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Abstract. Many studies estimate the impact of exposure to some quasiexper-
imental policy or event using a panel event study design. These models, as a
generalized extension of “difference-in-differences” designs or two-way fixed-effects
models, allow for dynamic leads and lags to the event of interest to be estimated,
while also controlling for fixed factors (often) by area and time. In this article, we
discuss the setup of the panel event study design in a range of situations and lay
out several practical considerations for its estimation. We describe a command,
eventdd, that allows for simple estimation, inference, and visualization of event
study models in a range of circumstances. We then provide several examples to
illustrate eventdd’s use and flexibility, as well as its interaction with various na-
tive Stata commands, and other relevant community-contributed commands such
as reghdfe and boottest.

Keywords: st0655, eventdd, event studies, difference-in-differences, estimation,
inference, visualization

1 Introduction

Recent developments in quasiexperimental methods have brought increasing attention
to panel event study models. When one uses data covering a panel of observations (such
as states) over time, the design seeks to estimate the impact of some event that occurs,
or “switches on” in certain units and certain time periods.! These models seek to use
as counterfactuals the areas in which the policy or event does not occur or has not yet
occurred. By considering the variation in outcomes around the adoption of the event
compared with a baseline reference period, one can estimate both event leads and lags,
which allows for a clear visual representation of the event’s causal impact provided that
key identifying assumptions are met.

These methods have been borne out of older difference-in-differences (DD) designs,
or two-way fixed-effects models. These models often seek to examine the impact of
natural experiments, where events are assigned to certain units due to some process

1. Throughout this article, for expositional purposes, we will refer to a geographical and a temporal
dimension to these panel event study designs. However, we note that such models are suitable to
other settings where one wishes to estimate the impact of an event that is assigned to certain units
and where there is some temporal variation in outcomes to be studied. For example, rather than
being based on different geographical units at different times, these models could be based on an
event occurring in different age groups at different times. All results discussed in this article extend
to settings such as these.

© 2021 StataCorp LLC st0655
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beyond the control of the analyst but owing to environmental or political factors (among
others), and thus, generally do not assume that assignment is random. Indeed, as we lay
out at more length in the following section, the key assumption underlying consistent
estimation in event study models is that the occurrence of the event in a particular area
is not systematically related to the changes in levels that would have occurred in the
future in the absence of the event.

These models are widely used in empirical analyses in a range of contexts, hav-
ing been applied to (among many others themes) automotive plant closures and opioid
overdoses (Venkataramani et al. 2020), family planning access and childhood economic
circumstance (Bailey, Malkova, and McLaren Forthcoming), healthcare reform and am-
bulatory care usage (Dimitrovové, Perelman, and Serrano-Alarcén 2020), and university
reform and intergenerational mobility (Suhonen and Karhunen 2019). These cases sug-
gest use across a range of fields, including social sciences, medicine and public health,
and additional reviews of their frequency of use in several economic journals are provided
in Abraham and Sun (2018); Roth (2019). A burgeoning literature has laid out several
identification requirements in this setting (Freyaldenhoven, Hansen, and Shapiro 2019;
Borusyak and Jaravel 2018; Abraham and Sun 2018; Athey and Imbens Forthcoming;
Schmidheiny and Siegloch 2019). These methods can be used, with some restrictions,
both in cases where events occur at the same time period in each unit and in cases
where the adoption of events is staggered. Indeed, Athey and Imbens (Forthcoming)
refer to these as “staggered adoption designs”, although here we follow the more com-
mon nomenclature of panel event studies.? Additionally, these methods are related to a
much broader literature on staggered adoption of policies and the estimation of a single-
coefficient model (de Chaisemartin and D’Haultfoeuille 2019; Callaway and Sant’Anna
2018; Goodman-Bacon 2018). While we briefly discuss these models in the methods
section, our principal interest is on full panel-event study specifications that come with
their own considerations.

In this article, we discuss these panel-event study models and practical issues related
to their estimation and to inference in these settings. We also present the eventdd
command, which allows for estimation and inference in event studies, as well as several
postestimation procedures and the graphical presentation of estimates and confidence
intervals (CIs).> This command can flexibly interact with both official Stata commands
such as regress and xtreg, as well as the community-contributed regression command
reghdfe (Correia 2014), which is highly convenient in two-way fixed-effects models
such as those described in this article (Correia 2016). We discuss both estimation and
inference in event study models. As well as standard inference procedures such as robust
and cluster-robust inference, the eventdd command allows for wild bootstrap-based
inference respecting the clustered nature of the occurrence of events and, specifically,
the community-contributed boottest command (Roodman et al. 2019). After reviewing

2. Older literature, often related to the analyses of financial events and information shocks, refers to
event studies. These event studies in finance are generally based on time-series observations and
have quite different properties to the panel event studies used in policy analysis that we discuss in
this article. A useful discussion of these finance-style event studies, and their application in Stata,
is provided in Pacicco, Vena, and Venegoni (2018).

3. An earlier version of this command is available in Clarke and Tapia-Schythe (2020).
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the theory behind panel event study models in section 2, we discuss the command syntax
in section 3, before documenting the command’s usage, applied to a particular empirical
example, in section 4.

2 Methods

2.1 Estimation

Consider a panel covering a group, indexed as g and time periods t. We are interested
in estimating the impact of the passage of an event that may occur at different times
in different groups. We will denote as Event, a variable recording the time period ¢ in
which the event is adopted in group g. Denoting the outcome of interest as y4;, we can

write the panel event study specification as*
J K
Yt =+ Bj(Lead j)ge + Y vi(Lag k)gr + p1g + A + X, T + 2 (1)
=2 k=1

Here p1y and A are group and time fixed effects, X, are (optionally) time-varying
controls, and €4 is an unobserved error term. In (1), leads and lags to the event of
interest are defined as follows:

(Lead J)yt = 1(t < Eventy —J) (2)
(Lead j)g¢ = 1(t =Event, —j) forje{1,...,J -1} (3)

(Lag k)g¢ = 1(t =Eventy+ k) for k€ {1,..., K —1} (4)
(Lag K)g¢t = 1(t > Eventy + K) (5)

Leads and lags are thus binary variables indicating that the given group was a given
number of periods away from the event of interest in the respective time period. J

4. There are several ways to specify such a model. Slightly different notations are used by Schmidheiny
and Siegloch (2019), who define the model as

J
Vgt = 2 Bibl + g + At + gt
i=J
where
It < Eventy, +j) ifj=j

b, = 1(t=Eventy +j) ifj<j<j
1(t > Eventy +4) ifj=3

and where j is equivalent to our definition of J and j is equivalent to our K. Freyaldenhoven,
Hansen, and Shapiro (2019) define a version of this model as

K-1
Yot =6kt (L =291y (c 1) TOL4zgu-L+ D O_kDzgerk +pg+ M +egr
k=—(L—-1)
where 25t = Post eventy: as defined in table 1, z4 ;1 and z4;_p refer to leads and lags of this

variable, respectively, and A refer to the first difference of these lead/lag terms. These models, and
the one laid out in (1)—(5), are equivalent.
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and K leads and lags are included, respectively, and, as indicated in (2) and (5), final
leads and lags “accumulate” leads or lags beyond J and K periods. A single lead or lag
variable is omitted to capture the baseline difference between groups where the event
does and does not occur. In (1), as standard, this baseline omitted case is the first lead
(one period prior to the reform), where j = 1.

A stylized example of such a setting is provided in table 1. We consider four groups
forming a balanced panel of years from 2000-2009. The Event, variable occurs at
different times in different groups and, in the case of one group, does not occur. Here
both four leads and four lags are included, such that J = K = 4. Lead and Lag 4
(exclusively) are switched on for periods in which the “Time to event” exceeds 4 leads
or lags, respectively.

Table 1. A stylized example

Group Year Event Post Timeto Lead Lead --- Lag Lag --- Lag
(9) (t) event event 4 3 0 1 4

Group B 2000 2005 0 -5 1 0 0 0 0
Group B 2001 2005 0 —4 1 0 0 0 0
Group B 2002 2005 0 -3 0 1 0 0 0
Group B 2003 2005 0 -2 0 0 0 0 0
Group B 2004 2005 0 -1 0 0 0 0 0
Group B 2005 2005 1 0 0 0 1 0 0
Group B 2006 2005 1 1 0 0 0 1 0
Group B 2007 2005 1 2 0 0 0 0 0
Group B 2008 2005 1 3 0 0 0 0 0
Group B 2009 2005 1 4 0 0 0 0 1

Continued on next page
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Table 1 (continued)

Group Year Event Post Timeto Lead Lead --- Lag Lag --- Lag
(9) (t) event event 4 3 0 1 4

Group D 2000 2007 0 -7 1 0 0 0 0
Group D 2001 2007 0 —6 1 0 0 0 0
Group D 2002 2007 0 -5 1 0 0 0 0
Group D 2003 2007 0 —4 1 0 0 0 0
Group D 2004 2007 0 -3 0 1 0 0 0
Group D 2005 2007 0 -2 0 0 0 0 0
Group D 2006 2007 0 -1 0 0 0 0 0
Group D 2007 2007 1 0 0 0 1 0 0
Group D 2008 2007 1 1 0 0 0 1 0
Group D 2009 2007 1 2 0 0 0 0 0

Groups in which the event never occurs (such as Group C in table 1) act as pure
controls. These units have 0Os in all lead and lag terms and act as the counterfactual on
which the estimation of impacts is based. Differences between these pure control groups
and groups which adopt the event of interest are anchored at 0 in the omitted base
period, that is, the first lead in (1). Hence, leads and lags capture the difference between
treated and control groups, compared with the prevailing difference in the omitted base
period. Unbiased estimation of postevent treatment effects thus relies fundamentally
on the so called parallel trends assumption. In the absence of treatment, it is assumed
that treated and control groups would have maintained similar differences as in the
baseline period. Thus, these models have been demonstrated to be underidentified, or
identified only up to a linear trend, when all units adopt treatment at some point in
time (Schmidheiny and Siegloch 2019; Borusyak and Jaravel 2018). Schmidheiny and
Siegloch (2019) show that in this case, it is necessary to bin leads and lags beyond
certain maximum lead (J) and lag (K') periods.

The panel event study is an extension of the standard two-way fixed-effects (some-
times called DD) model, where a single “Post event” indicator is included for all periods
posterior to the occurrence of the event in treated groups. This is simply

Ygt =  + B Post eventy; + g + A + X[, T + ey (6)
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where following the notation from (2)—(5), Post event,, = 1(¢t > Event,). Estimation
of event specification (1) provides two key pieces of information not observable in this
single-coefficient model. First, the full set of event leads allows for the inspection of
parallel trends in the pretreatment period. While this does not provide evidence that
the units in which the event was adopted and not adopted would have necessarily
followed similar trends in the postreform period (Kahn-Lang and Lang 2020) (which is
the identifying assumption of these models), if trends in treated and untreated areas
were not parallel even preevent, it is unlikely that they would be parallel postevent.
Second, the policy lags allow for inspection of the temporal nature of treatment effects,
noting any dynamics in the appearance of effects, for example, increasing or decreasing
effects over time, and whether effects are transitory or permanent.

A developing literature, including articles by de Chaisemartin and D’Haultfoeuille
(2019), Callaway and Sant’Anna (2018), and Goodman-Bacon (2018), point to chal-
lenges in interpreting the estimated B from two-way fixed-effects models when treat-
ment effects are heterogeneous (across either groups or time periods). Goodman-Bacon
(2018), for example, demonstrates that treatment effects that are heterogeneous in time
since treatment in contexts where treatments are adopted in different time periods in
different groups can result in estimates that are biased away from a weighed average
of the average treatment effect on the treated, a problem that is resolved in the panel
event study design. However, results from Abraham and Sun (2018) suggest that spe-
cific types of heterogeneity concerns remain even in panel event study models examined
here. In particular, they note undesired weighting of treatment effects if there is het-
erogeneity across treatment groups in particular lead and lag terms. Other concerns
exist in event study designs, such as possible inferential problems related to selective
survival of models based on pretrend tests (Roth 2019). The eventdd command will not
account for corrections raised in these particular settings, because these are inherent to
empirical estimation of panel event study designs. We do note, however, that there are
several alternative estimators that are complementary to panel event study designs and
that should be considered as part of a complete estimation and testing procedure, such
as the stacked DD procedure of Abraham and Sun (2018), sensitivity tests described
in Roth (2019) and Rambachan and Roth (2020), and alternative models to account
for dynamic paths of treatment effects, such as those described in de Chaisemartin and
D’Haultfoeuille (2019) and Callaway and Sant’Anna (2018). As many of these have
existing estimation libraries in some languages, when discussing the command syntax
of eventdd in section 3 and examples of use in section 4, we discuss ways in which
eventdd and its returned objects have been designed to facilitate interaction with these
other commands.

2.2 Inference

A standard inference concern where policies are assigned by some group such as a
state, and outcomes are followed over time within these groups, is related to potential
serial-correlation in the outcome variable over time (Bertrand, Duflo, and Mullainathan
2004). While the derivations from Bertrand, Duflo, and Mullainathan (2004) are based
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on single-coefficient models of the form of (6), the crux of the concern relates to high
serial correlation in the outcome variable of interest, and relatively little change in
the independent variables of interest. This setting is replicated in event study models
described in (1)—(5). It is thus fundamental to account for this within-cluster correlation
when conducting inference in such models.

The standard solution is to allow for within-cluster auto-correlation by using a
cluster-robust variance-covariance estimator (CRVE) to estimate standard errors and
CIs on regression parameters. Such an estimator is provided as standard in Stata
by specifying the vce(cluster clustvar) option in e(class) models.” However, as has
been extensively documented, standard CRVEs are only asymptotically valid, where the
asymptotic behavior depends on the number of clusters (or groups) G — oo (see, for
example, the comprehensive review in Cameron and Miller [2015]). When standard
clustering is used based on “too few” clusters, the CRVE is generally downward biased,
resulting in overrejection of null hypotheses. This bias can be severe (Cameron and
Miller 2015; MacKinnon and Webb 2018).

In practice, knowing how many clusters is “too few” depends on several factors.
While rules of thumb such as the rule of 42 are laid out in Angrist and Pischke (2009),
who suggest that standard clustering provides a good approximation if G > 42 clusters,
the performance of these methods under simulation has been shown to depend also on
the relative size of clusters (MacKinnon and Webb 2017). A range of results surveyed in
Cameron and Miller (2015) leads to their suggestion that if one is analyzing data with
fewer than 50 clusters in a group-year panel (such as the case with panel event studies),
alternative inference methods should be considered.

In this case where the quasiexperimental setup is based on fewer than about 50
clusters, the wild cluster bootstrap has been documented to be a successful resampling-
based method to account for autocorrelation in variables underlying panel event studies,
even in cases with fewer clusters (see, for example, Cameron, Gelbach, and Miller [2008];
Cameron and Miller [2015]; Roodman et al. [2019]). This has been efficiently imple-
mented in Stata as described in Roodman et al. (2019) and programmed for Stata as
boottest (Roodman 2015). Finally, note that in the case of very few clusters, and in
particular few clusters where an event occurs, inference is further complicated. In cases
such as this, several potential solutions have been proposed, such as those described in
MacKinnon and Webb (2018) and Conley and Taber (2011). As we lay out in the fol-
lowing sections, the eventdd command allows simple access to various inference options
depending on the context of interest, including standard clustering, bootstrap, and wild

5. Denoting the matrix of k independent variables as X, the dependent variable vector as y, and
the vector of regression coefficients as 3, this CRVE in Stata for a linear regression model with N
observations in G clusters is estimated using

G
Vor (B) = (x'x)™! (Z Xgagaqug) (X'X)"!
g=1

Here g = \/ctig, where ¢ is a small sample correction ¢ = {G/(G — 1)} x {(N —1)/(N —k)} and
u =y — X B are standard regression residuals (Cameron, Gelbach, and Miller 2008).
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cluster bootstrap in various guises based on both Stata’s native CRVE procedures, as
well as the community-contributed boottest command.

3 The eventdd command

3.1 Syntax

Panel event studies can be implemented in Stata using the following command syntax:

eventdd depvar [indepvars] [zf] [m] [wez’ght], timevar (timevar)
[ci(type[, ]) baseline(#) level(#) accum leads(#) lags(#) noend
keepbal (varname) method(type[, absorb(absvars) * ]) wboot
wboot_op(string) balanced inrange noline graph op(string) coef_op(string)

endpoints_op(string) keepdummies }

The required depvar should specify the dependent variable of interest, and then in-
depvars should specify (where relevant) the optional controls, including fixed effects to
be included in the panel event study model (1) but not including leads and lags, that
should be entered in the regression. pweights, aweights, fweights, and iweights are
allowed; see [U] 11.1.6 weight. The method () option specifies the estimation procedure
for the underlying model and can be ols (ordinary least squares), fe (fixed effects), or
hdfe (absorbing multiple levels of fixed effects with the community-contributed reghdfe
command). If no estimation method is specified, ols is used by default. In the case
of fixed-effect (fe) or high-dimension fixed-effect (hdfe) models, fixed effects can be
absorbed (as discussed in the options below) and thus need not be entered in the stan-
dard warlist syntax. In the case of fe specifications, data must first be xtset in Stata.
Based on this syntax, eventdd takes care of the generation of all lead and lag terms,
estimation and inference, and the production of an event study plot. The eventdd com-
mand requires previous installation of the matsort (Millar 2005) command from the
Statistical Software Components Archive. Examples of usage of eventdd are provided
in section 4 of this article.

3.2 Options

timevar (timevar) is a required option. The time variable specified should contain a
standardized value, where O corresponds to the time period in which the event of
interest occurs for a given unit, —1 refers to one year prior to the event, 1 refers to
one year following the event, and so forth. For any units in which the event does
not occur (pure controls), this variable should contain missing values.

ci(type[, ...]) specifies the type of graph for the CIs. The types available are rarea
for an interval with area shading (twoway rarea), rcap for an interval with capped
spikes (twoway rcap), and rline for an interval with lines (twoway rline). Only
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one type can be specified, and all intervals will be the same type. The appearance
can be modified with the inclusion of any graphing option for the CIs permitted
in rarea, rcap, or rline depending on the type of CI indicated, including area
options, line options, and connect options, respectively. This does not allow the use
of the general options such as titles and legends, which should be specified in the
graph_op () option. By default, standard rcap graphical output will be provided.

baseline(#) specifies the reference period for the event study, which is a baseline
omitted category to which all other periods should be compared in the event study
output. The default is baseline(-1) as in (1).

level (#) specifies the confidence level, as a percentage, for the CIs. The default is
level(95) or as set by set level. This sets the levels for CIs in regression output,
as well as the event study plot and returned matrices. This will also be passed to
boottest if wild clustered CIs are requested.

accum specifies that all periods beyond some specified values should be accumulated
into final points, indicated as J and K in (1). For example, if accum is specified
and leads(#) and lags(#) are both set equal to 10, a single coefficient will be
displayed in regressions and graphical output capturing 10 or more periods pre- or
postreform. By default, all possible leads and lags will be included in models and
graphical output.

leads (#) indicates the maximum amount of preevent periods to consider in the event
study. This can be specified (and must be specified) only if accum, keepbal (), or
inrange is also specified. Only integer values are permitted.

lags (#) indicates the maximum amount of postevent periods to consider in the event
study. This can be specified (and must be specified) only if either accum, keepbal (),
or inrange is also specified. Only integer values are permitted.

noend requests that accumulative endpoints not be shown on graphical output when
the accum option is specified.

keepbal (varname) specifies that only units that are balanced in the panel should be
kept for estimation. Here varname indicates the panel variable (for example, state)
that indicates units. In this case, “balance” refers to balance over calendar time. An
alternative option (balanced), discussed below, allows for only balanced leads and
lags relative to treatment to be considered in graphical output.

method(type[ , absorb(absvars) * ... ]) specifies the method of estimation for the
event study model underlying graphical output. ols requests that the model be
fit by ordinary least squares using Stata’s regress command, fe requests that the
model be fit by fixed-effects (within) estimation using Stata’s xtreg, fe command,
and hdfe requests that the model be fit using the community-contributed reghdfe
command (if installed). * represents any other estimation options included and
permitted by regress, xtreg, or reghdfe that will be passed to the specified esti-
mation command. This allows for the inclusion of clustered standard errors or other
variance estimators (see [R] vce_option) and allows for alternative levels for CIs to
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be used (see level()). For ols, unit-specific fixed effects and time-specific fixed
effects must be included in the indepvars indicated in the command syntax. For
fe, unit-specific fixed effects should not be included in the indepvars indicated, but
time-specific fixed effects still need to be. Finally, for hdfe, the absorb (absvars)
option should also be specified to indicate which fixed effects should be controlled
in the regression (refer to reghdfe, if installed, for additional details), and any fixed
effects indicated in absorb(absvars) should not be included in the indepvars indi-
cated. hdfe cannot be used in combination with the wboot option. The default is
method(ols).

wboot indicates that inference in the event study plot produced by the command should
be based on wild cluster bootstrapped CIs. When indicated, CIs for each lead and lag
term will be calculated using a wild cluster bootstrap. This requires the community-
contributed boottest command of Roodman (2015) (if installed). This option may
not be combined with the hdfe estimation option.

wboot_op (string) allows for the inclusion of any other wild bootstrap option permitted
in boottest, including seed(#) to set the seed for simulation-based calculations
allowing replication of the CIs and bootclust (varname) to specify which variables
to cluster the wild bootstrap upon. Setting the level (which is 95 by default) should
be indicated in the level() option of the command, and this will be passed to
wboot_op(). The nograph option is specified automatically when the wboot option
is used.

balanced requests that only “balanced” leads and lags be plotted. This will produce a
graph showing only leads and lags for which each treated unit has data, and thus, all
coefficients plotted will be based on all units in the data. While only balanced leads
and lags will be plotted, all units and time periods will be included in the estimation
of the event study.

inrange requests that only the specified leads and lags be plotted. While only leads
and lags indicated in leads(#) and lags(#) will be plotted, all units and time
periods will be included in the estimation of the event study.

noline requests that the line before the event on the z axis not be shown on graphical
output.

graph_op (string) allows for the inclusion of any other graphing options permitted in
twoway-options, including title_options, added_lines_options, and axis_label_options.
This also allows for the use of alternative labels for graph axes. By default, standard
graphical output will be provided.

coef_op (string) allows for the inclusion of any graphing option for the coefficients per-
mitted in scatter, including marker_options and marker_label_options. This does
not allow for the use of the general options of graph op(). By default, standard
graphical output will be provided.

endpoints_op(string) allows for the inclusion of any graphing option for the end-
point coefficients permitted in scatter, including marker_options and marker_label_
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options. This is available only if specifying the accum option and does not allow for
the use of the general options of graph_op(). By default, standard graphical output
will be provided.

keepdummies requests that the dummy variables of all leads and lags used in the es-
timation be included in the database. One must save the data before running the
command with the keepdummies option (the first time this option is used), or oth-
erwise data in memory will be lost. This option is necessary to perform joint signif-
icance tests using a wild or score bootstrap with the postestimation commands (see
discussion below).

3.3 Stored results

eventdd stores the following in e ():

Scalars
e(baseline) baseline period specified
e(level) confidence level
Macros
e(cmd) eventdd
e(cmdline) command as typed
e(depvar) name of dependent variable
e (wtype) weight type
e(clustvar) name of cluster variable
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
Matrices
e(b) coefficient vector
e(\) variance—covariance matrix of the estimators
e(leads) all event leads, their lower bound, the point estimate, and
their upper bound
e(lags) all event lags, their lower bound, the point estimate, and
their upper bound
e(V_leads_lags) variance—covariance matrix of the leads and lags estimators

Note that methods related to event study models such as that described by Rambachan
and Roth (2020) rely on access to point estimates and standard errors of lead and lag
terms, which are available through the matrices returned here.

3.4 Postestimation commands

Several postestimation commands are available after using the eventdd command.
These are available for joint tests of leads and lags or the joint significance of all lead and
lag parameters. Specifically, the below-listed postestimation commands are of special
interest after eventdd.

Command Description
estat leads joint significance test for leads
estat lags joint significance test for lags

estat eventdd joint significance test for leads and lags
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Unless otherwise requested, these postestimation commands conduct F' tests of the joint
significance of parameters. However, wild clustered bootstrap versions of the joint tests
can be conducted with the following options:

Options  Description

wboot joint significance test using boottest command;
requires specifying the keepdummies option in eventdd;
nograph option is already specified in boottest

specify any additional options that should be passed
to the joint significance test; options should be permitted
by test or boottest (if specifying the wboot option)

boottest does not work after reghdfe with more than one set of fixed effects.

4 Examples based on an empirical application

We now provide several illustrations of the performance of eventdd to estimate the
panel event study in empirical applications. We use data from Stevenson and Wolfers
(2006) of the no-fault divorce reforms and female suicide in United States. These data
have been used in other articles to demonstrate the functionality of recent advances in
two-way fixed-effect models (see Goodman-Bacon [2018]) and are drawn from examples
used in documenting such methods when used in Stata (Goodman-Bacon, Goldring,
and Nichols 2019).6 The data consist of a balanced panel with 49 states observed from
1964 to 1996 with different timing of unilateral divorce reforms across the states.

The specification of the baseline two-way fixed-effect DD style model of female suicide
on no-fault divorce reforms used is

asmrsg; = Y5 + Ay + Tpost,, + X'Stl" + eqt

This is the analogue of (6) applied to this case in particular. Here asmrs refers to the
female suicide rate for all women in state s at time ¢, 7, is a fixed effect by state, \;
is a temporal (year) fixed effect, post takes the value of 1 after the implementation
of a no-fault divorce reform, and eg; is a stochastic error. The controls (Xs;) include
per capita income (pcinc), homicide mortality (asmrh), and the Aid to Families with
Dependent Children rate for a family of four (cases). Here 7 is the parameter that
captures the average impact of unilateral divorce on suicide rate assuming standard DD
parallel trends.”

6. These data are available online at http: // www.damianclarke.net /stata / bacon example.dta, and
can be imported directly into Stata by typing webuse set www.damianclarke.net/stata/ and then
webuse bacon_example.

7. In reality, as laid out in section 2, when this effect is heterogeneous over time, this will not capture
the average treatment effects but rather a weighted average of pairwise comparisons (Goodman-
Bacon 2018; de Chaisemartin and D’Haultfoeuille 2019; Callaway and Sant’Anna 2018).
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4.1 Estimation of the panel event study

To estimate a panel event study specification corresponding to the no-fault divorce
reform, one first creates the standardized version of the time-to-reform variable, pre-
suming such a variable is not already available in the data. In this case in particular, the
creation of the variable in Stata simply requires subtracting the reform period, Eventy,
called Event, in section 2 (and _nfd, for “no fault divorce”, in the data), from the time
period t (called year in the data):

. webuse set www.damianclarke.net/stata/
(prefix now "http://www.damianclarke.net/stata")

. webuse bacon_example
(Stevenson and Wolfers (2006) divorce example, provided by Goldring et al.)

. generate timeToTreat = year - _nfd
(429 missing values generated)

Note that as expected, missing values are generated for states in which the reform is
not adopted at any point in this period and that act as pure controls in the panel
event study. Below, you can see how the data are set for the first 10 observations,
documenting the relationship between the absolute time period (year), the time the
reform was implemented (.nfd), and the relative time to the reform’s implementation
(timeToTreat):

. sort stfips year

. list stfips year _nfd timeToTreat in 1/10, noobs sepby(stfips) abbreviate(11)

stfips year _nfd timeToTreat
1 1964 1971 =7
1 1965 1971 -6
1 1966 1971 -5
1 1967 1971 -4
1 1968 1971 -3
1 1969 1971 -2
1 1970 1971 -1
1 1971 1971 0
1 1972 1971 1
1 1973 1971 2

The second step is to estimate the event study, as per (1)—(5). In this example, the
general form of the event study model, including all leads and lags available, is

asmrsg = « + Bo1(Lead 21)g + -+ - + B2 (Lead 2) 4
+70(Lag 0)st + - + y2r(Lag 27)
+X;tr+ﬂs +)\t+55t (7)
where as above asmrs is the female suicide rate for all women and a series of J = 21
leads and K = 27 lags are considered relative to the event of interest (fully saturating
the model). As is generally standard, the reference period is set as —1: the period

immediately preceding the adoption of the event in each state. Fixed effects for state
and time are included as us; and \;, respectively.
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The eventdd command provides a simple syntax to generate all necessary leads and
lags for (7), fit the event study model, and plot point estimates and CIs. The com-
mand requires the timevar (timeToTreat) option to indicate the standardized “time
to treatment” variable generated previously. Below, we request that the command run
quietly (quietly); however, later in this section, we document an example where full
regression output is displayed. In the following syntax, the method(,) option is used
to pass specific options to the underlying regression command.

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year i.stfips, timevar(timeToTreat)
> method( , cluster(stfips)) graph_op(ytitle("Suicides per 1m women")

> xlabel(-20(5)25));

. #delimit cr
delimiter now cr

The command stores all event leads, their lower bound, the point estimate, and their
upper bound. For example, if we wish to visualize the estimates on the full set of leads,
as well as their upper and lower CIs, we can simply examine the returned leads matrix:

. matrix list e(leads)
e(leads) [21,4]

Lead LB Est UB
r21 1 0 0 0
r20 2 -5.6533713 -.51573968 4.621892
r19 3 -8.3800554 -2.3125875 3.7548807
ri8 4 -4.6691194 .22835743 5.1258345
ri7 5 -8.129283 -2.7754233 2.5784359
ri6 6 -6.8603821 -.75055814 5.3592658
rib 7 -10.123232 -1.2564343 7.6103635
ri4 8 -10.710829 -2.7376504 5.2355275
ri3 9 -12.330478 -5.0007019 2.3290732
ri2 10 -11.226175 -1.1506662 8.9248428
ri1 11 -17.51306 -9.3819475 -1.2508357
ri0 12 -14.165311 -.04345011 14.078411
r9 13 -10.856544 -1.3885684 8.0794067
r8 14 -6.3317404 4.3279953 14.987731
r7 15 -7.7231503 .84775668 9.418664
ré 16 -8.3638954 -1.022577 6.3187418
rb 17 -17.12311 -4.4348736 8.2533636
r4 18 -10.074435 -.51595128 9.0425329
r3 19 -3.328351 8.8427277 21.013805
r2 20 -34.54834 -12.084179 10.379983

rl 21 -31.114813 -22.920727 -14.72664
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Because we do not specify the estimation method in the method(,) option, eventdd
uses Stata’s regress command to fit the model by ordinary least-squares regression
(if we were to specify method(ols, cluster(stfips)), the same result would be ob-
tained). We can also request other estimators for the underlying event study model; if
we specify the fe option, the model would be fit with the fixed-effects estimator.?

In the same way, we can estimate the results efficiently absorbing multiple levels
of fixed effects via the reghdfe command by indicating hdfe in the method() option,
which is quite useful when we have to control for many fixed effects. Note that in this
case, the fixed effects of interest must be indicated using the absorb() option which is
passed to the reghdfe command. For instance, if we wish to absorb the temporal and
geographic fixed effects, the necessary syntax is as follows:

. #delimit ;

delimiter now ;

. eventdd asmrs pcinc asmrh cases, timevar(timeToTreat)

> method(hdfe, absorb(i.stfips i.year) cluster(stfips))

> graph_op(ytitle("Suicides per 1m women") xlabel(-20(5)25));

(MWFE estimator converged in 2 iterations)

warning: missing F statistic; dropped variables due to collinearity or too few
> clusters

HDFE Linear regression Number of obs = 1,617

Absorbing 2 HDFE groups F( 51, 48) =

Statistics robust to heteroskedasticity Prob > F = .
R-squared = 0.7212
Adj R-squared = 0.6964
Within R-sq. = 0.0731

Number of clusters (stfips) = 49 Root MSE = 10.8116

(Std. err. adjusted for 49 clusters in stfips)

8. Assuming the data have been xtset, this would simply be

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat)

> method(fe, cluster(stfips)) graph-op(ytitle("Suicides per 1m women")
> xlabel(-20(5)25));

. #delimit cr
delimiter now cr

where note that we no longer include the state fixed effects, because these will be taken care of
given the panel fixed-effect estimator (xtreg) used to estimate the regression.
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Robust

asmrs | Coefficient std. err. t P>t [95% conf. intervall]
pcinc -.0011046 .0004071 -2.71 0.009 -.0019232 -.0002861
asmrh 1.08064 .5968879 1.81 0.076 -.119483 2.280764
cases -190.3716 134.4991 -1.42 0.163 -460.8002 80.05698
lead21 -22.92073 4.011063 -5.71 0.000 -30.98551 -14.85594
lead20 -12.08418 10.99637 -1.10 0.277 -34.19385 10.0255
lead19 8.842727 5.957829 1.48 0.144 -3.13629 20.82174
lead18 -.5159513 4.678946 -0.11 0.913 -9.923602 8.891699
leadl?7 -4.434874 6.210982 -0.71 0.479 -16.92289 8.053142
leadl6 -1.022577 3.593627 -0.28 0.777 -8.248049 6.202895
leadlb .8477567 4.19552 0.20 0.841 -7.587901 9.283414
leadl4 4.327995 5.218016 0.83 0.411 -6.163529 14.81952
lead13 -1.388568 4.634641 -0.30 0.766 -10.70714 7.930001
leadl2 -.0434501 6.912751 -0.01 0.995 -13.94247 13.85557
leadll -9.381948 3.980237 -2.36 0.023 -17.38475 -1.379145
lead10 -1.150666 4.932033 -0.23 0.817 -11.06718 8.765851
lead9 -5.000702 3.587977 -1.39 0.170 -12.21481 2.213409
lead8 -2.73765 3.902927 -0.70 0.486 -10.58501 5.10971
lead7 -1.256434 4.34036 -0.29 0.773 -9.983313 7.470445
lead6 -.7505582 2.990802 -0.25 0.803 -6.763968 5.262852
leadb -2.775423 2.620752 -1.06 0.295 -8.044798 2.493952
lead4 .2283574 2.39735 0.10 0.925 -4.591837 5.048552
lead3 -2.312587 2.970068 -0.78 0.440 -8.28431 3.659136
lead?2 -.5157397 2.514907 -0.21 0.838 -5.572299 4.54082

lag0 .2507466 2.722144 0.09 0.927 -5.222491 5.723984

lagl -1.619351 2.941537 -0.55 0.585 -7.533709 4.295006

lag2 -1.687107 3.898178 -0.43 0.667 -9.524919 6.150706

lag3 -.7444709 2.862572 -0.26 0.796 -6.500058 5.011116

lagd -2.956354 2.832628 -1.04 0.302 -8.651735 2.739027

lagh -2.377841 2.75474 -0.86 0.392 -7.916617 3.160935

lag6 -3.311888 3.568157 -0.93 0.358 -10.48615 3.862372

lag7 -5.136502 3.401946 -1.51 0.138 -11.97657 1.70357

lag8 -6.991146 3.086374 -2.27 0.028 -13.19672 -.785575

lag9 -4.82321 3.089481 -1.56 0.125 -11.03503 1.388607
lagl0 -8.814158 3.6746 -2.40 0.020 -16.20244 -1.42588
lagill -7.27331 3.631759 -2.00 0.051 -14.57545 .0288304
lagl2 -6.151559 4.089512 -1.50 0.139 -14.37407 2.070957
lagl3 -8.276837 3.946249 -2.10 0.041 -16.2113 -.3423707
lagld -6.593221 3.867273 -1.70 0.095 -14.3689 1.182453
laglb -7.850839 4.070836 -1.93 0.060 -16.0358 .3341258
lagl6 =7.234422 4.270836 -1.69 0.097 -15.82151 1.35267
lagl7 -8.516898 4.344278 -1.96 0.056 -17.25166 .2178592
lagi8 -9.991582 3.758781 -2.66 0.011 -17.54912 -2.434046
lagl9 -11.53613 3.861769 -2.99 0.004 -19.30074 -3.771526
lag20 -9.219165 4.501869 -2.05 0.046 -18.27078 -.167551
lag21 -10.79088 4.417864 -2.44 0.018 -19.67359 -1.908173
lag22 -10.65478 4.608349 -2.31 0.025 -19.92049 -1.389076
lag23 -12.08658 5.29214 -2.28 0.027 -22.72714 -1.446016
lag24 -10.67796 6.147523 -1.74 0.089 -23.03838 1.682466
lag25 -10.26777 7.459044 -1.38 0.175 -25.26518 4.729644
lag26 -16.69255 10.54234 -1.58 0.120 -37.88934 4.504239
lag27 -.4344752 8.147106 -0.05 0.958 -16.81533 15.94638
_cons 85.59069 10.90519 7.85 0.000 63.66433 107.5171
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Absorbed degrees of freedom:

Absorbed FE | Categories - Redundant = Num. Coefs

stfips 49 49 0 *
year 33 0 33

* = FE nested within cluster; treated as redundant for DoF computation

. #delimit cr
delimiter now cr

The standard command output consists of the regression output (all the above out-
put, including the warning, comes directly from the regression estimated by reghdfe),
and the event study lead and lag coeflicients along with their CIs are plotted as in fig-
ure 1. As discussed in Stevenson and Wolfers (2006), the event study plot provides
evidence of a reduction in rates of female suicide following the passage of no-fault di-
vorce laws, with significant declines observed eight years following reform passage. We
note that in this specification where all possible leads and lags are included (the default
behavior of eventdd), we do observe several significant differences in the prereform pe-
riod, in lead 11, and lead 21. Note, however, that these leads are sufficiently far from
the time period of treatment that not all treated states are observed, and so these sig-
nificant declines are likely due to compositional changes in these variables. We discuss
this further below and limit analysis to balanced periods when discussing the balanced
option of the command. Nevertheless, if desired, we can also formally test the joint
significance of all the lead terms simultaneously with the hypothesis

Hy:Bor=Pp=---=5=0 versus Hi : Hy does not hold

This can be simply assessed postestimation using one of the postestimation commands
designed for use with eventdd:

. estat leads

Joint significance test for leads

F-stat: 32.1312
P-value: 0.0000
Degrees of freedom (20,48)

Similar such postestimation commands exist to test the joint significance of the postim-
plementation coefficients (estat lags) or both the lead and lag terms in a single se-
quence (estat eventdd).
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Figure 1. Event study example based on no-fault divorce reforms.

NOTES: Event study model follows the no-fault divorce analysis described in (Steven-
son and Wolfers 2006), and replication/extension of Goodman-Bacon (2018). Point
estimates are displayed along with their 95% CIs as described in (7). The baseline
(omitted) base period is one year prior to the adoption of the reform in each reforming
state, indicated by the vertical line in the plot.

This “fully saturated” model where all possible leads and lags are plotted is the
default output in the eventdd command. However, many alternative estimation proce-
dures are permitted and indeed are likely preferred, for example to avoid the behavior
observed above where leads and lags far from treatment will not be balanced given
that only states adopting in certain early or late time periods will be observed in these
lead/lag terms. Here we discuss several such alternatives, documenting their syntax in
the eventdd command. Graphical output in each case is summarized in figure 2.

Limiting visualized leads and lags. It may be a matter of interest to show only some
lead/lag periods in the plot. For example, one such case discussed below relates to
plotting only those lead/lag terms in which each treated state is observed. Generically,
the inrange option allows for specifying that only certain coefficients and CIs should
be included in the plot. We note here that in this case, the underlying regression model
will include all periods as in the first case, and thus, these lead/lag terms will simply
correspond to a restricted range from figure 1. For instance, if we want to show only
the results between the time periods —10 and 10, the command will be
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. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) inrange leads(10)
> lags(10) method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m women"));

. #delimit cr
delimiter now cr

The output in this case is displayed in figure 2a. A special case of plotting limited
leads/lags consists of the case in which one wishes to show only coefficients and CIs for
which all states have a lead and lag term. We refer to this as a balanced plot, which can
be produced quite simply using the balanced option. In this case, while all leads and
lags are included in the underlying panel event study model, and only certain periods
are plotted on the graph (like inrange), we do not need to know a priori which periods
are balanced, because eventdd automatically identifies them. As figure 2b shows, in
our case the balanced periods comprise periods between 5 years prereform and 11 years
postreform.”? In this case, the syntax simply requires indicating the balanced option:

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) balanced
> method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m women"));

. #delimit cr
delimiter now cr

Restricting samples or accumulating leads/lags. In contrast to simply focusing on
particular coefficients in the unaltered baseline model, one may wish to work with
particular subsamples that meet inclusion criteria, or accumulate leads and lags into
periods that exceed some defined time, as an alternative way to avoid unbalanced leads
and lags, as well as to avoid problems related to underidentification where all units are
treated (Schmidheiny and Siegloch 2019). Consider the case where we wish to include
15 leads and 10 lags but to fit only the model with units that effectively have data
for each of these periods. In the case of these data in particular that are yearly from
1964-1996, any units adopting no fault divorce reform between 1978 and 1996 will have
(at least) 15 leads and 10 lags. Units adopting prior to 1978 will have fewer than
15 leads, and units adopting after 1996 will have fewer than 10 lags. To implement an
estimation based on a balanced panel of observations with these lead/lag terms, one can
use the keepbal (varname) option, where varname indicates the panel unit over which
balance should be applied (stfips in this case where the treatment unit is states). It
is additionally necessary to explicitly indicate the period of interest for plotting within
the balanced panel, for instance, leads(15) and lags(10). This is all implemented in
the command below.

9. This can also be seen quite simply by tabulating (tab) the time variable used to indicate time to
treatment. For example, in the case of the timeToTreat variable indicating relative time to the
arrival of the divorce reform, we observe that for each of leads —5 up until lag 11, all periods
are observed in the 36 states in which the event occurs. However, earlier leads and later lags are
observed only in a subsample of states given that for others, these leads (lags) are earlier (later)
than the first (last) year in the data sample.
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. #delimit ;

delimiter now ;

. eventdd asmrs pcinc asmrh cases, timevar(timeToTreat) keepbal(stfips)

> leads(15) lags(10) method(hdfe, absorb(i.stfips i.year) cluster(stfips))

> graph_op(ytitle("Suicides per 1m women"));

(MWFE estimator converged in 5 iterations)

warning: missing F statistic; dropped variables due to collinearity or too few
> clusters

HDFE Linear regression Number of obs 507
Absorbing 2 HDFE groups F( 28, 15) =
Statistics robust to heteroskedasticity Prob > F = .
R-squared = 0.4758
Adj R-squared = 0.3831
Within R-sq. = 0.1416
Number of clusters (stfips) = 16 Root MSE 10.1003
(Std. err. adjusted for 16 clusters in stfips)
Robust
asmrs | Coefficient std. err. t P>|t] [95% conf. intervall
pcinc -.0019977 .0007185 -2.78 0.014 -.0035291  -.0004663
asmrh 2.287467  1.540722 1.48 0.158 -.996504 5.571437
cases -390.4487 180.673 -2.16  0.047 -775.544  -5.353367
lead1b 1.292386 6.839513 0.19 0.853 -13.28569 15.87046
lead14 4.959406  8.015248 0.62 0.545 -12.12469 22.0435
lead13 4.003705  9.322968 0.43 0.674 -15.86773 23.87514
lead12 -3.997656  5.732168 -0.70 0.496 -16.21548 8.22017
lead1l -2.629473  4.276906 -0.61 0.548 -11.74548 6.486536
lead10 -3.987131  5.759912 -0.69  0.499 -16.26409 8.289831
lead9 =7.773707 4.653677 -1.67 0.116 -17.69278 2.145371
lead8 -6.673529  6.393574 -1.04 0.313 -20.30111 6.954051
lead? -3.861924  4.692105 -0.82 0.423 -13.86291 6.13906
lead6 -6.44329  3.524894 -1.83 0.088 -13.95642 1.069845
leadb -7.389526  3.375333 -2.19 0.045 -14.58388 -.1951743
lead4 -11.18006 6.114788 -1.83 0.087 -24.21342 1.853305
lead3 -2.146437  5.282028 -0.41  0.690 -13.40481 9.111939
lead2 -2.254288  3.599554 -0.63 0.541 -9.926557 5.41798
lag0 -3.458685  2.757283 -1.25  0.229 -9.335696 2.418325
lagl -2.050697  3.988558 -0.51 0.615 -10.55211 6.450712
lag2 3.8915  4.477937 0.87 0.399 -5.652997 13.436
lag3 -5.949  5.387559 -1.10 0.287 -17.43231 5.53431
lagd 1.1561061  3.715023 0.31 0.761 -6.767323 9.069445
lagb 4.283462 6.478434 0.66 0.519 -9.524993 18.09192
lag6 -3.08539  2.849672 -1.08 0.296 -9.159321 2.988541
lag7 1.776614 7.27749 0.24 0.810 -13.73499 17.28822
lag8 .7996726  5.648138 0.14 0.889 -11.23905 12.83839
lag9 -1.215031  4.864573 -0.25  0.806 -11.58362 9.15356
lagl0 -2.948988 4.776411 -0.62 0.546 -13.12967 7.231691
_cons 98.91732  14.70189 6.73 0.000 67.58098 130.2536
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Absorbed degrees of freedom:

Absorbed FE | Categories - Redundant = Num. Coefs

stfips 16 16 0 *
year 33 0 33

* = FE nested within cluster; treated as redundant for DoF computation

. #delimit cr
delimiter now cr

Given that we now restrict to only certain states based on their period of adoption
(as well as nonadopting states), the lead and lag estimates will differ from those from
the fully saturated model discussed previously. In the output of the above command, we
observe that the estimation sample consists only of 507 observations for adopting states
with balance in the indicated leads/lags, as well as states that do not adopt (versus
1,617 observations in the full-sample specification). The corresponding event study plot
is presented in figure 2c, where we note that the considerable change in estimation
sample (chosen simply for expositional reasons) produces quite different results.

An alternative way to work with the imbalance in standardized time periods is
to stipulate that all periods beyond some specified values should be accumulated into
final lead and lag points, as indicated in (2) and (5). This is implemented with the
accum option. When this is specified, the panel event study is provided based on the
number of leads and lags indicated in the leads (#) and lags(#) option, respectively,
accumulating all periods beyond these periods into the final lead and lag term. For
instance, if we specify leads(15) and lags(10), a single coefficient will capture the
period —15 and earlier and the period 10 and later. This is illustrated in the following
syntax, with the resulting graphical output presented in figure 2d.

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)

> lags(10) method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m women"));

. #delimit cr
delimiter now cr

Because these endpoints have a different interpretation to additional leads and lags,
acting as an estimate of long-term impacts of the event for all periods beyond inter-
mediate leads/lags, by default the endpoint estimates will be plotted in an alternative
color. This behavior can be controlled fully using the endpoints_op() options, allowing
for options such as marker styles and colors to be passed to the underlying scatterplot
(additional discussion is provided in section 4.3 of this article). Alternatively, as docu-
mented below, the noend option can be invoked, which will omit these final accumulative
endpoints from graphical output, as shown in figure 2e:
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. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(10) noend method(fe, cluster(stfips))

> graph_op( ytitle("Suicides per 1m women"));

. #delimit cr
delimiter now cr

Finally, as discussed in section 2, the reference period for any estimated panel event
study will be assumed to be the period immediately prior to the occurrence of the
event in each state, unless otherwise indicated. This can be simply changed via the
baseline(#) option. While the choice of —1 as the baseline period is arbitrary, it
is frequently adopted, and so alternative baseline periods should be based on some
empirical or theoretical consideration, although both models will be equivalent up to a
single constant shift. Below we provide the syntax setting an alternative baseline period,
with all coefficients and standard errors referring to differences relative to 11 years prior
to the event of interest. By default, the eventdd command places a vertical reference
line at period —1 to visually indicate the period immediately prior to the passage of the
event. However, if this reference line is not desired, the noline option can be specified,
as documented in figure 2f. If one wishes to provide alternative reference periods, these
can be passed directly to the graphing command. For example, to add an alternative
reference line in period 0, one should specify graph op(xline(0)).

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) ci(rarea)
> method(fe, cluster(stfips)) graph_op(ytitle("Suicides per 1m women")

> xlabel(-20(5)25));

. #delimit cr
delimiter now cr
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4.2 Inference options

The previous subsection describes several alternative estimation procedures that are
potentially of relevance in the estimation of a panel event study design. However, as
discussed in section 2 of this article, there are several inference considerations that must
be weighed when implementing a panel event study model. Until now, the command
has always been implemented with cluster(stfips), indicating that a CRVE should
be estimated, where clusters are based at the level of the state—the level at which the
event is assigned in this case. As discussed in section 2.2, in this example based on 49
states, and hence 49 clusters, a CRVE is likely the appropriate inference mode for this
model.

However, the eventdd command allows for inference using a wild clustered bootstrap
as a postestimation procedure, via its interaction with the boottest command (provided
this command is installed on the user’s system). This is indicated by the wboot option,
which by default assumes that a clustered wild bootstrap is desired, with the cluster
variable indicated in the cluster() option. This is especially useful when there are
few clusters in the panel. However, note that given that this procedure is based around
bootstrap resampling, the inference procedure likely will take longer than inference
based on Stata’s native CRVE and, additionally, that the wboot option may not be
combined with the hdfe estimation option. However, boottest offers considerable other
benefits, including the option to undertake inference with two-way clustering, which may
exhibit preferable size properties in the case of very few clusters (MacKinnon and Webb
2018). Any option that should be passed directly to boottest can be indicated in the
wboot_op () option, as illustrated with the seed() option below, ensuring replicability
in pseudo-random bootstrap resamples if desired. Figure 3 contrasts the differences
between the previous CRVE-based inference procedure with the wild cluster bootstrap
inference procedure illustrated here.



D. Clarke and K. Tapia-Schythe 877

. #delimit ;

delimiter now ;

. quietly

> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(10)
> lags(10) method(fe, cluster(stfips)) wboot wboot_op(seed(1303))

> graph_op(ytitle("Suicides per 1m women"));

. #delimit cr

delimiter now cr
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| |
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-15
|
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|

1o 5 0 5 10 -10 5 0 5 10
Time Time
[« Point Estimate ——— 95% Cl| [ Point Estimate ——— 95% Cl
(a) Cluster-robust variance—covariance estimator (b) Wild cluster bootstrap, seed(1303)

Figure 3. Visualizing alternative inference procedures for event study models

Finally, note that as standard, eventdd provides 95% CIs in the command’s output,
returned objects, and the resulting graph and legend. The level () option (which should
be specified as a suboption to method()) allows for alternative levels to be indicated,
where, for example, 90% CIs are requested below. Graphical output differs only in the
CIs provided [figure 4a versus b].
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. #delimit ;
delimiter now ;
. quietly
> eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
> lags(10) method(fe, cluster(stfips) level(90))
> graph_op(ytitle("Suicides per 1m women"));
. #delimit cr
delimiter now cr
E E
éow WHWWHHM SRR
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4.3 Altering standard appearance

Time

[« Point Estimate ——— 95% Cl|

(a) 95% Confidence level

Time

‘ Point Estimate ——— 90% CI‘

(b) 90% Confidence level

Figure 4. Default event study plots with alternative CIs

eventdd allows for several ways to visualize the CIs using a range of Stata’s standard
twoway graph types. The command requires that the user specify one of the following
types of CIs by specifying ci(rarea) for an interval with area shading, ci(rcap) for an
interval with capped peaks, and ci(rline) for an interval with lines. Figure 5 shows
the initial event study from figure 1, however now with the three alternative types of
plots available. If a ci() type is specified, this will apply for all intervals displayed. By
default, an rcap plot is provided.
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Figure 5. Alternative visualization options for event study CIs

These graph types can be fully controlled using suboptions within the ci() option
(for example ci(rline, lcolor(black)) to specify 1color()), though the suboptions
included must be compatible with the actual type of CI requested. The compatibility
of options can be confirmed in Stata’s help files for twoway rcap, twoway rarea, or
twoway rline for each of the accepted ci() options. Similarly, we can specify any
options desired for the graphing of the coefficients in the plot with the coef_op() option,
and if we are accumulating periods into final points, we can specify graphing options
for these points in endpoints_op(). In both cases, these accept any valid options for
Stata’s twoway scatter plot type. Finally, a graph_op () option allows for the inclusion
of any general graphing options, such as alternative labeling schemes, graph schemes,
or title options. In figure 6, we compare a standard output (left) with an alternative
output (right), taking advantage of Stata’s transparency options and alternative color
schemes. The eventdd syntax used to generate figure 6(b) is provided below, followed
by the resulting output.
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. #delimit ;

delimiter now ;

quietly

eventdd asmrs pcinc asmrh cases i.year, timevar(timeToTreat) accum leads(15)
lags(20) method(fe, cluster(stfips)) ci(rarea, fcolor(ltblue%45))
graph_op(xlabel(-15 "{&le} -15" -10 "-10" -5 "-5" O "O" 5 "5" 10 "10" 15 "15"
20 "{&le} 20") scheme(simono) ytitle("Suicides per 1m women"))
coef_op(msymbol(0h)) endpoints_op(msymbol(0));

V V.V VYV.

. #delimit cr
delimiter now cr
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(a) Plot with standard appearance (b) Plot with alternative appearance options

Figure 6. Event study plots no-fault divorce reforms: Appearance options

5 Conclusions

The panel event study is an increasingly frequently used tool in the applied analysts’
toolbox. It allows for the clear presentation of estimated impacts in quasiexperimental
(observational) contexts, when one wishes to consider the impact of some event that
occurs at (potentially) different times in different geographical areas. What’s more,
while the discussion and examples provided in this article are structured around ge-
ographical clustering of events (such as the application of divorce reforms studied in
Stevenson and Wolfers [2006]) and applied to demonstrate other two-way fixed-effects
methods (Goodman-Bacon 2018), this setting can similarly be applied where there is
the temporal arrival of some event of interest in other dimensions, such as by age or
other demographic groups.

In this article, we discussed a growing literature laying out panel event study de-
signs and introduced a flexible command, eventdd, that allows for their estimation and
visualization in Stata. We introduced several estimation and inference concerns and
showed how the command can simply deal with such concerns in an applied setting.
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While eventdd can be based on Stata’s native commands such as regress or xtreg
and CRVEs, it can also interact with several extremely powerful community-contributed
commands, allowing for extensions such as the efficient estimation of high-dimensional
fixed-effects equations, and the use of a wild cluster bootstrap for inference.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-4
. net install st0655 (to install program files, if available)
. net get st0655 (to install ancillary files, if available)
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