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Abstract. In this article, we introduce the xtivdfreg command, which imple-
ments a general instrumental-variables (IV) approach for fitting panel-data models
with many time-series observations, T , and unobserved common factors or inter-
active effects, as developed by Norkute et al. (2021, Journal of Econometrics 220:
416–446) and Cui et al. (2020a, ISER Discussion Paper 1101). The underlying idea
of this approach is to project out the common factors from exogenous covariates
using principal-components analysis and to run IV regression in both of two stages,
using defactored covariates as instruments. The resulting two-stage IV estimator
is valid for models with homogeneous or heterogeneous slope coefficients and has
several advantages relative to existing popular approaches.

In addition, the xtivdfreg command extends the two-stage IV approach in two
major ways. First, the algorithm accommodates estimation of unbalanced panels.
Second, the algorithm permits a flexible specification of instruments.

We show that when one imposes zero factors, the xtivdfreg command can
replicate the results of the popular Stata ivregress command. Notably, unlike
ivregress, xtivdfreg permits estimation of the two-way error-components panel-
data model with heterogeneous slope coefficients.

Keywords: st0650, xtivdfreg, xtivdfreg postestimation, large-T panels, two-stage
instrumental-variable estimation, common factors, interactive effects, defactoring,
cross-sectional dependence, two-way error-components panel-data model, hetero-
geneous slope coefficients

1 Introduction
The common factor approach is highly popular among panel-data practitioners be-
cause it offers a wide scope for controlling for omitted variables and rich sources of
unobserved heterogeneity, including models with cross-sectional dependence; see, for
example, Chudik and Pesaran (2015), Juodis and Sarafidis (2018), and Sarafidis and
Wansbeek (2012, 2021).

For panels where both of the cross-sectional and time-series dimensions (N and T ,
respectively) tend to be large, popular estimation approaches have been developed by
Pesaran (2006) and Bai (2009) known in the literature as common correlated effects
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(CCE) and iterative principal components (IPC). Both methods involve least squares
and project out the common factors using either cross-sectional averages of observables
or principal-components analysis (PCA). To date, CCE and IPC have been applied to a
large range of empirical areas and have been extended to several additional theoretical
settings; see, for example, Su and Jin (2012), Moon and Weidner (2015, 2017), Baltagi,
Ka, and Wang (2021), Harding, Lamarche, and Pesaran (2020), Kapetanios, Serlenga,
and Shin (2021), and Li, Cui, and Lu (2020), among others.

Recently, Norkute et al. (2021) and Cui et al. (2020) developed a general instrumen-
tal-variables (IV) approach for estimating panel regressions with unobserved common
factors when N and T are both large. The underlying idea is to project out the common
factors from exogenous covariates using PCA and to construct instruments from defac-
tored covariates. This first-stage IV (1SIV) estimator is consistent. In a second stage,
the entire model is defactored based on factors extracted from the first-stage residuals,
and IV regression is implemented again using the same instruments.

The resulting two-stage instrumental-variables (2SIV) approach combines features
from both Pesaran (2006) and Bai (2009). In particular, following Pesaran (2006), the
covariates of the model are assumed to be subject to a linear common factor structure.
However, following Bai (2009), the common factors are projected out using PCA rather
than cross-sectional averages. A major distinctive feature of 2SIV is that it eliminates
the common factors from the error term and the regressors separately in two stages.
In comparison, CCE eliminates the factors from the error and the regressors jointly,
whereas IPC eliminates only the factors in the error.

2SIV is appealing for several reasons. First, CCE and IPC suffer from incidental pa-
rameters bias because an increasing number of parameters needs to be estimated as
either T or N grows; see Westerlund and Urbain (2015) and Juodis, Karabiyik, and
Westerlund (2021). Therefore, bias correction is required to ensure that inferences
remain valid asymptotically. In contrast, 2SIV does not require bias correction in ei-
ther dimension. This property is important because approximate procedures aiming
to recenter the limiting distribution of particular estimators may not be able to fully
eliminate all bias terms, especially those of high order; in such cases, substantial size
distortions can occur in finite samples. Second, the CCE approach requires the so-called
rank condition, which assumes that the number of factors does not exceed the rank
of the (unknown) matrix of cross-sectional averages of the unobserved factor loadings.
2SIV does not require such a condition because the factors are estimated using PCA
rather than cross-sectional averages. Third, the 2SIV objective function is linear in the
parameters, and therefore the method is robust and computationally inexpensive.1 In
comparison, IPC relies on nonlinear optimization, and therefore convergence to the global
optimum might not be guaranteed (Jiang et al. Forthcoming). Fourth, 2SIV shares a
major attractive feature of CCE over IPC because it permits estimation of panels with
heterogeneous slope coefficients. Last, 2SIV allows for endogenous regressors, so long as
external instruments are available.

1. In the context of fixed-T panels, a linear generalized method of moments estimator has been pro-
posed by Juodis and Sarafidis (Forthcoming).
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In this article, we introduce a new command, xtivdfreg, that implements the 2SIV
approach and extends it in two major ways. First, the algorithm accommodates es-
timation of unbalanced panels. To achieve this, we use a variant of the expectation-
maximization approach proposed by Stock and Watson (1998) and Bai, Liao, and Yang
(2015). Second, the algorithm permits a flexible specification of instruments. In par-
ticular, it accommodates cases where 1) the covariates are driven by entirely different
factors; 2) the covariates have a different number of factors, including no factors at all;
and 3) different lags of defactored covariates are used as instruments.

We show that when one imposes zero factors and requests the 1SIV estimator, the
xtivdfreg command can replicate the results of the popular ivregress command. Es-
sentially, the two-stage least-squares (2SLS) estimator of the two-way error-components
panel-data model can be viewed as a special case of the proposed 2SIV approach in that
the former does not defactor the instruments. Notably, unlike ivregress, xtivdfreg
permits estimation of the two-way error-components panel-data model with heteroge-
neous slope coefficients.

We illustrate the method with two examples. First, we use a panel dataset con-
sisting of 300 U.S. financial institutions, each one observed over 56 time periods. We
attempt to shed some light on the determinants of banks’ capital adequacy ratios. The
results are compared with those obtained by using popular panel methods, such as the
fixed-effects and 2SLS estimators, as well as the CCE estimator of Pesaran (2006). In the
second example, we use macrodata used by Eberhardt and Teal (2010) for the estima-
tion of cross-country production functions in the manufacturing sector. The dataset is
unbalanced, containing observations on 48 developing and developed countries during
the period 1970 to 2002.

The remainder of the article is organized as follows. Section 2, outlines the 2SIV
approach developed by Norkute et al. (2021) and Cui et al. (2020) and discusses imple-
mentation with unbalanced panel data. Section 3 describes the syntax of the xtivdfreg
command. Section 4 illustrates the command using real datasets. Section 5 concludes.

2 IV estimation of large panels with common factors
2.1 Models with homogeneous coefficients

We consider the following autoregressive distributed lag panel-data model with homo-
geneous slopes and a multifactor error structure:2

yit = αyi,t−1 + β′xit + uit; i = 1, 2, . . . , N ; t = 1, 2, . . . , T

and
uit = γ′

y,ify,t + εit

2. The estimation procedures described in this article apply also to static panels that arise by imposing
α = 0 or models with higher-order lags of yi,t and xit. Models with heterogeneous slopes are
considered in section 2.2.
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|α| < 1, β = (β1, β2, . . . , βK)
′ such that at least one of {βk}Kk=1 is nonzero, and xit =

(x
(1)
it , x

(2)
it , . . . , x

(K)
it )′ is a K × 1 vector of regressors. The error term of the model is

composite, where fy,t and γy,i denote my × 1 vectors of true unobserved factors and
factor loadings, respectively, and εit is an idiosyncratic error.

The vector of regressors xit is assumed to be subject to the following data-generating
process:3

xit = Γ′
x,ifx,t + vit (1)

fx,t denotes an mx × 1 vector of true factors, Γx,i = (γ1i,γ2i, . . . ,γKi) denotes the
corresponding mx × K factor loading matrix, and vit = (v1it, v2it, . . . , vKit)

′ is an
idiosyncratic error term that is assumed to be independent from εit.4 Thus, xit satisfies
strict exogeneity with respect to εit, although it can be endogenous with respect to
the total error term, uit, via the factor component. This assumption ensures that one
does not need to seek for external instruments. However, as discussed in remark 4,
endogeneity with respect to εit can be allowed straightforwardly, provided there are
valid external instruments available for estimation.

Stacking the T observations for each i yields

yi = αyi,−1 +Xiβ + ui; ui = Fyγy,i + εi

where yi = (yi1, yi2, . . . , yiT )
′, yi,−1 = L1yi = (yi0, yi1, . . . , yiT−1)

′ with Lj defined
as the jth lag operator, Xi = (xi1,xi2, . . . ,xiT )

′ is T × K, ui = (ui1, ui2, . . . , uiT )
′,

Fy = (fy,1, fy,2, . . . , fy,T )
′ is T ×my, and εi = (εi1, εi2, . . . , εiT )

′. Similarly,

Xi = FxΓx,i +Vi (2)

where Fx = (fx,1, fx,2, . . . , fx,T )
′ is a T × mx matrix and Vi = (vi1,vi2, . . . ,viT )

′ is
T ×K.5

Let Wi = (yi,−1,Xi) and θ = (α,β′)′. The model can be written more succinctly
as

yi = Wiθ + ui

The 2SIV approach involves two stages. In the first stage, the common factors in
Xi are asymptotically eliminated using PCA, and the defactored regressors are used as
instruments to obtain consistent estimates of the structural parameters of the model, θ.

3. As in Pesaran (2006), (1) implies a genuine restriction on the data-generating process, which is not
actually required for the IPC estimator of Bai (2009). However, while this assumption is typically
taken for granted by practitioners when using CCE, it is testable within the 2SIV framework, based
on the overidentifying restrictions test statistic that is readily available in overidentified models.
This issue is discussed in more detail at the end of section 2.1.

4. Individual-specific and time-specific effects can be easily accommodated by replacing
{
yit,x

′
it

}
with the transformed variables

{
ẏit, ẋ

′
it

}
, where ẏit = yit − yi − yt + y, yi = T−1

∑T
t=1 yit,

yt = N−1
∑N

i=1 yit, y = N−1
∑N

i=1 yi, and ẋit is defined analogously.
5. In practice, it is not necessary that all regressors be subject to a common factor structure and

thus correlated with the factor component of the error term, uit. We discuss one such situation in
section 4.1, remark 7.
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In the second stage, the entire model is defactored based on estimated factors extracted
from the first-stage residuals, and another IV regression is implemented using the same
instruments as in stage one.

2.1.1 First-stage IV estimator

Define F̂x as
√
T times the eigenvectors corresponding to the mx largest eigenvalues of

the T × T matrix
∑N

i=1 XiX
′
i/NT . Also, let F̂x,−1 denote a matrix defined similarly,

except that it is based on
∑N

i=1 Xi,−1X
′
i,−1/NT , where Xi,−1 = L1Xi.6

Consider the following empirical projection matrices:

MF̂x
= IT − F̂x

(
F̂′

xF̂x

)−1

F̂′
x; MF̂x,−1

= IT − F̂x,−1

(
F̂′

x,−1F̂x,−1

)−1

F̂′
x,−1 (3)

In this case, the matrix of instruments can be formulated as

Ẑi =
(
MF̂x

Xi,MF̂x,−1
Xi,−1

)
(4)

which is of dimension T × 2K. Thus, the degree of overidentification of the model is
2K − (K + 1).

Remark 1. Further lags of Xi can be used as instruments straightforwardly. To illus-
trate, let qz denote the total number of lags of Xi used as instruments, and define F̂x,−τ

as
√
T times the eigenvectors corresponding to the mx largest eigenvalues of the T × T

matrix
∑N

i=1 Xi,−τX
′
i,−τ/NT , where Xi,−τ = LτXi for τ = 1, . . . , qz. The correspond-

ing empirical projection matrices are of the same form as in (3) with F̂x,−1 replaced by
F̂x,−τ . Moreover, in the case where the covariates are strictly exogenous, leads of Xi

can also be used as instruments; see remark 8 in section 4.1 for more details. In the
absence of any lags of Xi (and further lags of yi) included in the model as regressors,
the degree of overidentification is equal to qzK − (K + 1).

The 1SIV estimator of θ is defined as

θ̂1SIV =
(
Â′

NT B̂
−1
NT ÂNT

)−1

Â′
NT B̂

−1
NT ĝNT (5)

where

ÂNT =
1

NT

N∑
i=1

Ẑ′
iWi; B̂NT =

1

NT

N∑
i=1

Ẑ′
iẐi; ĝNT =

1

NT

N∑
i=1

Ẑ′
iyi

The 1SIV estimator is
√
NT consistent; that is,
√
NT

(
θ̂1SIV − θ

)
= Op (1)

6. In this section, both my and mx are treated as known. In practice, these quantities can be
estimated consistently using standard methods proposed in the literature, such as the information
criteria proposed by Bai and Ng (2002) or the eigenvalue ratio test of Ahn and Horenstein (2013).
The xtivdfreg command uses the latter.
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asN and T grow jointly to infinity, that is, (N,T )
j→∞, such thatN/T → c, 0 < c <∞.

However, θ̂1SIV is asymptotically biased. Rather than bias correcting this estimator,
Norkute et al. (2021) and Cui et al. (2020) put forward a second-stage estimator, which
is free from asymptotic bias and is potentially more efficient. For this purpose, the
first-stage estimator is useful because it provides a consistent estimate of the error term
of the model, which is required to implement the second-stage IV estimator.

Remark 2. In the static panel case, where no lags of yi are included on the right-hand
side and the model is exactly identified (that is, no lags of the regressors are used as
instruments), the 1SIV estimator reduces to

θ̂1SIV =

(
N∑
i=1

X′
iMF̂x

Xi

)−1 N∑
i=1

X′
iMF̂x

yi

2.1.2 Second-stage IV estimator

To implement the second stage, extract estimates of the space spanned by Fy using
residuals from the first stage; that is,

ûi = yi −Wiθ̂1SIV

Subsequently, the entire model is defactored, and a second IV regression is run using
the same instruments as in stage one.

In particular, let
MF̂y

= IT − F̂y

(
F̂′

yF̂y

)−1

F̂′
y

where F̂y is defined as
√
T times the eigenvectors corresponding to the my largest

eigenvalues of the T × T matrix
∑N

i=1 ûiû
′
i/NT .

The (optimal) second-stage IV estimator is defined as

θ̂2SIV =

( ̂̂
A

′

NT
̂̂
Ω

−1

NT
̂̂
ANT

)−1 ̂̂
A

′

NT
̂̂
Ω

−1

NT
̂̂gNT (6)

where ̂̂
ANT =

1

NT

N∑
i=1

Ẑ′
iMF̂y

Wi; ̂̂gNT =
1

NT

N∑
i=1

Ẑ′
iMF̂y

yi

and ̂̂
ΩNT =

1

NT

N∑
i=1

Ẑ′
iMF̂y

ûiû
′
iMF̂y

Ẑi (7)



S. Kripfganz and V. Sarafidis 665

As shown by Norkute et al. (2021), θ̂2SIV is
√
NT consistent and asymptotically

normally distributed, such that
√
NT

(
θ̂2SIV − θ

)
d→ N

{
0,
(
A′Ω−1A

)−1
}

as (N,T )
j→∞ with N/T → c, 0 < c <∞.7

Notice that the limiting distribution of θ̂2SIV is correctly centered, and thus no bias
correction is required. As demonstrated by Cui et al. (2020), the main intuition of this
result lies in that FxΓx,i is estimated from Xi, whereas Fyγy,i is estimated from ui.
Because Vi, Fyγy,i, and εi are independent from one another, any correlations that
arise because of the estimation error of F̂y and F̂x are asymptotically negligible.

Remark 3. In the static panel case, where no lags of yi are included on the right-hand
side and the model is exactly identified, the second-stage IV estimator can be expressed
as

θ̂2SIV =

(
N∑
i=1

X′
iMF̂x

MF̂y
Xi

)−1 N∑
i=1

X′
iMF̂x

MF̂y
yi

In this case, proposition 3.2 in Cui et al. (2020) reveals that the second-stage estimator is
asymptotically equivalent to a least-squares estimator obtained by regressing yi−Fyγy,i

on Xi−FxΓx,i. Moreover, the authors show that θ̂2SIV is asymptotically as efficient as
the bias-corrected CCE and IPC estimators.

Remark 4. The assumptions imposed thus far imply that Xi satisfies strict exogeneity
with respect to εi because otherwise extracting principal components from Xi may
be invalid. When some of the regressors are endogenous (or weakly exogenous) with
respect to εit, 2SIV requires using external exogenous instruments.8 To illustrate, let
Xi = (X

(exog)
i ,X

(endog)
i ), where X(exog)

i and X
(endog)
i refer to the strictly exogenous and

endogenous regressors, respectively, which are of dimension T×K(exog) and T×K(endog).
Furthermore, let X+

i = (X
(exog)
i ,X

(ext)
i ), a T ×K∗ matrix with K∗ = K(exog) +K(ext),

where X
(ext)
i denotes the matrix of external exogenous covariates. X

(ext)
i can still be

correlated with the factor component; that is, it may be subject to a similar data-
generating process as in (2). Define F̂+

x as
√
T times the eigenvectors corresponding to

them+
x largest eigenvalues of the T×T matrix

∑N
i=1 X

+
i

(
X+

i

)′
/NT . The corresponding

projection matrices are defined in the same way as in (3) with F̂x (F̂x,−1) replaced by
F̂+

x (F̂+
x,−1). In this case, the matrix of instruments becomes

Ẑi =
(
MF̂+

x
X+

i ,MF̂+
x,−1

X+
i,−1

)
(8)

7. One could extend the 1SIV estimator of θ defined in (5) by defactoring the entire model based on
M

F̂x
, that is, by using M

F̂x
Ẑi instead of Ẑi. However, in this case, when the space of Fy spans the

space of Fx, the resulting estimator would be asymptotically equivalent to the existing one defined
in (6).

8. If external instruments cannot be found, identification requires that 1) the number of strictly
exogenous regressors within Xi be sufficiently large; and 2) these exogenous regressors be correlated
with the endogenous ones so that they (and their lags) serve as informative instruments.
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The overidentifying restrictions J-test statistic associated with the second-stage IV
estimator is given by

JNT =
1

NT

(
N∑
i=1

̂̂u′
iMF̂y

Ẑi

) ̂̂
Ω

−1

NT

(
N∑
i=1

Ẑ′
iMF̂y

̂̂ui

)

where ̂̂ui = yi −Wiθ̂2SIV and ̂̂ΩNT is defined in (7).

The overidentifying restrictions test is particularly useful in this approach. First, it is
expected to pick up a violation of the exogeneity of the defactored covariates with respect
to the idiosyncratic error in the equation for yi. Second, the orthogonality condition of
the instruments is violated if the slope vector, θ, is cross-sectionally heterogeneous. In
this case, the estimators proposed in this section may become inconsistent, and the J
test is expected to reject the null hypothesis asymptotically.

2.2 Models with heterogeneous coefficients

We now turn our focus on models with heterogeneous coefficients. Let

yi = Wiθi + ui

where θi = (αi,β
′
i)

′ with sup1≤i≤N |αi| < 1.

The IV estimator of θi is defined as

θ̂IV,i =
(
Ã′

i,T B̃
−1
i,T Ãi,T

)−1

Ã′
i,T B̃

−1
i,T g̃i,T (9)

where

Ãi,T =
1

T
Ẑ′

iMF̂x
Wi; B̃i,T =

1

T
Ẑ′

iMF̂x
Ẑi; g̃i,T =

1

T
Ẑ′

iMF̂x
yi (10)

Ẑi is defined in (4), and MF̂x
is defined in (3) with F̂x obtained as

√
T times the eigen-

vectors corresponding to themx largest eigenvalues of the T×T matrix
∑N

i=1 XiX
′
i/NT .

The mean-group instrumental-variables (MGIV) estimator of θ is

θ̂MGIV =
1

N

N∑
i=1

θ̂IV,i (11)

As shown by Norkute et al. (2021), as (N,T )
j→ ∞ such that N/T → c with

0 < c <∞, √
N
(
θ̂MGIV − θ

)
d→ N (0,Ση)

and
Σ̂η −Ση

p→ 0
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where

Σ̂η =
1

N − 1

N∑
i=1

(
θ̂IV,i − θ̂MGIV

)(
θ̂IV,i − θ̂MGIV

)′
Note that the overidentifying restrictions test statistic is not valid for the model with
heterogeneous coefficients.9

Remark 5. In the static panel case, where no lags of yi are included on the right-hand
side and the model is exactly identified, the individual-specific IV estimator reduces to

θ̂IV,i =
(
X′

iMF̂x
Xi

)−1

X′
iMF̂x

yi

Remark 6. When the model contains endogenous regressors, the matrices listed in
(10) are given by

Ãi,T =
1

T
Ẑ′

iMF̂+
x
Wi; B̃i,T =

1

T
Ẑ′

iMF̂+
x
Ẑi; g̃i,T =

1

T
Ẑ′

iMF̂+
x
yi

where Ẑi is defined in (8).

2.3 Unbalanced panels

When the panel-data model is unbalanced, that is, some observations are missing at
random, our procedure needs to be modified to control for the unobserved common
factors. Following Stock and Watson (1998) and Bai, Liao, and Yang (2015), we may
distinguish between Xi and X∗

i . X∗
i is a T ×K matrix containing the true values of the

regressors, and it is defined as in (2). Let x∗(k)
i,t denote the (t, k)th entry of X∗

i , and ι
(k)
i,t

denote a binary indicator that takes the value unity if the kth variable for individual i
at time t is observed and zero otherwise. Thus, we set x(k)

i,t = x
∗(k)
i,t if ι(k)i,t = 1 and x

(k)
i,t

is unobserved otherwise, k = 1, . . . ,K.10

Let f̂
(0)
x,t and γ̂

(0)
ki denote some initial values for the factors and factor loadings, re-

spectively. Also, let T = max {T1, T2, . . . , TN}, where Ti denotes the maximum number
of observations for individual i.

9. Using a similar line of argument as that in section 2.1, one could also consider a second-stage
estimator by projecting Fy out from the model asymptotically, that is, formulating MFyyi =
MFyWiθi +MFyui and then estimating θi. However, the need to deal with heterogeneous slopes
here implies that (the space spanned by) Fy should be estimated using the residuals from the
time-series IV regression, ûi = yi − Wiθ̂IV,i. Because θ̂IV,i is

√
T consistent rather than

√
NT

consistent, the estimation of Fy may become very inefficient. Note that the estimation of Fx

required for the IV estimator defined in (9) does not suffer from a similar problem, because it can
be estimated using the raw data {Xi}Ni=1.

10. When individual-specific and time-specific effects are included, x
∗(k)
i,t is replaced by ẋ

∗(k)
i,t , which

is defined similarly to footnote 4. Thus, we set ẋ
(k)
i,t = ẋ

∗(k)
i,t if ι

(k)
i,t = 1 and ẋ

(k)
i,t is unobserved

otherwise.
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In the first iteration, the values of the regressors are set such that

x̂
(k,1)
i,t =

 x
∗(k)
i,t if ι

(k)
i,t = 1(

f̂
(0)
x,t

)′
γ̂
(0)
ki if ι

(k)
i,t = 0

The factors in the first iteration, f̂ (1)x,t , are extracted as
√
T times the eigenvectors

corresponding to the mx largest eigenvalues of the matrix

V(1)
x =

K∑
k=1

N∑
i=1

x̂
(k,1)
i

(
x̂
(k,1)
i

)′
/
(
NT

)
where x̂

(k,1)
i =

(
x̂
(k,1)
i,1 , x̂

(k,1)
i,2 , . . . , x̂

(k,1)
i,T

)′
. The corresponding factor loadings, γ̂(1)

ki , are

the estimated individual-specific coefficients obtained by regressing x̂
(k,1)
i,t on f̂

(1)
x,t , k =

1, . . . ,K.

Subsequent iterations are based on

V(`)
x =

K∑
k=1

N∑
i=1

x̂
(k,`)
i

(
x̂
(k,`)
i

)′
/
(
NT

)
for ` > 1, until convergence. The convergence criterion is defined with respect to the
objective function

Ṽ (`)
x =

(
NT

)−1
K∑

k=1

T∑
t=1

N∑
i=1

{
x̂
(k,`)
it −

(
f̂
(`)
x,t

)′
γ̂
(`)
ki

}2

where x̂
(k,`)
it denotes the estimated value of the kth regressor corresponding to the `th

iteration for individual i at time t, while f̂
(`)
x,t and γ̂

(`)
ki are defined similarly as before.

The initial factor values are determined using a similar eigenvalue problem as out-
lined previously, this time based on x

(k)
i , a column vector of length T with missing values

replaced by zeros. That is, f̂ (0)x,t is computed as
√
T times the eigenvectors corresponding

to the mx largest eigenvalues of the matrix

V(0)
x =

K∑
k=1

N∑
i=1

x
(k)
i

(
x
(k)
i

)′
with the (j1, j2) entry being divided by the number of summands used when this number
is larger than zero.

The same procedure is followed when extracting factors from lagged values of Xi or
from the residuals obtained from the first-stage estimation.11

11. In practice, it is possible that the estimated number of factors in the regressors varies across different
lags. In this case, we set m̂x equal to the maximum estimated value obtained across different lags.
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3 The xtivdfreg command
3.1 Syntax

xtivdfreg depvar
[
indepvars

] [
if
] [

in
] [

, absorb(absvars)
iv(varlist

[
, fvar(fvars) lags(#) factmax(#)

[
no
]
eigratio[

no
]
doubledefact

]
) factmax(#)

[
no
]
eigratio

[
no
]
doubledefact fstage

mg iterate(#) ltolerance(#) nodots noconstant level(#) coeflegend

noheader notable display_options
]

3.2 Options

absorb(absvars) specifies categorical variables that identify the fixed effects to be ab-
sorbed. Typical use is absorb(panelvar) or absorb(panelvar timevar) for one-way
or two-way fixed effects, respectively.12

iv(varlist
[

, fvar(fvars) lags(#) factmax(#)
[

no
]
eigratio[

no
]
doubledefact

]
) specifies IV. One can specify as many sets of instruments as

required. Variables in the same set are defactored jointly. External variables that
are not part of the regression model can also be used as instruments in varlist.

fvar(fvars) specifies that factors be extracted from the variables in fvars. The
default is to extract factors from all variables in varlist.

lags(#) specifies the # of lags of varlist to be added to the set of instruments. The
variables at each lag order are defactored separately with factors extracted from
the corresponding lag of fvars. The default is lags(0).

factmax(#) specifies the maximum number of factors to be extracted from fvars.
The default is set by the global option factmax(#).

noeigratio and eigratio request either to use a fixed number of factors as spec-
ified with the suboption factmax(#) or to use the Ahn and Horenstein (2013)
eigenvalue ratio test to compute the number of factors. eigratio is the default
unless otherwise specified with the global option noeigratio.

doubledefact requests to include fvars in a further defactorization stage of the entire
model for the first-stage estimator. All sets of instruments that are included in
this defactorization stage are jointly defactored, excluding lags of fvars specified
with the suboption lags(#). nodoubledefact requests to avoid implementing
a further defactorization stage of the entire model for the first-stage estimator.
The default is set by the global option

[
no
]
doubledefact.

12. This option requires the community-contributed commands reghdfe (Correia 2016) and ftools
(Correia 2017) to be installed.
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factmax(#) specifies the maximum number of factors for each estimation stage and
each set of instruments. The default is factmax(4).

noeigratio requests to use a fixed number of factors as specified with the option
factmax(#). By default, the eigenvalue ratio test of Ahn and Horenstein (2013)
is used to compute the number of factors for each estimation stage and each set of
instruments.

doubledefact requests to use a further defactorization stage of the entire model for
the first-stage estimator, as, for example, described in footnote 7. nodoubledefact
requests to avoid implementing this further defactorization stage. doubledefact is
the default when the option mg is specified, and nodoubledefact is the default when
the option mg is omitted.

fstage requests the 1SIV estimator to be computed instead of the second-stage IV
estimator.

mg requests the mean-group estimator to be computed, which allows for heterogeneous
slopes.

iterate(#) specifies the maximum number of iterations for the extraction of factors. If
convergence is declared before this threshold is reached, it will stop when convergence
is declared. The default is the number set using set maxiter. This option has no
effect with strongly balanced panel data, in which case any iterations are redundant.

ltolerance(#) specifies the convergence tolerance for the objective function; see
[R] Maximize. The default is ltolerance(1e-4). This option has no effect with
strongly balanced panel data.

nodots requests not to display dots for the iteration steps. By default, one dot character
is displayed for each iteration step. This option has no effect with strongly balanced
panel data.

noconstant suppresses the constant term.

level(#), coeflegend; see [R] Estimation options.

noheader suppresses display of the header above the coefficient table that displays the
number of observations and moment conditions.

notable suppresses display of the coefficient table.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt),
pformat(%fmt), sformat(%fmt), and nolstretch; see [R] Estimation options.
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3.3 Stored results

xtivdfreg stores the following in e():

Scalars
e(N) number of observations e(rho) variance fraction due to factors
e(df_m) model degrees of freedom (DF) e(chi2_J) Hansen’s J statistic
e(N_g) number of groups e(df_J) DF of the J test
e(g_min) smallest group size e(p_J) p-value of the J test
e(g_avg) average group size e(rank) rank of e(V)
e(g_max) largest group size e(zrank) number of instruments
e(sigma2u) variance of uit e(fact1) number of factors in first stage
e(sigma2f) variance of factor component e(fact2) number of factors in second stage

Macros
e(cmd) xtivdfreg e(properties) b V
e(cmdline) command as typed e(estat_cmd) xtivdfreg_estat
e(depvar) name of dependent variable e(predict) xtivdfreg_p
e(ivar) variable denoting groups e(marginsok) predictions allowed by margins
e(tvar) variable denoting time e(estimator) fstage, sstage, or mg
e(vcetype) title used to label Std. Err.

Matrices
e(b) coefficient vector e(factnum) variable-specific number of
e(V) variance–covariance matrix factors in first stage

of the estimators
Functions

e(sample) marks estimation sample

4 Examples
4.1 Example 1: Estimation of the determinants of banks’ capital

adequacy ratios

In this example, we illustrate the xtivdfreg command by estimating the effect of main
drivers behind capital adequacy ratios for banking institutions. We make use of panel
data from a random sample of 300 U.S. banks, each one observed over 56 time periods,
namely, 2006:Q1–2019:Q4.

We focus on the model

CARit = αCARit−1 + β1sizeit + β2ROAit + β3liquidityit + uit (12)
uit = ηi + τt + γ′

y,ify,t + εit

where i = 1, . . . , 300 and t = 2, . . . , 56. All data are publicly available, and they have
been downloaded from the Federal Deposit Insurance Corporation website.13

13. See https://www.fdic.gov/. The dataset is available as an ancillary file for the xtivdfreg package.

https://www.fdic.gov/
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• CARit stands for “capital adequacy ratio”, which is proxied by the ratio of tier 1
(core) capital over risk-weighted assets.

• sizeit is proxied by the natural logarithm of banks’ total assets.

• ROAit stands for the “return on assets”, defined as annualized net income expressed
as a percentage of average total assets. ROA is used as a measure of profitability.

• liquidityit is proxied by the loan-to-deposit ratio. Note that higher values of
this variable imply a lower level of liquidity.

Finally, the error term is composite; ηi and τt capture bank-specific and time-specific
effects, fy,t is anmy×1 vector of unobserved common shocks with corresponding loadings
given by γy,i, and εit is a purely idiosyncratic error. Note that my is unknown.

Some discussion on the interpretation of the parameters that characterize (12) is
useful. The autoregressive coefficient, α, reflects costs of adjustment that prevent
banks from achieving optimal levels of capital adequacy instantaneously. βk, for k =
1, . . . ,K(= 3), denote the slope coefficients of the model. β1 measures the effect of
size on capital adequacy behavior. Under the “too-big-to-fail hypothesis”, large banks
may count on public bailout during periods of financial distress, knowing that they
are systematically very important (for example, Cui, Sarafidis, and Yamagata [2020b]).
Essentially, this hypothesis reflects the classic moral hazard problem, where one party
takes on excessive risk, knowing that it is protected against the risk and that another
party will incur the cost. Under such a scenario, β1 is expected to be negative.

β2 measures the effect of profitability on capital adequacy. Standard theory suggests
that higher bank profitability dissuades a bank’s risk taking, and thus it is associated
with larger capital reserves because profitable banks stand to lose more shareholder
value if downside risks realize (Keeley 1990). On the other hand, more profitable banks
can borrow more and engage in risky activities on a larger scale under the presence of
leverage constraints (Martynova, Ratnovski, and Vlahu 2020). A positive (negative)
value of β2 is consistent with the former (latter) interpretation. Lastly, the direction of
the effect of liquidity, β3, is ultimately an empirical question as well. For instance, a
positive value indicates that lower liquidity levels force banks to increase their capital
reserves, arguably to reduce risk exposure.

We start by running the xtivdfreg command using two lags of the covariates as
defactored instruments and up to a maximum of three factors. Thus, we use nine
instruments in total, three for each covariate. There are four parameters, which implies
that the degree of overidentification equals five. We control for bank-specific and time-
specific effects by eliminating them prior to estimation. This baseline regression is
obtained as follows:
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. use xtivdfreg_example
(Capital Adequacy Ratios of U.S. Banking Institutions; Source: FDIC)
. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(3)
Defactored instrumental variables estimation
Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 9 Obs per group min = 54
Number of factors in X = 1 avg = 54
Number of factors in u = 1 max = 54
Second-stage estimator (model with homogeneous slope coefficients)

Robust
CAR Coefficient Std. Err. z P>|z| [95% Conf. Interval]

CAR
L1. .3732316 .0315035 11.85 0.000 .3114859 .4349773

size -2.025311 .1770844 -11.44 0.000 -2.37239 -1.678232
ROA .1999087 .0295306 6.77 0.000 .1420297 .2577877

liquidity 1.998128 .4538704 4.40 0.000 1.108559 2.887698
_cons 29.99368 4.12824 7.27 0.000 21.90248 38.08488

sigma_f 2.0800886 (std. dev. of factor error component)
sigma_e 1.115956 (std. dev. of idiosyncratic error component)

rho .77650224 (fraction of variance due to factors)

Hansen test of the overidentifying restrictions chi2(5) = 7.3151
H0: overidentifying restrictions are valid Prob > chi2 = 0.1982

To illustrate the specification of the command in terms of the notation used in the
article, let Xi = (X

(1)
i ,X

(2)
i ,X

(3)
i ), where X

(k)
i denotes the regressor corresponding to

the coefficient βk in (12), for k = 1, 2, 3. The matrix of instruments is given by

Ẑi =
(
MF̂x

Xi,MF̂x,−1
Xi,−1,MF̂x,−2

Xi,−2

)
which is of dimension T × 3K, with F̂x,−τ defined as

√
T times the eigenvectors corre-

sponding to the mx largest eigenvalues of the T × T matrix
∑N

i=1 Xi,−τX
′
i,−τ/NT , for

τ = 1, 2. The second-stage IV estimator is defined in (6).

All coefficients are statistically significant at the 1% level. Moreover, the p-value of
the J-test statistic suggests that the overidentifying restrictions (instruments) are valid.
The estimated number of factors in the first and second stages equals 1 in both cases;
that is, m̂x = m̂y = 1.

xtivdfreg also reports the fraction of the variance of uit that is explained by the
factor component, denoted as rho. Because the value of rho is roughly equal to 3/4 in
the present sample, it appears that most of the variation in the composite error term
is due to the single unobserved factor, conditional on bank-specific and time-specific
effects. Therefore, estimators that fail to control for common shocks are likely to be
severely biased.
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The estimated autoregressive coefficient equals about 0.373, which suggests medium
persistence in the CAR time series. The estimated coefficient of size is highly negative,
so it is consistent with the “too-big-to-fail hypothesis”, providing evidence of moral
hazard-type behavior of banking institutions. Profitability (ROA) appears to have a
positive effect on capital adequacy, which is in line with Keeley (1990). The positive
estimate for β3 shows that lower levels of bank asset liquidity (that is, higher values of
liquidity) lead to an increase in capital reserves, all other things being equal. This
implies that banking institutions suffering from a liquidity crunch tend to respond by
raising their equity.

Finally, note that xtivdfreg reports an estimate of a constant term (intercept). This
is obtained as the mean of the residuals in a separate step after computing the slope
coefficients.14 Whether a constant term is estimated has no effect on the computation
of the slope coefficients because the latter are computed for the demeaned model with
or without the absorption of fixed effects. The standard error of the constant term is
computed with the influence-function approach of Kripfganz and Schwarz (2019).

Next we fit the same model, except that the slope coefficients are allowed to be
heterogeneous:

CARit = αiCARit−1 + β1isizeit + β2iROAit + β3iliquidityit + uit

uit has the same structure as before. This regression is computed by adding the option
mg. The results correspond to the MGIV estimator defined in (11):

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(3) mg
Defactored instrumental variables estimation
Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 9 Obs per group min = 54
Number of factors in X = 1 avg = 54

max = 54
Mean-group estimator (model with heterogeneous slope coefficients)

Robust
CAR Coefficient Std. Err. z P>|z| [95% Conf. Interval]

CAR
L1. .3751735 .0172599 21.74 0.000 .3413447 .4090022

size -2.178075 .1683235 -12.94 0.000 -2.507983 -1.848167
ROA .2142237 .0375084 5.71 0.000 .1407086 .2877388

liquidity 1.456521 .2479702 5.87 0.000 .9705085 1.942534
_cons 31.90236 2.083698 15.31 0.000 27.81838 35.98633

As we can see, the estimated coefficients are similar to those obtained from the model
that pools the data and imposes slope parameter homogeneity. This is not surprising,
because otherwise failure to account for slope parameter heterogeneity would invalidate

14. For the model with heterogeneous slopes, the intercept is also treated as heterogeneous.
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the overidentifying restrictions, thus likely leading to a rejection of the null hypothesis
for the J statistic. Thus, conditional on common factors, bank-specific and time-specific
effects, slope parameter heterogeneity does not appear to be relevant in the present
sample.

In what follows, we examine alternative specifications for xtivdfreg and use other
estimators. For exposition, table 1 below includes the results for the previous two
baseline specifications (columns 1–2).

Table 1. Estimation results

2SIV MGIV 2SIV (2) 2SIV (3) MGIV (3)

L.CAR 0.373∗∗∗ 0.375∗∗∗ 0.379∗∗∗ 0.356∗∗∗ 0.358∗∗∗
(0.032) (0.017) (0.038) (0.040) (0.018)

size −2.025∗∗∗ −2.178∗∗∗ −2.174∗∗∗ −2.088∗∗∗ −2.235∗∗∗
(0.177) (0.168) (0.210) (0.198) (0.169)

ROA 0.200∗∗∗ 0.214∗∗∗ 0.104∗∗∗ 0.212∗∗∗ 0.218∗∗∗
(0.030) (0.038) (0.027) (0.037) (0.038)

liquidity 1.998∗∗∗ 1.457∗∗∗ 2.053∗∗∗ 1.930∗∗∗ 1.071∗∗∗
(0.454) (0.248) (0.501) (0.452) (0.242)

N 16200 16200 16200 16200 16200
e(fact1) 1 1 1 1 1
e(fact2) 1 1 1
rho 0.777 0.758 0.783
e(p_J) 0.198 0.020 0.150

notes: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Columns 3–5 illustrate examples of IV estimators that allow for a more flexible spec-
ification of instruments than the baseline regression. In particular, column 3 shows
results for a second-stage IV estimator that involves dropping ROA from the set of in-
struments and using an external variable instead, namely, ROE.15

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROE liquidity, lags(2)) factmax(3)

(output omitted )

The results in column 3 are similar to the baseline specification in column 1, except
for the coefficient of ROA, which is statistically different at the 5% level. Note also that
in this case the J-test statistic rejects the null hypothesis because the p-value equals
0.020. This implies that ROE may not form a valid instrument.
15. ROE stands for the “return on equity”, defined as annualized net income expressed as a percentage

of total equity on a consolidated basis. ROE represents an alternative measure of bank profitability.
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Column 4 corresponds to a second-stage IV estimator that we can compute by typing

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA, lags(2) factmax(3)) iv(liquidity, lags(1) factmax(2))

(output omitted )

In this specification, {size, ROA} are defactored based on a common set of fac-
tors estimated jointly, whereas liquidity is defactored separately, based on its own
estimated factors. Such an instrumentation strategy can be particularly useful under
three circumstances: first, when size and ROA are driven by entirely different factors
than liquidity; second, when size and ROA have a different number of factors than
liquidity; and third, when different lags of the covariates are used as instruments.
Column 5 corresponds to the same specification as in column 4, although it refers to its
MGIV version:

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA, lags(2) factmax(3)) iv(liquidity, lags(1) factmax(2)) mg

(output omitted )

As we can see, the output of columns 4–5 is similar to that reported in columns 1–2,
respectively. Therefore, the estimates appear to be fairly robust to different choices of
instruments.

In terms of the notation used in the article, the choice of instruments corresponding to
columns 4–5 is given by

Ẑi =
(
MF̂x12

X
(1,2)
i ,MF̂x12,−1

X
(1,2)
i,−1 ,MF̂x12,−2

X
(1,2)
i,−2 ,MF̂x3

X
(3)
i ,MF̂x3,−1

X
(3)
i,−1

)
where X(1,2)

i = (X
(1)
i ,X

(2)
i ), F̂x12,−τ is defined as

√
T times the eigenvectors correspond-

ing to the mx12
largest eigenvalues of the T ×T matrix

∑N
i=1 X

(1,2)
i,−τ

(
X

(1,2)
i,−τ

)′
/NT , and

so on. The column dimension of the matrix of instruments is T × 8. Hence, two lags
of X(1,2)

i and one lag of X(3)
i are used as instruments. Note also that the maximum

numbers of factors specified to be estimated from X
(1,2)
i and X

(3)
i are different and equal

3 and 2, respectively.

Remark 7. For the MGIV estimator, although the matrix Ẑi above is formulated by
defactoring X

(1,2)
i and X

(3)
i separately, the empirical projection matrix MF̂x

used to
defactor the entire model16 is computed by extracting factors jointly from the matrix
of all covariates; that is, Xi = (X

(1)
i ,X

(2)
i ,X

(3)
i ).

In practice, users can avoid extracting factors jointly from the matrix of all covariates.
For motivation, suppose that X

(3)
i were a binary regressor that is not subject to a

common factor structure. In that case, one may wish to 1) instrument X
(3)
i by itself

(that is, without defactoring or lags) and 2) defactor the entire model by extracting
factors only from X

(1,2)
i , that is, to omit X(3)

i from the construction of MF̂x
. This can

be achieved by specifying
16. See the expressions in (9)–(10).
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. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA, lags(2) factmax(3))
> iv(liquidity, lags(0) factmax(0) nodoubledefact) mg
Defactored instrumental variables estimation
Group variable: id Number of obs = 16200
Time variable: t Number of groups = 300
Number of instruments = 7 Obs per group min = 54
Number of factors in X = * avg = 54

max = 54
Mean-group estimator (model with heterogeneous slope coefficients)

Robust
CAR Coefficient Std. Err. z P>|z| [95% Conf. Interval]

CAR
L1. .3768387 .0215774 17.46 0.000 .3345478 .4191297

size -2.199214 .1688277 -13.03 0.000 -2.530111 -1.868318
ROA .2229961 .0394674 5.65 0.000 .1456415 .3003508

liquidity 1.473673 .2578282 5.72 0.000 .9683387 1.979007
_cons 32.13583 2.098844 15.31 0.000 28.02217 36.24949

* Number of factors in stage 1:
1 -> size ROA
0 -> liquidity
1 -> size ROA (doubledefact)

Defactoring of X(3)
i is avoided by specifying factmax(0). The omission of X(3)

i in the
construction of MF̂x

is achieved by specifying nodoubledefact. Note that in this case
the number of estimated factors differs across covariates. Therefore, xtivdfreg reports
Number of factors in X = * and provides detailed results on the estimated number
of factors at the bottom of the output.

The columns in table 2 report results for several alternative popular estimators. To
begin with, columns 1–2 correspond to the standard fixed-effects and 2SLS estimators,
both of which accommodate a two-way error-components model, but they do not allow
for common shocks:

. xtreg l(0/1).CAR size ROA liquidity i.t, fe vce(cluster id)
(output omitted )

. ivregress 2sls CAR size ROA liquidity (L.CAR = l(0/2).(size ROA liquidity))
> i.id i.t, vce(cluster id)

(output omitted )
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Table 2. Estimation results (continued)

Fixed effect 2SLS IV no DF MGIV no DF CCEP CCEMG

L.CAR 0.878∗∗∗ 0.651∗∗∗ 0.651∗∗∗ 0.410∗∗∗ 0.526∗∗∗ 0.356∗∗∗
(0.018) (0.207) (0.207) (0.020) (0.039) (0.013)

size −0.085∗∗∗ −0.220∗ −0.220∗ −1.096∗∗∗ −0.423∗∗∗ −1.396∗∗∗
(0.023) (0.124) (0.124) (0.206) (0.058) (0.245)

ROA 0.101∗ 0.142 0.142 0.256∗∗∗ 0.130∗∗ 0.286∗∗∗
(0.055) (0.131) (0.131) (0.047) (0.056) (0.040)

liquidity 0.205 0.503 0.503 1.581∗∗∗ 1.992∗∗∗ 1.740∗∗∗
(0.163) (0.460) (0.460) (0.283) (0.412) (0.253)

N 16500 16200 16200 16200 15900 15900
e(fact1) 0 0
e(fact2)
rho 0.061
e(p_J) 0.000

notes: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

It is apparent that the estimated coefficients differ substantially compared with
those obtained based on the 2SIV approach. In particular, the autoregressive coefficient
appears to be biased upward, and—for the case of 2SLS (column 2)—the standard error
of the estimate is much larger compared with the second-stage IV (see column 1 of
table 1). On the other hand, the coefficients of ROA and liquidity seem to be biased
in the opposite direction. Moreover, in three out of four cases, these coefficients are not
statistically significant. This outcome is indicative of the importance of controlling for
common shocks in the present example.

Column 3 reproduces the results of 2SLS using the xtivdfreg command. This is
achieved by setting the number of factors equal to 0 and requesting the first-stage
estimator:

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(0) fstage

(output omitted )

Thus, the popular 2SLS estimator can be viewed as a special case of the 2SIV approach
and arises by imposing zero number of factors (that is, setting factmax(0)) and fitting
the model in a single stage (fstage). Column 4 yields 2SLS-type results for a model
with heterogeneous slopes. Note that this option is not allowed in ivregress.

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(0) fstage mg

(output omitted )

Finally, the last two columns correspond to the CCE estimator of Pesaran (2006).
CCEP in column 5 denotes the pooled CCE estimator, and CCEMG in column 6 is the
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mean-group CCE version. These have been computed using the xtdcce2 command
developed by Ditzen (2018).

. xtdcce2 CAR L.CAR size ROA liquidity,
> crosssectional(CAR L.CAR size ROA liquidity)
> cr_lags(2) pooled(L.CAR size ROA liquidity) pooledvce(nw)

(output omitted )
. xtdcce2 CAR L.CAR size ROA liquidity,
> crosssectional(CAR L.CAR size ROA liquidity)
> cr_lags(2)

(output omitted )

As we can see, the estimates of CCEP are smaller than those obtained by the second-
stage IV estimator (columns 1 and 4 of table 1), and the differences are statistically
significant. On the other hand, the estimates of CCEMG are fairly close to those of the
MGIV estimator in most cases. The main exception is the coefficient of size, which
appears to be much smaller and less precise for CCEMG.

Remark 8. As pointed out by a referee, when the covariates are strictly exogenous,
one can also use leads (as opposed to lags) as instruments. To see this, notice that
the following two specifications are equivalent, provided that the number of estimated
factors across all different lags of instruments is the same:

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(3)

(output omitted )
. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity)
> iv(L.(size ROA liquidity)) iv(L2.(size ROA liquidity)) factmax(3)

(output omitted )

Hence, one can also use leads by typing

. xtivdfreg l(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity)
> iv(F.(size ROA liquidity)) iv(F2.(size ROA liquidity)) factmax(3)

(output omitted )

where F.() is the lead operator. Note that this equivalence does not hold when a
second defactorization step is applied in stage one, that is, either for the model with
heterogeneous slope coefficients or when the option doubledefact is declared:

. xtivdfreg L(0/1).CAR size ROA liquidity, absorb(id t)
> iv(size ROA liquidity, lags(2)) factmax(3) doubledefact

(output omitted )

To achieve equivalence in that case, exclude the lags or leads from the second defactor-
ization, as follows:

. xtivdfreg L(0/1).CAR size ROA liquidity, absorb(id t) iv(size ROA liquidity)
> iv(L.(size ROA liquidity), nodoubledefact)
> iv(L2.(size ROA liquidity), nodoubledefact) factmax(3) doubledefact

(output omitted )
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4.2 Example 2: Estimation of cross-country production functions

To illustrate additional features of the xtivdfreg command for unbalanced panels, we
use the macropanel dataset of Eberhardt and Teal (2010) for estimating cross-country
production functions in the manufacturing sector. The dataset contains observations
on 48 developing and developed countries during the period 1970 to 2002. These data
are available as an ancillary file for the xtmg package, developed by Eberhardt (2012):

. use http://www.stata-journal.com/software/sj12-1/st0246/manu_prod
(Manufacturing productivity analysis (1970-2002))

Following Eberhardt and Teal (2010), we focus on the following model, which im-
poses constant returns to scale:

ln

(
Yit

Lit

)
= β ln

(
Kit

Lit

)
+ uit (13)

uit = ηi + τt + γ′
yify,t + εit

The dependent and independent variables denote the log value added per worker and the
log capital stock per worker, respectively, for i = 1, . . . , 48, with each country observed
over Ti observations.

We start by running the xtivdfreg command using two lags of the covariates as
defactored instruments and up to a maximum of three factors. We use three instruments,
and the degree of overidentification equals two. We control for bank-specific and time-
specific effects by eliminating them prior to estimation. This baseline regression is
computed by typing
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. xtivdfreg ly lk, absorb(list year) iv(lk, lags(2)) factmax(3)
Defactored instrumental variables estimation
Factor estimation:

1 2 3 4 5
... 3

1 2 3 4 5
... 3

1 2 3 4 5
... 3

1 2 3 4 5
... 3
Group variable: list Number of obs = 1084
Time variable: year Number of groups = 48
Number of instruments = 3 Obs per group min = 9
Number of factors in X = 1 avg = 22.58333
Number of factors in u = 1 max = 31
Second-stage estimator (model with homogeneous slope coefficients)

Robust
ly Coefficient std. err. z P>|z| [95% conf. interval]

lk .4835692 .0733879 6.59 0.000 .3397315 .6274069
_cons 4.569137 .7842979 5.83 0.000 3.031942 6.106333

sigma_f .07592639 (std. dev. of factor error component)
sigma_e .1151073 (std. dev. of idiosyncratic error component)

rho .30317989 (fraction of variance due to factors)

Hansen test of the overidentifying restrictions chi2(2) = 4.1397
H0: overidentifying restrictions are valid Prob > chi2 = 0.1262

Because the panel is unbalanced, the xtivdfreg command estimates the factors
based on the iterative procedure described in section 2.3. The first line of dots reports
the number of iterations required to estimate the factors in ln(K/L). The second (third)
line of dots reports the number of iterations required to estimate the number of factors
in the lagged (second lagged) value of ln(K/L). Finally, the last line corresponds to
factor estimation from the first-stage residuals, which is relevant for the 2SIV estimator.
In all cases, three iterations turn out to be sufficient for convergence.

The estimated coefficient of ln(K/L) is approximately equal to 0.5 and is statisti-
cally significant. The p-value of the J-test statistic indicates that the overidentifying
restrictions are supported by the data. Moreover, m̂x = m̂y = 1, whereas the fraction
of the variance of uit that is explained by the factor component appears to be around
0.3.

Note that the number of lines of dots not only is a function of the number of lags used
as instruments but also depends on whether factors are extracted jointly or individually
for each regressor separately. For illustration, consider a similar model as in (13) but
without imposing constant returns to scale:

ln (Yit) = β1 ln (Lit) + β2 ln (Kit) + uit
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We specify the iv() option twice, one for each individual regressor. This yields

. xtivdfreg lY lL lK, absorb(list year) iv(lL, lags(2)) iv(lK, lags(2))
> factmax(3)
Defactored instrumental variables estimation
Factor estimation:

1 2 3 4 5
.... 4

1 2 3 4 5
.... 4

1 2 3 4 5
.... 4

1 2 3 4 5
.... 4

1 2 3 4 5
.... 4

1 2 3 4 5
.... 4

1 2 3 4 5
... 3
Group variable: list Number of obs = 1084
Time variable: year Number of groups = 48
Number of instruments = 6 Obs per group min = 9
Number of factors in X = 1 avg = 22.58333
Number of factors in u = 1 max = 31
Second-stage estimator (model with homogeneous slope coefficients)

Robust
lY Coefficient std. err. z P>|z| [95% conf. interval]

lL .5286618 .0668596 7.91 0.000 .3976194 .6597042
lK .4688145 .0802439 5.84 0.000 .3115394 .6260896

_cons 4.761711 1.287278 3.70 0.000 2.238693 7.28473

sigma_f .07657777 (std. dev. of factor error component)
sigma_e .11538927 (std. dev. of idiosyncratic error component)

rho .30576172 (fraction of variance due to factors)

Hansen test of the overidentifying restrictions chi2(4) = 9.0610
H0: overidentifying restrictions are valid Prob > chi2 = 0.0596

This time, the number of dotted lines corresponding to factor estimation from the
covariates has doubled. This is because the factors are extracted separately for ln (L)
and ln (K), and therefore the algorithm performs twice the number of iteration loops.
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MGIV estimation of the baseline regression in (13) is computed by typing

. xtivdfreg ly lk, absorb(list year) iv(lk, lags(2)) factmax(3) mg
Defactored instrumental variables estimation
Factor estimation:

1 2 3 4 5
... 3

1 2 3 4 5
... 3

1 2 3 4 5
... 3

1 2 3 4 5
... 3
Group variable: list Number of obs = 1084
Time variable: year Number of groups = 48
Number of instruments = 3 Obs per group min = 9
Number of factors in X = 1 avg = 22.58333

max = 31
Mean-group estimator (model with heterogeneous slope coefficients)

Robust
ly Coefficient std. err. z P>|z| [95% conf. interval]

lk .4498443 .0778308 5.78 0.000 .2972987 .60239
_cons 5.089032 .8010497 6.35 0.000 3.519003 6.65906

As we can see, the estimate of the coefficient of ln(K/L) is similar to that of the
homogeneous model.17 For further analysis using this example, see Eberhardt and Teal
(2010).

5 Conclusion
xtivdfreg is useful for estimating large panel-data models with unobserved common
factors or interactive effects. The slope coefficients can be either homogeneous or het-
erogeneous. The command accommodates a flexible specification of instruments and
incorporates the two-way error-components model as a special case. Results obtained
from the popular ivregress command can be reproduced using xtivdfreg by imposing
zero factors.
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17. Also, this estimate is similar to the value obtained from the CCE estimator, which is computed by
typing either xtmg ly lk, cce or xtdcce2 ly lk, crosssectional(_all).
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7 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3

. net install st0650 (to install program files, if available)

. net get st0650 (to install ancillary files, if available)

To update the xtivdfreg package to the latest version, type

. net install xtivdfreg, from("http://www.kripfganz.de/stata/") replace
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