample-selection correction, endogenous treatment,
bivariate probit

1 Introduction

Heckman’s (1976, 1978) work on sample-selection and endogenous treatment models has
been widely used in applied research. Convincing identification of these models requires
an exclusion restriction (often referred to as an “instrument”), that is, a variable that
affects selection or treatment but not the outcome directly. For many applications, a
valid exclusion restriction is not available. Without a valid exclusion, identification of
the model is only possible through the distributional assumptions placed on the model.

One approach to fitting a Heckman model without an exclusion restriction is to fix
the value of the correlation between the unobservables in the selection and outcome
equations (which we refer to as “rho”) at multiple plausible values. The idea is to
treat rho as if it were unidentified rather than to identify it based on distributional
assumptions. We can then see how the results are affected by the value of rho. As
we discuss in the next section, we can think of rho as the degree of sample-selection
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bias. This approach was taken for endogenous treatment and sample-selection models
by Altonji, Elder, and Taber (2005) and Chan and Cook (2020), respectively. Altonji,
Elder, and Taber also propose using the correlation in observable characteristics to
bound the possible values of the correlation in unobservable characteristics, which we
do not discuss in this article.

We provide commands that enable fixing the value of rho and which are based on
Altonji, Elder, and Taber (2005) and Chan and Cook (2020). This article’s commands
have been used to address concerns about sample-selection bias when a valid exclusion
is not available (as in Aobdia [2019]; Choudhary, Merkley, and Schipper [2019]; Downey,
Bedard, and Boland [2020]; and Tran and Dinh [Forthcoming]).

Another benefit of fixing the value of rho is improved ease of maximizing the like-
lihood function. The likelihood functions for these models are known to be difficult
to maximize. Zuehlke (2017) reports several instances in which authors have reported
estimates that are not the global maximum of the likelihood function. The likelihood
function is not globally concave, but if the value of rho is fixed, the likelihood is concave
in the remaining parameters. Olsen (1982) suggests stepping through values of rho to
find the global maximum of the likelihood function. Zuehlke notes that standard statis-
tical software does not provide the option of maximizing the likelihood function in this
manner. Rodemeier (2020) uses this article’s commands for this purpose.

We provide an example in section 4 of how to use these commands to step through
values of rho to maximize the likelihood function. For this example, Stata’s heckman
command does not provide the actual maximum-likelihood estimate unless the initial
values are set to a neighborhood of the correct values.

The next section reviews Heckman’s sample-selection model and discusses the effect
of fixing rho. Section 3 provides the syntax for the commands that we are introducing.
In this section, we also discuss related models, including endogenous treatment models.
Examples are provided in section 4. Section 5 concludes.

2 Heckman’s sample-selection model

When the observations used for a regression are nonrandomly selected, there is a concern
that selection could affect the results. In the classic example of regressing education on
wage for married women, there is a concern that the decision to work may be affected by
both education and unobserved factors.! The women with lower education who enter
the workforce are those who expect higher wages. This self-selection can overstate the
average wage for women with low education and bias the relationship between education
and wage downward relative to the true causal effect.

We illustrate this effect in figure 1. Figure la presents a scatterplot and line of
best fit for all observations (both observed and unobserved). A circle denotes that an
instance was unobserved. Figure 1b removes the unobserved instances and adds a new

1. It should be noted that there is concern for a similar bias among married men. Blundell and Powell
(2004) find that married men with lower education are less likely to participate in the labor force.
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line of best fit based on only the observed instances. The line of best fit from figure 1a
is also presented for reference. Selection has decreased the slope of the line of best fit.
An important point is that sample selection is a problem of bias, not of generalization
to a wider population.
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Figure 1. Illustration of the effect of sample selection
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The approach developed by Heckman (1976) to combat these concerns is to jointly
estimate the selection and outcome processes. We begin by defining latent outcome and
selection variables, y! and s7, as

yi =xiB+e; (1)

SR (IR

We refer to (1) as the “outcome equation” and (2) as the “selection equation”. We
are assuming a linear relationship between the latent variables and the regressors x; =
(L, z1,4,...,25,:) and z; = (1,214, ..., zr;). The coefficients B and - are column vectors.
The correlation between ¢; and u;, denoted as p, is the same rho that was discussed in
the introduction. For the remainder of this section, we will use the Greek letter p rather
than writing out rho.

where

We observe an indicator for selection, s;, and outcome, y;, defined as

1 ifsi>0
i = { 0 otherwise (3)

oy ifsi =1
YT 0 ifs =0
The value of y; when s; = 0 is arbitrary and unimportant because these values will not

be used for estimation. The parameters of interest (3, v, o, and p) can be estimated
by maximizing the likelihood function

1(81:1)
_ (g M L(5:=0) {vzi +ply: — Bxi)/o}
L—l:[q’{ (vzi)} X (‘1> 1= ])

X [(27?0)_1 exp{—(ﬁ X; — yi)2/(202)}]ﬂ(5i:1)

where ¢(-) and ®(-) are the standard normal density and distribution functions and 1(A)
is the indicator function, which takes a value of 1 if the event A is true and a value of 0
otherwise. Stata’s heckman command performs this maximum likelihood estimation as
well as the popular “two-step” estimator of this model. We do not discuss the two-step
estimator here, because our approach of fixing the value of p is less straightforward with
the two-step estimator.

2.1 Fixing the value of p
For the observed data, the expected value of the outcome is

E(yi|xi,si=1)=%x;8+E(e;|s; =1)
=x;B+pod(ziv)/P(z:7)
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The term ¢(-)/®(-), known as the inverse Mills ratio, follows from the bivariate
normality assumption that was placed on ¢; and w;. An insight from Heckman (1979)
is that sample-selection bias can be thought of as an omitted-variable bias, where the
omitted variable is the inverse Mills ratio. Naively regressing y; on x; results in a bias
of

po{Var(x)} ' Cov{x, p(z)/®(z7)}

where x and z are the usual matrices of regressors. This bias is increasing in the value
of p. When p equals 0, there is no bias for the naive estimate. It is in this sense that
we can think of p as the degree of sample-selection bias.

We first discuss the role of fixing the value of p on identification, and then we turn
to the problem of maximizing the likelihood function. For discussing identification,
it is useful to contrast this model to semiparametric sample-selection models. The
inconsistency of Heckman’s estimator in the presence of nonnormal errors (as shown by
Arabmazar and Schmidt [1982] and Robinson [1982]) inspired the creation of several
semiparametric estimators. These estimators relax the bivariate normality assumption
to accommodate a broader class of bivariate distributions. While Heckman’s parametric
estimator is identified even when x and z contain the same variables (that is, there is no
exclusion restriction), these semiparametric estimators require an exclusion restriction
for identification. A common finding in Monte Carlo experiments is that Heckman’s
estimator performs surprisingly well with nonnormal errors as long as there is a valid
exclusion restriction (see, for example, Cook and Siddiqui [2020]). This finding has
contributed to the widespread use of Heckman’s model when there is a valid exclusion
restriction.

To be clear, throughout this article, we refer to the exclusion restriction as “valid”,
meaning that the excluded variable or variables do not affect the outcome directly. It
may be tempting to simply omit a variable from the outcome equation so that the
model has an excluded variable. This approach, however, can result in estimates that
are worse than those obtained by ordinary least squares (Wolfolds and Siegel 2019).2

The assumption that the unobservables follow a bivariate normal distribution, which
is required for identification without an exclusion restriction, is generally untestable
without a valid exclusion restriction. To identify the distribution of €;, we need to
identify 3. The coeflicients 3 could be estimated using a semiparametric estimator, but
these estimators require a valid exclusion restriction.

Regarding finding the maximum of the likelihood function, once the value of p is
fixed, Stata can easily find the values of the other parameters that maximize the likeli-

2. As a bit of an aside, applied researchers may wonder if Heckman models are susceptible to a problem
that is analogous to the weak-instrument problem for instrumental variables. (Certo et al. [2016]
find that some authors conflate exclusion restrictions for Heckman models with instruments for
instrumental variables.) The short answer is “no” because Heckman models are based on structural
assumptions. As long as the assumed structure is correct, which includes the assumption that the
unobservables follow a bivariate normal distribution, an exclusion is not required for identification.
In this case, a weak excluded variable is not a problem for identification because no exclusion is
required; however, there may be multicollinearity issues if the coefficient on the excluded variable
is small in magnitude.
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hood function. If we step through different values of p, we can see where the likelihood
function is maximized. This can be used to verify that the results returned by heckman
are the true maximum and to set the initial values if Stata is not returning the global
maximum.

Having discussed both a sensitivity test and a method for finding the maximum
of the likelihood function, there are two points that should be made explicit. First,
one should not step through values of rho to maximize the likelihood function when a
valid exclusion restriction is not available. While exploring how the results differ for
different values of p illustrates how sensitive the results are to the degree of sample-
selection bias, this procedure cannot be used to reliably estimate the value of p when
there is no exclusion restriction. Second, for situations in which an exclusion restriction
is available, to get the correct standard errors and p-values, Stata’s heckman command
should be called with initial values set near the global maximum. The standard errors
and p-values that are found with a fixed value of p may differ from those found without
the value of p fixed.

3 Syntax

This section provides the syntax for the eight commands that we are introducing:
heckman _fixedrho, heckman_scanrho, heckprobit_fixedrho, heckprobit_scanrho,
etregress_fixedrho, etregress_scanrho, biprobit_fixedrho, and
biprobit_scanrho. Each is named after the command upon which it was based with the
added suffix _fixedrho or _scanrho. An important difference between these commands
and their built-in counterparts is that these commands do not offer all the options that
the other commands do. There are also some slight syntax differences that we highlight
below.

In this section, we also provide a brief overview about the relevant models that are
fit with the Stata commands heckprobit, etregress, and biprobit. References are
provided for any reader seeking more details.

3.1 Heckman’s sample-selection model

Syntax for heckman_fixedrho

We now present the syntax for the first command, heckman fixedrho, which is for
setting the value of rho.

heckman_fixedrho depvar [indepvars] [zf] [m],
select (depvar_s = warlist_s [, offset (varname) noconstant])

tho (#) [vce(vcetype) level (#) mam’mz’ze,options]
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Options for heckman_fixedrho

select (depvar-s = varlist_s [, offset (varname) noconstant}) specifies the selec-
tion equation. select() is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

rho (#) specifies the correlation between the unobservables in the selection and outcome
equations. rho() is required and must take a value between —1 and 1.

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster (clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

Syntax for heckman_scanrho

We now present the syntax for the next command, heckman_scanrho, which is for
scanning through values of p.

heckman_scanrho depvar [indepvars} [zf] [m],
select(depvar-s = wvarlist_s [, offset (varname) noconstant])
[minrho(#) maxrho (#) step(#) vce(ucetype) level(#) nograph

maximize_options ]

Options for heckman_scanrho

select (depvar_s = wvarlist_s [, offset (varname) noconstant}) specifies the selec-
tion equation. select() is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

minrho (#) specifies the minimum value of correlation between the unobservables in the
selection and outcome equations to be considered. It must take a value between —1
and 1. Note that convergence may be difficult at values of —1 and 1. The default is
minrho(-0.9).

maxrho (#) specifies the maximum value of correlation between the unobservables in
the selection and outcome equations to be considered. It must take a value between
—1 and 1. Note that convergence may be difficult at values of —1 and 1. The default
is maxrho(0.9).
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step(#) specifies the size of the step to use when scanning over values of correlation.
This procedure will take a long time to run when the step size is small. The default
is step(0.01).

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster(clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.
nograph suppresses the graphical output.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

We now turn to discussing related models that can be thought of as extensions to the
sample-selection model discussed above. Our discussion of each is brief, but we provide
references for the reader wishing to gain more information.

3.2 Bivariate probit with sample selection

For an outcome that is binary instead of continuous, it is straightforward to extend the
model above (as was done by Van de Ven and Van Praag [1981]). We maintain the
latent variables in (1) and (2) and the selection indicator in (3):

y; =% B+¢;
57 =2;Y + U

_J 1 ifsi>0
%=1 0 otherwise

But now we define the observed outcome as

1 ifyf >0ands; =1
yi=4 0 ify’<0O0ands; =1
0 ifSiZO

The likelihood function is

L= []®2(z, xi B; )" @ =Y x @s(ziy, —x; B —p)" V=0 =1 x @z 7)1 (=0

7
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Syntax for heckprobit_fixedrho

In Stata, the command heckprobit fits this model. We now present the syntax for
heckprobit_fixedrho, which can be used to set the value of p in this model.

heckprobit_fixedrho depvar [indepvars] [zf] [zn},
select (depvar_s = warlist_s [, offset (varname) noconstant])

rho(#) [vce(ucetype) level(#) mawzimize_options ]

Options for heckprobit_fixedrho

select (depvar_s = warlist_s [, offset (varname) noconstant}) specifies the selec-
tion equation. select () is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

rho (#) specifies the correlation between the unobservables in the selection and outcome
equations. rho() is required and must take a value between —1 and 1.

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster(clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

Syntax for heckprobit_scanrho

We now present heckprobit_scanrho, which can be used to scan through values of p.

heckprobit_scanrho depvar [indepvars] [zf} [m},
select (depvar_s = warlist_s [, offset (varname) noconstant])
[minrho(#) maxrho (#) step(#) vce(ucetype) level(z#) nograph

mazimize_options ]

Options for heckprobit_scanrho

select (depvar_s = warlist_s [, offset (varname) noconstant}) specifies the selec-
tion equation. select () is required.
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depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

minrho (#) specifies the minimum value of correlation between the unobservables in the
selection and outcome equations to be considered. It must take a value between —1
and 1. Note that convergence may be difficult at values of —1 and 1. The default is
minrho(-0.9).

maxrho (#) specifies the maximum value of correlation between the unobservables in
the selection and outcome equations to be considered. It must take a value between
—1 and 1. Note that convergence may be difficult at values of —1 and 1. The default
is maxrho(0.9).

step(#) specifies the size of the step to use when scanning over values of correlation.
This procedure will take a long time to run when the step size is small. The default
is step(0.01).

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster(clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.
nograph suppresses the graphical output.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

3.3 Endogenous binary regressors

Heckman (1978) tackles the problem of endogenous binary regressors using a similar
strategy as that of sample selection. The problem is stated in terms of the observed
variables:

Yi =% B+d; 6+ ¢ (4)
|1 ifzy+u; >0
di = { 0 otherwise (5)

where

(o)== (5[0 )
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The likelihood function can be expressed as

1(ds=1)
I ((I) l{zm’ + p(yi — Xiﬁ)/‘j}]>

(1=p%)
1(d;=0)
y (1 o l{zl'y—kp((lyi—);zﬁ /‘7}])
x [(2m0) "t exp{—(x:B — ¥:)*/(20°)}]

This problem can also be expressed in the context of the Neyman—Rubin potential-
outcomes framework.

In the potential-outcomes framework, those receiving a treatment have the outcome
Yi =X B+ + e,
whereas those not receiving the treatment have the outcome
Yi = X; B+ €0

The parameter ¢ is the average treatment effect after removing the confounding effects
of treatment assignment, which Heckman (1990, 314) calls the “experimental treatment
effect”. In this potential-outcomes framework, the outcome and treatment can still be
expressed as in (4) and (5), but the error term in (4) is defined as

g =d; €1, + (1 - dz) €0,

The variances of €; ; and €y ; and their correlations with «; may differ. In Stata, the com-
mand etregress can fit this model with and without allowing for potentially different
variances and correlations for the unobservables for the treated and untreated.

Syntax for etregress_fixedrho

The syntax for our command etregress_fixedrho is as follows:

etregress_fixedrho depvar [indepvars] [zf} [m}, treat (depvar_s = wvarlist_s)

rho (#) [&utcomes vce (veetype) level (#) mam’mz’ze,optz'ons}

Options for etregress_fixedrho

treat (depvar_s = wvarlist_s) specifies the treatment equation. treat () is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

rho (#) specifies the correlation between the unobservables in the selection and outcome
equations. rho() is required and must take a value between —1 and 1.
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poutcomes uses a potential-outcomes model with separate treatment and control group
variances.

vce (veetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster (clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

Syntax for etregress_scanrho

The syntax for etregress_scanrho follows. Note that the potential-outcomes option is
not allowed.

etregress_scanrho depvar [z’nd@pvars] [zf] [zn], treat (depvar_s = varlist_s)
[minrho(#) maxrho(#) step(#) vce(uvcetype) level(#) nograph

mazimize_options ]

Options for etregress_scanrho

treat (depvar_s = warlist_s) specifies the treatment equation. treat() is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

minrho (#) specifies the minimum value of correlation between the unobservables in the
selection and outcome equations to be considered. It must take a value between —1
and 1. Note that convergence may be difficult at values of —1 and 1. The default is
minrho(-0.9).

maxrho (#) specifies the maximum value of correlation between the unobservables in
the selection and outcome equations to be considered. It must take a value between
—1 and 1. Note that convergence may be difficult at values of —1 and 1. The default
is maxrho(0.9).

step(#) specifies the size of the step to use when scanning over values of correlation.
This procedure will take a long time to run when the step size is small. The default
is step(0.01).

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster (clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.
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nograph suppresses the graphical output.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

3.4 Bivariate probit

This next model (known as a recursive simultaneous-equation model) is not actually
an extension of Heckman but was developed independently of Heckman’s work (see
Maddala and Lee [1976]). We include this model in our discussion because it bears a
similarity to the aforementioned models. We begin with (4) and (5) but now interpret
(4) as a latent variable:

Y =xiB+did+e;

4 — 1 ifz;y+u >0

71 0 otherwise

We denote the latent outcome as y; rather than y; to emphasize that it is not directly
observed. The unobservables ¢; and wu; still follow bivariate normal distribution, but
now the variance of ¢; is set to 1:

(u)=(e )]s 1))

The econometrician observes d; and the outcome

)1 ifyr >0
Yi=13 0 otherwise

Syntax for biprobit_fixedrho

In Stata, the command biprobit can be used to fit this model. To maintain a syn-
tax similar to our other commands (for example, heckman fixedrho), which function
similarly, the syntax for our command biprobit_fixedrho differs from biprobit.
biprobit_fixedrho depvar [indepvars] [zf] [m] , eq2(depvar_s = wvarlist_s)

tho (#) [vce(vcetype) level (#) maa:imize,options]

Options for biprobit_fixedrho

eq2(depvar_s = warlist_s) specifies the second equation. eq2() is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.



J. Cook, J.-S. Lee, and N. Newberger 985

rho (#) specifies the correlation between the unobservables in the selection and outcome
equations. rho() is required and must take a value between —1 and 1.

vce (veetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster (clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.

maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

Syntax for biprobit_scanrho

Finally, we provide the syntax for biprobit_scanrho.

biprobit_scanrho depvar [indepvars] [zf] [m], eq2(depvar_s = wvarlist_s)
[minrho(#) maxrho (#) step(#) vce(ucetype) level(z) nograph

mazimize_options ]

Options for biprobit_scanrho

eq2(depvar_s = warlist_s) specifies the second equation. eq2() is required.

depvar_s should be coded as 0 or 1, with 0 indicating an observation not selected
and 1 indicating a selected observation.

minrho (#) specifies the minimum value of correlation between the unobservables in the
selection and outcome equations to be considered. It must take a value between —1
and 1. Note that convergence may be difficult at values of —1 and 1. The default is
minrho(-0.9).

maxrho (#) specifies the maximum value of correlation between the unobservables in
the selection and outcome equations to be considered. It must take a value between
—1 and 1. Note that convergence may be difficult at values of —1 and 1. The default
is maxrho(0.9).

step(#) specifies the size of the step to use when scanning over values of correlation.
This procedure will take a long time to run when the step size is small. The default
is step(0.01).

vce (vcetype) specifies the type of standard errors to be used for the estimates. vcetype
may be oim, robust, cluster (clustvar), opg, bootstrap, or jackknife.

level (#) sets the confidence level. The default is 1level(95) or as set by set level.

nograph suppresses the graphical output.
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maximize_options control the maximization process. Options include difficult,
[no]log, trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), and nonrtolerance. These options are seldom
used.

4 Examples

The help file for each command provides some examples of the syntax. In this section,
we discuss the application of these commands.

b Identification without an exclusion restriction

Our first example considers bounding the potential effect of sample selection when
we do not have a valid exclusion restriction. We use Mroz’s (1987) well-known dataset
of married women’s wages in the 1970s. Some of the women in this dataset do not work,
and thus there is no observed wage for these women. Our interest is in the effect of
education on wage.

We can load this dataset by typing
. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz

Suppose that we want to regress log wage (lwage) on years of education (educ),
experience (exper), and experience squared (expersq). There is a concern that unob-
servable variables (for example, ability) may affect both wage and the probability that
a woman works. We would expect a positive relationship between the effect of ability
on wage and the effect of ability on being in the labor force. This implies that we are
concerned with the values of p that are positive.

For this regression, assume that we do not have access to a variable that affects the
decision to enter the workforce but that does not affect wages directly.
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Let us begin by examining the results when p is 0, that is, when there is no bias for
linear regression:

. heckman_fixedrho lwage educ exper expersq, select(inlf = educ exper expersq)

> rho(0)

initial: log likelihood = -1330.0429
alternative: log likelihood = -1225.9652
rescale: log likelihood = -1199.0668
rescale eq: log likelihood = -998.57232
Iteration O: log likelihood = -998.57232

0
Iteration 1: log likelihood = -900.69048
Iteration 2: log likelihood = -878.80347
Iteration 3: log likelihood = -878.76491
Iteration 4: log likelihood = -878.76491

Heckman with a specified value of rho Number of obs = 753
Wald chi2(3) = 79.60
Log likelihood = -878.76491 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. interval]
lwage
educ .1074896 .0140802 7.63  0.000 .0798929 .1350864
exper .0415665 .0131135 3.17 0.002 .0158645 .0672685
expersq -.0008112 .0003914 -2.07 0.038 -.0015783  -.0000441
_cons -.5220407 .1977017 -2.64 0.008 -.9095289  -.1345524
inlf
educ .0971238 .0221806 4.38 0.000 .0536506 .140597
exper .1271342 .0178655 7.12  0.000 .0921184 .16215
expersq -.0023927 .0005807 -4.12  0.000 -.0035309 -.0012546
_cons -1.925493 .2887175 -6.67 0.000 -2.491369 -1.359618
Insigma
_cons -.4105297 .0341793 -12.01  0.000 -.4775199  -.3435395
sigma .6632988 .0226711 .62032 .7092555
rho 0
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On the other extreme, we can see the results that would be found when fixing p at
0.99:

. heckman_fixedrho lwage educ exper expersq, select(inlf = educ exper expersq)

> rho(0.99)

initial: log likelihood = -1514.4127
alternative: log likelihood = -1186.1468
rescale: log likelihood = -1186.1468
rescale eq: log likelihood = -1159.0735
Iteration O: log likelihood = -1159.0735
Iteration 1: log likelihood = -1138.2448
Iteration 2: log likelihood = -1074.3191
Iteration 3: log likelihood = -1071.6858
Iteration 4: log likelihood = -1071.6609

Iteration 5: log likelihood = -1071.6609

Heckman with a specified value of rho Number of obs = 753
Wald chi2(3) = 152.16
Log likelihood = -1071.6609 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. interval]
lwage
educ .183677 .0310964 5.91  0.000 .1227292 .2446248
exper .2150949 .0269369 7.99 0.000 .1622995 .2678904
expersq -.0043862 .0008355 -5.25  0.000 -.0060236  -.0027487
_cons -3.916096 .4252316 -9.21  0.000 -4.749535  -3.082658
inlf
educ .1120291 .020896 5.36 0.000 .0710736 .1529846
exper .0954691 .0170552 5.60 0.000 .0620416 .1288966
expersq -.0019185 .0005692 -3.37 0.001 -.0030341 -.000803
_cons -1.877612 .2719768 -6.90 0.000 -2.410677  -1.344548
Insigma
_cons .5231776 .03718 14.07  0.000 .4503061 .5960491
sigma 1.687381 .0627369 1.568792 1.814934
rho .99

The coefficient on educ has increased from 0.107 to 0.184 because if the value of p
was equal to 0.99, there would be a negative bias on educ when p is fixed at 0.

Seeing the possible values of the coefficient for different values of p provides bounds
on the true value of the coefficient. In figure 2, we plot the estimated coefficient on educ
as we vary p from 0 to 0.99.
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Figure 2. The estimated coefficient for various values of p

b Finding maximum likelihood estimates

Our next example is a situation in which we have a valid exclusion and want to verify
that we found the (true) maximum likelihood estimate. We use the specification from
Zuehlke (2017), for which an author had reported a local rather than a global maximum
of the likelihood function.

We begin with the Mroz dataset used in the previous example. We now use the
data on family income (faminc) and the number of children (the sum of kids1t6 and
kidsge6) for our excluded variables. Unlike the previous example, our dependent vari-
able is now raw wage instead of log wage.

Set up by loading the dataset and creating two new variables:

. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz, clear
. generate agesq = age”2
. generate child = kidslt6 + kidsge6
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Call heckman:

. heckman wage educ exper expersq city,
> select(inlf = age agesq faminc child educ)

Iteration O: log likelihood = -1579.565
Iteration 1: log likelihood = -1579.4992
Iteration 2: log likelihood = -1579.4984
Iteration 3: log likelihood = -1579.4984
Heckman selection model Number of obs 753
(regression model with sample selection) Selected = 428
Nonselected = 325
Wald chi2(4) = 43.81
Log likelihood = -1579.498 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. intervall
wage
educ .4679386 .0766016 6.11  0.000 .3178023 .6180749
exper .0291692 .0620275 0.47 0.638 -.0924025 .1507409
expersq -.0001513 .0018553 -0.08 0.935 -.0037876 .003485
city .4467801 .3160013 1.41  0.157 -.172571 1.066131
_cons -2.233281 1.330283 -1.68 0.093 -4.840587 .3740248
inlf
age .164907 .0648387 2.54 0.011 .0378255 .2919884
agesq -.0021891 .0007541 -2.90 0.004 -.0036671 -.000711
faminc 4.58e-06 4.53e-06 1.01  0.311 -4.29e-06 .0000135
child -.1506999 .0382955 -3.94 0.000 -.2267576  -.0756422
educ .0906133 .023413 3.87 0.000 .0447246 .136502
_cons -3.708868  1.398727 -2.65 0.008 -6.450321  -.9674141
/athrho -.0709249 .2065123 -0.34 0.731 -.4756817 .3338318
/1nsigma 1.130613 .0352108 32.11  0.000 1.061601 1.199625
rho -.0708063 .205477 -.4427786 .3219596
sigma 3.097555 .1090674 2.890996 3.318872
lambda -.2193263 .6383778 -1.470524 1.031871
LR test of indep. eqns. (rho = 0): chi2(1) = 0.08 Prob > chi2 = 0.7747

It is strange that Stata has reported a negative value of p; our intuition tells us that
this should be positive.
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Next we use heckman_scanrho, which will plot values of the likelihood function for
each value of p:

. heckman_scanrho wage educ exper expersq city,
> select(inlf = age agesq faminc child educ)
Performing estimation for each value of rho...

initial: log likelihood = -6697.0169
alternative: log likelihood = -2918.6299
rescale: log likelihood = -2029.7693
rescale eq: log likelihood = -1650.8254
Iteration O: log likelihood = -1650.8254

0
Iteration 1: log likelihood = -1525.1016
Iteration 2: log likelihood = -1518.6474
Iteration 3: log likelihood = -1518.5761
Iteration 4: log likelihood = -1518.5761

Heckman with a specified value of rho Number of obs = 753
Wald chi2(4) = 97.30
Log likelihood = -1518.5761 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. interval]

wage
educ .6481271 .069892 9.27  0.000 .5111413 .7851129
exper .0911848 .0489938 1.86 0.063 -.0048412 .1872108
expersq -.001739 .0014851 -1.17  0.242 -.0046497 .0011716
city .1995114  .2570384 0.78 0.438 -.3042746 .7032974
_cons -7.024693 .9418348 -7.46  0.000 -8.870655 -5.17873

inlf
age .061538 .0474361 1.30 0.195 -.0314351 .1545111
agesq -.0008165 .0005495 -1.49 0.137 -.0018936 .0002605
faminc -5.36e-06  3.24e-06 -1.65 0.098 -.0000117 9.97e-07
child -.05657783 .0279414 -2.00 0.046 -.1105425 -.0010142
educ .1372242 .021643 6.34 0.000 .0948048 .1796436
_cons -2.42091 1.039939 -2.33 0.020 -4.459153  -.3826664

Insigma
_cons 1.294831 .0352411 36.74 0.000 1.225759 1.363902
sigma 3.650378 .1286434 3.406752 3.911426
rho .89

The resulting plot is presented in figure 3. There is a root at p = —0.07, which
is the result reported by Stata. The global maximum is around p = 0.89. Also note
the difference in the log likelihoods reported for these two estimates. At the global
maximum of 0.89, the log likelihood is —1,518.58, whereas at —0.07 it is —1, 579.50.



992 On Heckman models

o
N
n -
—
'
S
o 4
sAa
© !
>
8
83
S
T
=
pa}
(o)
58
n -
—
'
o
o
o
-—Il T T T T T
-1 -5 0 .5 1
Rho

Log Likelihood Maximum‘

Figure 3. The value of the log-likelihood function for various values of p; the dot
indicates the point at which the likelihood is maximized

By default, the step size is set to 0.01. It may be advisable to use a smaller step
size to obtain a more accurate estimate. This may be especially helpful if the results of
heckman_scanrho are being passed to heckman as initial values.

We can find the correct standard errors by setting initial values for Stata’s heckman
command near the estimates found by heckman_scanrho. heckman_scanrho returns a
matrix that can be passed to heckman as the initial values.

We first save this matrix:

. matrix startv = e(init_values)
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We then pass this matrix to heckman:

. heckman wage educ exper expersq city,
age agesq faminc child educ) from(startv, copy)

> select(inlf

993

Iteration O: log likelihood = -1518.5761
Iteration 1: log likelihood = -1507.4948
Iteration 2: log likelihood = -1486.0866
Iteration 3: log likelihood = -1480.4704
Iteration 4: log likelihood = -1480.0801
Iteration 5: log likelihood = -1480.0792
Iteration 6: log likelihood = -1480.0792
Heckman selection model Number of obs 753
(regression model with sample selection) Selected = 428
Nonselected = 325
Wald chi2(4) = 86.48
Log likelihood = -1480.079 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z]| [95% conf. intervall
wage
educ .6677479 .0767392 8.70  0.000 .5173419 .8181539
exper .0641402 .0326946 1.96 0.050 .00006 .1282203
expersq -.0008423 .0010354 -0.81 0.416 -.0028717 .0011871
city .0253211 .1930123 0.13 0.896 -.3529761 .4036183
_cons -7.561446  1.001272 -7.55  0.000 -9.523904 -5.598989
inlf
age -.0138954 .0311176 -0.45 0.655 -.0748848 .0470939
agesq .0001649 .0003628 0.45 0.649 -.0005462 .000876
faminc -6.29e-06  2.38e-06 -2.64 0.008 -.000011 -1.62e-06
child -.0058901 .015534 -0.38 0.705 -.0363362 .024556
educ .1572075 .0198417 7.92  0.000 .1183184 .1960966
_cons -1.40227 .6973208 -2.01 0.044 -2.768993 -.035546
/athrho 2.872177 .2425491 11.84 0.000 2.39679 3.347565
/1nsigma 1.441164 .0398443 36.17  0.000 1.363071 1.519257
rho .9936188 .0030856 .9835706 .9975292
sigma 4.225612 .1683666 3.908175 4.568831
lambda 4.198647 .1729926 3.859588 4.537707
LR test of indep. egns. (rho = 0): chi2(1) = 198.92 Prob > chi2 = 0.0000

We are confident that these are the true maximum likelihood estimates from the
plot in figure 3. Note that heckman_scanrho found that the value of p was 0.89 rather
than 0.99 because, by default, heckman _scanrho will step through values of p equal to
—0.90, —0.89, ..., 0.89, and 0.90.

d
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b Comparing heckman estimates with those of heckman_fixedrho

Finally, we want to mention the differences between heckman and heckman_fixedrho
when it is provided with the same value of p that was found by heckman. We use the
specification from the previous example but return to using log wage instead of raw
wage. First, we call heckman:

. heckman lwage educ exper expersq city,
> select(inlf = age agesq faminc child educ)

Iteration 0: log likelihood = -917.31049 (not concave)
Iteration 1: log likelihood = -916.06289
Iteration 2: log likelihood = -912.80399
Iteration 3: log likelihood = -911.72529
Iteration 4: log likelihood = -911.72356
Iteration 5: log likelihood = -911.72356

Heckman selection model Number of obs = 753
(regression model with sample selection) Selected = 428
Nonselected = 325
Wald chi2(4) = 27.06
Log likelihood = -911.7236 Prob > chi2 = 0.0000
Coefficient Std. err. z P>zl [95% conf. intervall]

lwage
educ .065685 .0166021 3.96 0.000 .0331455 .0982245
exper .0225033 .0130791 1.72 0.085 -.0031313 .0481379
expersq -.0002975 .0003815 -0.78 0.436 -.0010452 .0004502
city .0551856 .0655468 0.84 0.400 -.0732837 .1836549
_cons .5283402 .2483942 2.13 0.033 .0414966 1.015184

inlf
age .1125716 .0566393 1.99 0.047 .0015607 .2235826
agesq -.0014949 .0006643 -2.25 0.024 -.0027968 -.000193
faminc .0000114 3.77e-06 3.03 0.002 4.03e-06 .0000188
child -.0883215 .0342274 -2.58 0.010 -.1554061 -.021237
educ .0730682 .0217579 3.36 0.001 .0304235 .1157128
_cons -2.846018 1.209941 -2.35 0.019 -5.217458 -.4745777
/athrho -1.105663 .1342836 -8.23 0.000 -1.368854 -.8424716
/1nsigma -.1969906 .05632265 -3.70 0.000 -.3013126 -.0926686
rho -.8025238 .047799 -.8784306 -.687116
sigma .8211984 .0437095 .7398465 .9114955
lambda -.6590312 .0696919 -.7956249 -.5224376

LR test of indep. eqns. (rho = 0): chi2(1) = 16.96 Prob > chi2 = 0.0000
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We now call heckman_fixedrho with the same value of p that was found by heckman:

. heckman_fixedrho lwage educ exper expersq city,
> select(inlf =

age agesq faminc child educ) rho(-0.8025238)

initial: log likelihood = -1698.4165
alternative: log likelihood = -1332.7154
rescale: log likelihood = -1332.7154
rescale eq: log likelihood = -1037.9961
Iteration O: log likelihood = -1037.9961
Iteration 1: log likelihood = -975.5364
Iteration 2: log likelihood = -923.50073
Iteration 3: log likelihood = -921.99429
Iteration 4: log likelihood = -921.99373
Iteration 5: log likelihood = -921.99373
Heckman with a specified value of rho Number of obs = 753
Wald chi2(4) = 54.17
Log likelihood = -921.99373 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. intervall
lwage
educ .0852383 .0146806 5.81 0.000 .0564647 .1140118
exper .0338607 .0129758 2.61 0.009 .0084287 .0592927
expersq -.0005855 .0003863 -1.52  0.130 -.0013426 .0001717
city .0508706 .0668876 0.76  0.447 -.0802267 .181968
_cons .0800034 .2031224 0.39 0.694 -.3181091 .4781159
inlf
age .1951647 .0761932 2.56 0.010 .0458287 .3445007
agesq -.0025797 .0008888 -2.90 0.004 -.0043217  -.0008377
faminc 9.96e-06 4.72e-06 2.11  0.035 7.08e-07 .0000192
child -.1733396 .0452645 -3.83 0.000 -.2620565  -.0846227
educ .1007933 .0280072 3.60 0.000 .0459002 .1556863
_cons -4.737372  1.646762 -2.88 0.004 -7.964967 -1.509778
Insigma
_cons -.325461 .0343588 -9.47  0.000 -.3928029 -.258119
sigma .7221944 .0248137 .6751618 . 7725033
rho -.8025238

The coefficients between these two are noticeably different. The source of difference
is the maximization procedure being employed. The procedure used by heckman is
preferable to the one used by heckman fixedrho because it uses information about the
first and second derivatives of the log-likelihood function. Notice that the log-likelihood
value obtained by heckman is greater than the one obtained by heckman fixedrho
(—911.72 compared with —921.99). This is important: because heckman_scanrho calls
heckman_fixedrho, the user needs to verify that the results found by heckman_scanrho
do in fact improve the log likelihood relative to the results found by heckman.

d
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5 Discussion and conclusion

Several extensions of this work are possible. We maintained the bivariate normality
assumption in all of these models. This could be relaxed in several ways. Altonji,
Elder, and Taber (2005) use Heckman and Singer’s (1984) approach for allowing for
deviations for normality, which involves treating the stochastic terms as having a discrete
component. Modeling the stochastic terms as a mixture of normals would also allow for
some deviations from normality.

Another extension would be to change the maximization procedure used. Stata has
several options for maximizing likelihood functions, which differ in whether derivatives
of the likelihood functions are provided. The maximization methods that we used do
not use any information about derivatives of the likelihood function. As a result, there
may be specifications for which heckman converges but heckman fixedrho does not
converge (in addition to potential differences between the estimators as mentioned in
the last example). This is because heckman uses information about the first and second
derivative of the likelihood function.

The commands that we presented can be used to examine the sensitivity of regression
results to sample selection or endogenous treatment and to verify that the results of a
Heckman model are the global maximum of the likelihood function.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-4
. net install st0658 (to install program files, if available)
. net get st0658 (to install ancillary files, if available)
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