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1 Introduction
Chorus, Arentze, and Timmermans (2008) proposed an alternative to random utility
maximization (RUM) (Manski 1977) discrete choice behavior by introducing a family
of models rooted in regret theory (Loomes and Sugden 1982; Bell 1982) called random
regret minimization (RRM). Intuitively, RRM claims that individuals base their choices
between alternatives on the desire to avoid the situation where a nonchosen alternative
ends up being more attractive than the chosen one, which would cause regret. Therefore,
individuals are assumed to minimize anticipated regret when choosing among alterna-
tives, in contrast to utility maximization.

2 Early model
The model proposed in Chorus, Arentze, and Timmermans (2008) assumes that decision
makers (referred to as n) face a set of J alternatives (referred to as i or j indistinctly),
each alternative being described in terms of the value of M attributes (referred to as
m). Therefore, the value of attribute m of alternative i of individual n is denoted by
ximn. When the decision maker n is choosing between alternatives, he or she aims
to minimize the anticipated random regret of a given alternative i. Consequently, the
regret of alternative i on attribute m of individual n will be described by Rmax

i↔j,mn =
max {0, βm × (xjmn − ximn)}. From this formulation, we can see two things. First, the
regret is 0 when alternative j performs worse than i in terms of attribute m. Second, the
regret grows as a linear function of the difference in attribute values in case alternative i
performs worse than alternative j in terms of attributem. Here the estimable parameter
βm gives the slope of the regret function for attribute m. Furthermore, the original
version of RRM postulates that the systematic regret, Rmax

in , of a considered alternative
i can then be written as in (1), taking the maximum regret over all alternatives:

Rmax
in = max

j 6=i

(
M∑

m=1

Rmax
i↔j,mn

)
= max

j 6=i

[
M∑

m=1

max {0, βm × (xjmn − ximn)}

]
(1)

Finally, the anticipated random regret (RRmax
in ) is composed of the systematic re-

gret Rmax
in and an additive independent and identically distributed (i.i.d.) extreme-

value distributed error εin, which represents the unobserved component in the regret:
RRmax

in = Rmax
in + εin. Assuming that the negative of εin is extreme-value type I dis-

tributed, and acknowledging that the minimization of the random regret is mathemat-
ically equivalent to maximizing the negative of the random regret, probabilities may
be derived using the well-known multinomial logit formulation. Therefore, the choice
probability associated with alternative i is defined in (2):

Pmax
in =

exp (−Rmax
in )∑J

j=1 exp
(
−Rmax

jn

) for i = 1, . . . , J (2)
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3 Classical model
The major contribution made by Chorus (2010) is an elegant way to get rid of the two
max operators on the attribute-level regret of the original version (Chorus, Arentze, and
Timmermans 2008), which results in a nonsmooth likelihood function and triggers the
need for customized optimization routines. Instead, in Chorus (2010), the new attribute-
level regret is redefined byRi↔j,mn = ln [1 + exp {βm × (xjmn − ximn)}]. Therefore, the
deterministic part of the regret of alternative i of individual n is now described by (3):

Rin =

J∑
j 6=i

M∑
m=1

Ri↔j,mn =

J∑
j 6=i

M∑
m=1

ln [1 + exp {βm × (xjmn − ximn)}] (3)

The two most important differences are as follows. First, the exterior max op-
erator is replaced by a summation over all the alternatives, meaning that the choice
maker’s systematic regret considers not only the best nonchosen alternative as in Cho-
rus, Arentze, and Timmermans (2008) but also the aggregate regret of all the others.
Particularly, when the choice set is large, it does not seem quite reasonable to consider
just one nonchosen alternative. Second, the replacement of the inner max operator has
a mathematical justification because it is a continuously differentiable function that
approximates the original max operator and will generate a smooth likelihood.

Following the same idea as in Chorus, Arentze, and Timmermans (2008), assuming
that the random regret function (RRin) also includes an additive i.i.d. extreme-value
type I error term that captures the pure random noise and impact of omitted attributes
in the regret: RRin = Rin+εin. Finally, we obtain the same well-known and convenient
closed-form logit formula for the choice probability given by (4). The last model is
referred to as the classical RRM and is one of the models implemented in the command.

Pin =
exp (−Rin)∑J
j=1 exp (−Rjn)

for i = 1, . . . , J (4)

3.1 Ri↔j,mn as an approximation of Rmax
i↔j,mn

To illustrate how those two definitions of the regret differ from each other, a graph
is presented in figure 1. The x axis represents the difference on an attribute m of two
alternatives i and j for individual n, (xjmn − ximn), and the y axis represents the regret
(r) that this difference generates conditional on βm = 1.
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Rmax
i↔j,mn

Ri↔j,mn

r = ln(2)

(xjmn − ximn)
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Figure 1. Comparison of Rmax
i↔j,mn (1) and Ri↔j,mn (3) conditional on βm = 1. Adapted

from Chorus (2010); reprinted with permission.

In figure 1, we can see that Ri↔j,mn is a smooth version of Rmax
i↔j,mn, creating a

continuous differentiable likelihood function. Also, both functions can capture semi-
compensatory behavior, meaning that poor performance of a given alternative with
respect to an attribute is not necessarily compensated by a good performance with
respect to another attribute, which is a key feature of RRM models.

Additionally, when two alternatives have the same level for some attribute, the
corresponding regret is not 0 but is equal to ln(2) ≈ 0.69. Though counterintuitive at
first glance, note that only differences in regret or utility matter for choice probabilities
(Train 2009). Hence, they remain unchanged regardless of the inclusion of this constant
in the systematic regret. This can be easily checked in (4).

4 Differences between RUM and RRM models
Before we introduce three different models that generalize the underlying paradigm of
the classical RRM model, we describe some essential differences between RRM and RUM
while getting more insights into the RRM model.

4.1 Semicompensatory behavior and the compromise effect

Probably the most remarkable difference with the RUM model is the semicompensatory
behavior that is described by RRM models. To illustrate this, we show the Ri↔j,mn

function with βm = 1 in figure 2, which describes the regret generated by attribute m
when a considered alternative i is being compared with alternative j, as a function of
the difference between the attribute values, that is, xjmn − ximn. Segments (A) and
(B) in the figure represent the magnitude of rejoice and regret, respectively, on an equal
difference of attribute levels of 2.5 units. As shown in figure 2, the regret is much larger
than the rejoice at an equal difference in the attribute levels. We can also see that this
discrepancy becomes larger for differences with higher attribute values due to the regret
function’s convexity.
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Regret domain

Rejoice domain

(B)

(A)

(xjmn − ximn)

r

0 0.5 1 1.5 2 2.5 3 3.5 4−0.5−1−1.5−2−2.5−3−3.5−4

0.5

1

1.5

2

2.5

Figure 2. Semicompensatory behavior of Ri↔j,mn (3) conditional on βm = 1. Adapted
from van Cranenburgh, Guevara, and Chorus (2015); reprinted with permission.

Conversely, in RUM models, linear specification of utility leads to a fully compen-
satory model, where the poor performance of one attribute could be compensated easily
with a better performance in another attribute.

A consequence of the semicompensatory behavior of RRM models is the so-called
compromise effect. Given that having an inferior performance in one attribute causes
a large regret, RRM models tend to predict that alternatives with a relatively good
performance in all the attributes will be preferred to alternatives with a fairly good
performance in almost all attributes but a rather poor performance in just one attribute.
The compromise effect has been discussed in detail by Chorus and Bierlaire (2013) and
by Chorus, Rose, and Hensher (2013).

4.2 Taste parameter interpretation in RRM models

When it comes to interpretation of the RRM parameters, note that they cannot be com-
pared with the utilitarian counterpart of RUM models. On one hand, parameters of
RUM models are interpreted as the change in utility caused by an increase of a par-
ticular attribute level. On the other hand, parameters of RRM models represent the
potential change in regret associated with comparing a considered alternative with an-
other alternative in terms of the attribute, caused by one unit change in a particular
attribute level. For instance, an attribute that exhibits a positive and significant coeffi-
cient suggests that regret increases as the level of that attribute increases in a nonchosen
alternative compared with the level of the same attribute in the chosen one.
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5 Extensions of the classical RRM model
5.1 Generalized RRM

The generalization proposed by Chorus (2014), namely, the generalized random regret
minimization (GRRM) model, replaces the number 1 in the attribute-regret function
(3) with a new estimable parameter γm ∈ [0, 1], which represents the regret weight
for a particular attribute. Chorus (2014) proves that depending on the value of the
parameter γm, we can recover RUM behavior (γm = 0) or the classical RRM behavior
(γm = 1), showing that GRRM is a generalization not only of the classical RRM model
but also of RUM models. In our randregret command, detailed in section 4, we allow
for only one generic and common γ for all the attributes because of its computational
simplicity, which is one of the particular cases of this model implemented by Chorus
(2014). Consequently, the attribute-level regret in the GRRM is described by RGRRM

i↔j,mn =
ln [γ + exp {βm(xjmn − ximn)}], and the systematic part of regret in this model is given
by (5):

RGRRM
in =

J∑
j 6=i

M∑
m=1

RGRRM
i↔j,mn =

J∑
j 6=i

M∑
m=1

ln [γ + exp {βm (xjmn − ximn)}] (5)

When an additive type I extreme-value i.i.d. error is added to the systematic regret
function in (5), we obtain the random regret expression for the GRRM model: RRGRRM

in =
RGRRM

in + εin. Finally, the choice probability of the GRRM model is presented in (6):

PGRRM
in =

exp
(
−RGRRM

in

)∑J
j=1 exp

(
−RGRRM

jn

) for i = 1, . . . , J (6)

An illustration of how different values of γ affect the shape of the attribute-level
regret function RGRRM

i↔jmn is presented in figure 3.
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Figure 3. RGRRM
i↔j,mn (5) at different values of γ conditional on βm = 1. Adapted from

Chorus (2014); reprinted with permission.

As before, we have asymmetries regarding regret and rejoice produced by the dif-
ference in an attribute level. However, in the GRRM model, γ controls the convexity of
RGRRM

i↔j,mn, as can be seen in figure 3. Smaller γ values imply a less convex attribute-level
regret function and consequently a smaller asymmetry between regret and rejoice. In
particular, when γ = 0, the convexity of the regret function vanishes, yielding a fully
compensatory behavior. Additionally, Chorus (2014) proved that the likelihood of a
GRRM model with γ = 0 is equivalent to the likelihood of a linear RUM model. Finally,
when γ ∈ [0, 1], the sensitivity of the regret function is still higher in the regret domain
but is smaller than in the classical RRM, where γ = 1.

5.2 µRRM

van Cranenburgh, Guevara, and Chorus (2015) present a new generalization of the
classical RRM model that is linked to the scale parameter of the RRM model. They
show that the classic regret function (3) is not scale-invariant. This property, which
at first seems unfortunate, has been shown potentially useful to obtain more flexibility
and also, as we will see later, for providing insights related to the observed regret in the
data.

The first model proposed by van Cranenburgh, Guevara, and Chorus (2015) is the so-
called µRRM model. In particular, this model is capable of estimating the scale param-
eter µ, which is linked to the error variance as var(εi) =

(
π2µ2/6

)
. In this new model,
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the attribute-level regret function is described by RµRRM
i↔j,mn = ln[1+exp{(βm/µ)(xjmn−

ximn)}], and consequently, the systematic regret function is given by (7):

RµRRM
in =

J∑
j 6=i

M∑
m=1

µ×RµRRM
i↔j,mn

=

J∑
j 6=i

M∑
m=1

µ× ln [1 + exp {(βm/µ) (xjmn − ximn)}] (7)

Interestingly, in this model, we can estimate the scale parameter µ, which is well
known to be nonidentifiable in the RUM context because only differences in utility mat-
ter. However, as we mentioned earlier, RRM models can describe a semicompensatory
behavior, meaning that regret and rejoice do not cancel out entirely, allowing identifi-
cation of the µ parameter.

As before, an additive type I extreme-value i.i.d. error term is added to the systematic
regret function in (7) to obtain the random regret expression for the µRRM: RRµRRM

in =

RµRRM
in + εin. Finally, the choice probabilities of this model are given by (8):

PµRRM
in =

exp
(
−RµRRM

in

)
∑J

j=1 exp
(
−RµRRM

jn

) for i = 1, . . . , J (8)

van Cranenburgh, Guevara, and Chorus (2015) claim that the size of µ in the µRRM
model is informative of the degree of regret imposed by the model or, stated otherwise,
how much semicompensatory behavior we are observing in the decision maker’s choice
behavior. Given that the taste parameter βm is divided by the scale parameter µ, then
the larger the value of µ, the smaller the ratio βm/µ and therefore the smaller the
regret. Conversely, the smaller the value of µ, the bigger the ratio βm/µ and therefore
the larger the regret. This behavior is illustrated in figure 4, below, where we plotted
different RµRRM

i↔j,mn for a fixed value of βm = 1 and different values of µ.

Figure 4 shows that for arbitrarily large values of µ, the regret function becomes
flatter, with the obvious consequence that the semicompensatory behavior of the model
vanishes when µ tends to infinity. A formal proof of such a behavior is provided by
van Cranenburgh, Guevara, and Chorus (2015), where the authors show that the µRRM
model collapses into a linear RUM model when µ goes to infinity.



634 Random regret minimization models using Stata

µ = 2

µ = 1
µ = 0.5µ = 0.05

µ = 15

(xjmn − ximn)

r

0 0.5 1 1.5 2 2.5 3 3.5 4−0.5−1−1.5−2−2.5−3−3.5−4

0.5

1

1.5

2

2.5

Figure 4. RµRRM
i↔j,mn (7) for different values of µ conditional on βm = 1. Adapted from

van Cranenburgh, Guevara, and Chorus (2015); reprinted with permission.

On the other hand, when the value of µ is arbitrarily small, the µRRM model repre-
sents the strongest semicompensatory behavior possible among the RRM family models.
This scheme is explained in the following section.

Finally, in this model, note that the convexity of the attribute-level regret function
(RµRRM

i↔j,mn) is based on the taste parameter β and on µ; therefore, large values of the
taste parameter could compensate large values of µ, generating a ratio close to 1.

5.3 Pure RRM

The second model proposed by van Cranenburgh, Guevara, and Chorus (2015) is a
particular case of the µRRM model that is generated by arbitrarily small values of µ in
the µRRM model. As explained earlier, small values of µ mean that the ratio βm/µ is
very large, causing the regret function to yield very strong differences between regrets
and rejoices. This can be seen graphically in figure 4, where the smaller the value of µ,
the larger the slope of the regret function within the regret domain.

Interestingly, the authors formally proved that for µ going to 0 in the µRRM model
in (7), the model collapses into a linear specification (van Cranenburgh, Guevara, and
Chorus 2015, appendix D). The authors call the resulting model the pure-RRM (hereafter
PRRM) model, which describes the strongest semicompensatory behavior of all RRM
models. The specification of systematic regret imposed by the PRRM model is presented
in (9) and (10):

RPRRM
in =

M∑
m=1

βmxPRRM
imn (9)

xPRRM
imn =

{∑J
j 6=i max (0, xjmn − ximn) if βm > 0∑J
j 6=i min (0, xjmn − ximn) if βm < 0

(10)
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From (10), we can see that the PRRM model can be understood as a traditional logit
model using transformed attribute levels. Notice here that to estimate the PRRM, we
need to know the sign of the attributes a priori. In some situations, this requisite is not
very restrictive. For instance, in transport contexts where the alternatives are mainly
described in terms of its travel time (tt) and total cost (tc), we can expect the coefficients
βtc and βtt to have negative signs, given that cheaper and faster routes are preferred
to costlier and slower ones. The negative sign can be understood in terms of regret as
follows: when the total time (total cost) in nonchosen alternatives increases, our regret
decreases, given that the chosen alternative becomes relatively faster (cheaper).

Finally, adding the usual additive i.i.d. type I extreme-value error as in the previous
models to the systematic regret in (9), we obtain the random regret of the model:
RRPRRM

in = RPRRM
in + εin. Consequently, the choice probability of the PRRM model

under the stated distributional assumption is given by (11):

PPRRM
in =

exp
(
−RPRRM

in

)∑J
j=1 exp

(
−RPRRM

jn

) for i = 1, . . . , J (11)

6 Alternative-specific constants
The inclusion of alternative-specific constants (ASC) in the presented models is possible
by simply adding them into the systematic part of the regret. To exemplify this, let R∗

in

denote a generic systematic regret of alternative i as defined in (3), (5), (7), or (9). We
denote by αi the ASC of alternative i in (12). The inclusion of the ASC serves the same
purpose as in RUM models, which is to account for omitted attributes for a particular
alternative. As usual, for identification purposes, we need to exclude one of the ASC
from the model specification. For a detailed discussion of ASC in the context of RRM
models, see van Cranenburgh and Prato (2016).

R∗
in =

J∑
j 6=i

M∑
m=1

R∗
i↔j,mn + αi (12)

7 Relationships among the different models
In figure 5, we present the relationships among all the presented models. Solid arrows
state that a model collapses onto another model for a specific value of some parameter.
For instance, we can see the connection between the classical RRM model and the GRRM
model when γ = 1. On the other hand, dotted arrows indicate that the choice probabil-
ities and the likelihood of two models are the same, but not necessarily the estimated
parameters. For instance, Chorus (2014) showed that the relationship among RUM and
RRM parameters is described by βRRM

m = J × βRUM
m when γ = 0, where J is the size of

the choice set. Similarly, van Cranenburgh, Guevara, and Chorus (2015) showed that
when µ goes to infinity the relationship is described by βRUM

m
∼= (J/2)× βRRM

m .
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GRRM

RGRRM
in =

J∑
j 6=i

(
M∑

m=1

ln [γ + exp {βm × (xjmn − ximn)}]

)

RRM

Rin =

J∑
j 6=i

(
M∑

m=1

ln [1 + exp {βm × (xjmn − ximn)}]

)

µRRM

RµRRM
in =

J∑
j 6=i

(
M∑

m=1

ln [1 + exp {(βm/µ)× (xjmn − ximn)}]

)

RUM

Uin =

M∑
m=1

βm × ximn

PRRM

RPRRM
in =

M∑
m=1

βm × xPRRM
imn

γ = 0

γ = 1

µ = 1

µ→∞ µ→ 0

Figure 5. Interrelationship among the models based on parameters

The relationships in figure 5 allow us to use a likelihood-ratio (LR) test to compare
nested models and check which model fits the data best. In particular, table 1 lists the
relevant hypotheses with the corresponding LR statistic and the asymptotic distribution
of the test. The first column lists the models that we can compare based on a particular
parameter. The second column lists the formal hypotheses for the relevant parameter.
The third column presents the LR statistic in each case, where `(·) represents the log
likelihood of the model and θ̂RRM, θ̂GRRM, θ̂µRRM, and θ̂RUM represent the full set of
parameters of the classical RRM, GRRM, µRRM, and linear-in-parameters RUM models,
respectively. Finally, the fourth column lists the asymptotic distribution of the statistic
under the null hypothesis. The fact that the two first hypotheses follow a different
distribution from the traditional χ2

1 is because we are testing a null hypothesis on the
boundary of the parametric space of γ. For details about deriving the distribution of
the LR test under nonstandard conditions, see Self and Liang (1987). Additionally, illus-
trations of this matter can be found in Molenberghs and Verbeke (2007) and Gutierrez,
Carter, and Drukker (2001).
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Table 1. LR test for model comparison

Models Hypothesis LR statistic Distribution
under H0

RRM versus GRRM
H0 : γ = 1

H1 : γ < 1
2
{
`
(
θ̂GRRM

)
− `
(
θ̂RRM

)}
0.5
(
χ2
0 + χ2

1

)
RUM versus GRRM

H0 : γ = 0

H1 : γ > 0
2
{
`
(
θ̂GRRM

)
− `
(
θ̂RUM

)}
0.5
(
χ2
0 + χ2

1

)
RRM versus µRRM

H0 : µ = 1

H1 : µ 6= 1
2
{
`
(
θ̂µRRM

)
− `
(
θ̂RRM

)}
χ2
1

The randregret command always fits the classical RRM model to use those estimates
as starting points for the extended versions of the model, GRRM and µRRM. The LR
tests for γ = 1 and µ = 1 do not require extra computations. However, for testing
γ = 0, an additional linear RUM model is fit. Regardless, the user has the option to
deactivate the tests to speed up computations if desired.

Additionally, it is worth mentioning that the presented asymptotic distributions
of the LR test are only valid when no robust or cluster corrected variance–covariance
matrices are applied. If said corrections are used, a Wald test should be applied instead.
This test can be straightforwardly implemented using the postestimation command
test.

8 Robust standard errors
The use of robust standard errors corrected by cluster in discrete choice models is a
common practice given the panel structure that is created when an individual answers
multiple-choice situations in state-preference surveys. To illustrate this, we can write
our maximum-likelihood estimation equations as in (13). Where θ is the full set of
parameters, S(θ; yn,xn) = ∂ lnLn/∂θ represents the score functions, lnLn is the log
likelihood of observation n, xn is the full set of attributes, and yn is the response variable
that takes the value of 1 when alternative i is selected and 0 otherwise.

G(θ) =

N∑
n=1

S(θ; yn,xn) = 0 (13)

We can compute the robust variance estimator of θ using (14), where D = −H−1 is the
negative of the inverse of the Hessian resulting from the optimization procedure, and
un = S(θ̂; yn,xn) are row vectors that contain the score functions evaluated at θ̂.

V̂
(
θ̂
)
= D

(
n

n− 1

N∑
n=1

u′
nun

)
D (14)
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Equation (14) is appropriate only if the observations are independent. However, when
the same individual answers several choice situations, we can expect some degree of
dependency. When such a structure is present in the data, a more appropriate robust
variance estimate is given by (15), where Ck contains the indices of all observations
belonging to the same individual k for k = 1, 2, . . . , nc, with nc being the total number
of different individuals present in the dataset.

V̂
(
θ̂
)
= D

{
nc

nc − 1

nc∑
k=1

(∑
n∈Ck

un

)′(∑
n∈Ck

un

)}
D (15)

Appendix A provides details on the analytical form of the scores by each model presented
in this article. Additionally, the randregret command can compute corrected standard
errors by using the analytical expressions of the score functions without relying on
numerical approximations.

9 Commands
9.1 randregret

9.1.1 Syntax

randregret depvar
[
indepvars

] [
if
] [

in
]
, rrmfn(string) group(varname)

alternatives(varname)
[

positive(varlist) negative(varlist)
basealternative(#) noconstant uppermu(#) showancillary notlr

initgamma(#) initmu(#) cluster(varname) robust level(#)

maximize_options
]

9.1.2 Description

randregret is implemented as a Mata-based d0 ml evaluator. The command allows
one to implement four different regret functions.

9.1.3 Options

rrmfn(string) is required and specifies the regret function that will be used. classic
uses the systematic regret of (3), gene uses (5), mu uses (7), and pure uses (9). The
last option will use the randregret_pure command (see section 9.2) to create the
transformed alternative-specific attributes.

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

alternatives(varname) is required and specifies a numeric identifier variable of the
alternative for each choice situation.
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positive(varlist) specifies to include attributes with an assumed positive sign when
performing rrmfn(pure). Either positive() or negative() is required when using
rrmfn(pure).

negative(varlist) specifies to include attributes with an assumed negative sign when
performing rrmfn(pure). Either negative() or positive() is required when using
rrmfn(pure).

basealternative(#) sets the reference level in dummy coding for ASC.

noconstant suppresses the ASC from the specification.

uppermu(#) alters the optimization procedure using an ancillary parameter on the logit
scale searching for µ in the space [0,#]. The default is uppermu(5).

showancillary specifies to show the value of the estimated ancillary parameter when
performing rrmfn(gene) or rrmfn(mu).

notlr specifies to suppress the computations of the LR test over γ and µ, respectively,
when performing rrmfn(gene) or rrmfn(mu).

initgamma(#) specifies to set the initial value for the ancillary parameter for γ when
performing rrmfn(gene). The default is initgamma(0).

initmu(#) specifies to set the initial value for the ancillary parameter for µ when
performing rrmfn(mu). The default is initmu(0).

cluster(varname) specifies to adjust the variance–covariance matrix using (15) com-
puting clusters across individuals answering multiple questions.

robust specifies to adjust the variance–covariance matrix using (14).

level(#) sets the confidence level. The default is level(95).

maximize_options: difficult, iterate(#), trace, gradient, showstep,
hessian, tolerance(#), ltolerance(#), gtolerance(#), nrtolerance(#),
technique(algorithm_spec), from(init_specs); see [R] Maximize.
technique(bhhh) is not allowed.

9.2 randregret_pure

9.2.1 Syntax

randregret_pure varlist
[
if
] [

in
]
, group(varname) signbeta(string)

prefix(stubname)

9.2.2 Description

randregret_pure implements the alternative-specific attribute transformations
required to fit the PRRM model in (10).
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9.2.3 Options

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

signbeta(string) is required and specifies the sign of all the alternative-specific at-
tributes included in varlist. Specifying pos indicates that the sign of the attributes
is positive, and specifying neg indicates that the sign is negative.

prefix(stubname) is required and specifies the prefix of the new transformed alterna-
tive-specific attributes that randregret_pure will create.

9.3 randregretpred

9.3.1 Syntax

randregretpred newvar
[
if
] [

in
]
, group(varname) alternatives(varname)[

proba xb
]

9.3.2 Description

randregretpred can be invoked after randregret to obtain both predicted probabilities
and systematic estimated regret. randregretpred automatically identifies the last fitted
model, calculates the predicted-choice probabilities recovering the parameters obtained
from the likelihood maximization, and then plugs them back in using (4), (6), (8), or
(11) depending on the previously fitted model. Additionally, it is also possible to recover
the linear prediction of the systematic regret from (3), (5), (7), or (9).

9.3.3 Options

group(varname) is required and specifies a numeric identifier variable for the choice
situation.

alternatives(varname) is required and specifies a numeric identifier variable of the
alternative for each choice situation.

proba, the default, calculates the predicted-choice probabilities of each alternative.

xb calculates the linear prediction in the regret function.

10 Examples
To show the use of the randregret command, we use data from van Cranenburgh (2018)
that correspond to a value of time–stated choice experiment. The choice situation in
this experiment consisted of three unlabeled route alternatives, each consisting of two
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generic attributes: travel cost (tc) and travel time (tt). In this experiment, each
respondent answered a total of 10 choice situations. Table 2 presents the first choice
situation presented to respondents in the stated choice experiment. The authors used
a so-called D-efficient design to optimize the statistical efficiency of the experiment.1

Table 2. English translation of first choice situation

Attribute Route A Route B Route C

Travel time (one way) 23 min. 27 min. 35 min.
Travel cost (one way) 6 euros 4 euros 3 euros

The following variables will be used in our specifications of randregret:

• altern: ID of the alternative faced by the user.

• choice: whether the alternative was chosen by an individual (0–1 dummy).

• id: ID of the individual.

• cs: ID of the choice situation faced by the individual.

• tt: Total travel time (one way) of alternative i in minutes.

• tc: Total travel cost (one way) of alternative i in euros.

The data setup for randregret is equivalent to that used by clogit (see [R] clogit)
and the latest released command cmclogit (see [CM] cmclogit), meaning it has a
panel representation in terms of individual–alternative, that is to say, in long format.
The data are loaded from the server to Stata directly by using import delimited and
the URL given in van Cranenburgh (2018). The data are currently in wide format,
and just for the sake of illustration, we show the data manipulations required to use
randregret. We list the first four choice situations answered by the first individual
with the corresponding alternative-specific attributes, total time and total cost.

1. The complete experimental design can be found in appendix A of van Cranenburgh and Alwosheel
(2019).
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. scalar server = "https://data.4tu.nl/ndownloader/"

. scalar doi = "files/24015353"

. import delimited "`=server + doi'", clear
(encoding automatically selected: ISO-8859-1)
(29 vars, 1,060 obs)
. keep obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice
. list obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice in 1/4, sepby(obs)

obs id cs tt1 tc1 tt2 tc2 tt3 tc3 choice

1. 1 1 1 23 6 27 4 35 3 3

2. 2 1 2 27 5 35 4 23 6 2

3. 3 1 3 35 3 23 5 31 4 1

4. 4 1 4 27 4 23 5 35 3 3

Given that randregret requires the data to be presented in long format, we will
perform the required transformation by using the reshape command and present the
same information in long format.

. rename (choice) (choice_w)

. reshape long tt tc, i(obs) j(altern)
(j = 1 2 3)
Data Wide -> Long

Number of observations 1,060 -> 3,180
Number of variables 10 -> 7
j variable (3 values) -> altern
xij variables:

tt1 tt2 tt3 -> tt
tc1 tc2 tc3 -> tc

. generate choice = 0

. replace choice = 1 if choice_w==altern
(1,060 real changes made)
. label define alt_label 1 "First" 2 "Second" 3 "Third"
. label values altern alt_label
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. list obs altern choice id cs tt tc in 1/12, sepby(obs)

obs altern choice id cs tt tc

1. 1 First 0 1 1 23 6
2. 1 Second 0 1 1 27 4
3. 1 Third 1 1 1 35 3

4. 2 First 0 1 2 27 5
5. 2 Second 1 1 2 35 4
6. 2 Third 0 1 2 23 6

7. 3 First 1 1 3 35 3
8. 3 Second 0 1 3 23 5
9. 3 Third 0 1 3 31 4

10. 4 First 0 1 4 27 4
11. 4 Second 0 1 4 23 5
12. 4 Third 1 1 4 35 3

After the data manipulation, we can fit the four different RRM models that the
command randregret can estimate. Before going into the details of each possible
specification of the regret function, we will discuss two required options for every model:
group() and alternatives(). The group() option contains an identifier of each choice
situation in the sample, which in our case corresponds with the variable obs. The
alternatives() option identifies the available alternatives of the choice set, which in
our case corresponds with the variable altern.

We start with the classical RRM that uses (3) as systematic regret. To obtain such
a model, we need to specify rrmfn(classic). Additionally, we declare noconstant
because alternatives were nonlabeled in the survey; therefore, we suppress the ASC.
Here we can see that, as expected, both variables’ coefficients are negative and highly
significant. This latter result can be interpreted as follows. A negative and significant
coefficient suggests that regret decreases as the level of that attribute increases in a
nonchosen alternative compared with the same attribute level in a chosen one. For
example, a negative coefficient estimated for the attribute “total time” indicates that
the regret decreases as the total time increases in a nonchosen alternative, compared
with the level of the chosen option. The same interpretation can be made for the
attribute “total cost”.
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. randregret choice tc tt, group(obs) alternatives(altern) rrmfn(classic)
> noconstant

Fitting Classic RRM Model

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784
RRM: Classic Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 114.72
Log likelihood = -1118.4784 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

RRM
tc -.417101 .0399883 -10.43 0.000 -.4954767 -.3387253
tt -.102813 .0099862 -10.30 0.000 -.1223857 -.0832403

However, given that we observe multiple answers from each individual in the pre-
sented data, we need to correct our standard errors considering this panel structure.
We can easily cluster our standard errors across individuals by using the cluster(id)
option, which implements the cluster–robust variance–covariance matrix described in
(15). When we refit the model using the robust cluster correction, we can see a con-
siderable increase in the standard error. This change can mainly be explained because
the cluster correction treats every set of 10 answers from each of the 106 individuals as
dependent observations, which is different from the latter, which assumed each of the
1,060 choice situations were all independent. We will present the following models by
using robust standard errors with clusters across individuals.

. randregret choice tc tt, group(obs) alternatives(altern) rrmfn(classic)
> noconstant cluster(id) nolog

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 40.41
Log likelihood = -1118.4784 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coefficient std. err. z P>|z| [95% conf. interval]

RRM
tc -.417101 .068059 -6.13 0.000 -.5504943 -.2837078
tt -.102813 .0182526 -5.63 0.000 -.1385874 -.0670386
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To fit the GRRM model, we simply need to declare rrmfn(gene) to use (5) as our
systematic regret function. From the output, we can observe that randregret fit three
models. The classical RRM (3) is fit to use the parameters as starting points for the
GRRM, and it is used in the LR test of γ = 1. Afterward, a linear RUM model was fit
to obtain the constrained likelihood for the LR test of γ = 0. Finally, the GRRM model
was fit.

Because γ must lie between 0 and 1, the optimization uses an ancillary parameter
with a logistic transformation during the optimization procedure: γ = exp(γ∗)/{1 +
exp (γ∗)} = logit−1(γ∗) = invlogit(γ∗), where γ∗ is an unbounded ancillary parame-
ter. Normally, γ∗ is hidden from the output, but it can be shown using the option
showancillary. The resulting γ∗ is displayed in the _cons variable of the gamma_star
equation.

. randregret choice tc tt, group(obs) alternatives(altern) rrmfn(gene)
> noconstant cluster(id) showancillary

Fitting Classic RRM for Initial Values

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784

Fitting Conditional Logit as a Restricted Model (gamma=0) for LR test

Fitting Generalized RRM Model

initial: log likelihood = -1120.7001
rescale: log likelihood = -1120.7001
rescale eq: log likelihood = -1120.7001
Iteration 0: log likelihood = -1120.7001
Iteration 1: log likelihood = -1118.5366
Iteration 2: log likelihood = -1118.3484
Iteration 3: log likelihood = -1118.3307
Iteration 4: log likelihood = -1118.3302
Iteration 5: log likelihood = -1118.3302
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GRRM: Generalized Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 10.23
Log likelihood = -1118.3302 Prob > chi2 = 0.0060

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coefficient std. err. z P>|z| [95% conf. interval]

RRM
tc -.3904872 .1248997 -3.13 0.002 -.6352861 -.1456884
tt -.0967528 .0307009 -3.15 0.002 -.1569255 -.03658

gamma_star
_cons 1.291135 3.303988 0.39 0.696 -5.184563 7.766832

gamma .7843392 .5588736 .0055712 .9995766

LR test of gamma=0: chibar2(01) = 9.41 Prob >= chibar2 = 0.001
LR test of gamma=1: chibar2(01) = 0.30 Prob >= chibar2 = 0.293

Finally, using γ̂∗, we can obtain γ̂ back on the original scale from 0 to 1 by using
the logistic transformation. It is displayed as gamma in the output. The standard error
of gamma is computed using the delta method. To exemplify the last point, manually, it
is possible to recover γ̂ (gamma) using (see [R] nlcom).

. nlcom (gamma: invlogit(_b[gamma_star:_cons]))
gamma: invlogit(_b[gamma_star:_cons])

choice Coefficient Std. err. z P>|z| [95% conf. interval]

gamma .7843392 .5588736 1.40 0.160 -.3110331 1.879711

From the nlcom output, some immediate discrepancies are evident regarding the con-
fidence interval (CI), where the upper bound violates the restriction that we imposed
on γ. As Buis (2014) documented using the heckman command, the discrepancies in
CI occur because nl computes the CI using γ̂ ± zρ{V̂ar(γ̂)}1/2. Accordingly, using the
procedure of Buis (2007) and noting that the γ̂ and {V̂ar(γ̂)}1/2 are stored in e(gamma)
and e(gamma_sd), respectively, we can recover the CI of nlcom as follows.

. display "confidence interval for gamma from nl: [" /*
> */ e(gamma) - e(gamma_se)*invnormal(.975) ", " /*
> */ e(gamma) + e(gamma_se)*invnormal(.975) "]"
confidence interval for gamma from nl: [-.31103306, 1.8797114]
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On the other hand, randregret computes the CI using the endpoints of γ̂∗ and then
transforms those endpoints back into the restricted space. Therefore, the CI is computed
using invlogit[γ̂∗ ± zρ{V̂ar(γ̂∗)}1/2]. We can replicate the CI produced by randregret
manually as follows:

. display "confidence interval for gamma from randregret: [" /*
> */ invlogit(_b[gamma_star:_cons] - /*
> */ invnormal(.975)* _se[gamma_star:_cons]) ", " /*
> */ invlogit(_b[gamma_star:_cons] + /*
> */ invnormal(.975)* _se[gamma_star:_cons]) "]"
confidence interval for gamma from randregret: [.00557117, .99957663]

Even though both ways are asymptotically equivalent, in finite samples they are
likely to differ. Moreover, the way used by randregret ensures that the restrictions
imposed on the parameter are met by the CI too.

Additionally, randregret computes two LR tests for γ. As explained earlier, given
that we are testing a null hypothesis at the boundaries of the parametric space, we need
to adjust the critical value (Gutierrez, Carter, and Drukker 2001). This is why the test
mentions a chibar2(01), which is a mixture of a χ2

1 (50%) and a χ2
0 (50%). From

the test, we can see that the hypothesis for γ = 0 is rejected, meaning that there is
statistical evidence in favor of the data being generated by regret minimization behavior
and not from RUM. Besides, we can see that the hypothesis for γ = 1 cannot be rejected,
meaning here that the GRRM model is not significantly different from the classical RRM.
Finally, it is important to note that, as stated before, the conclusions derived from
the LR test that randregret displays by default are only valid when no corrections to
the variance–covariance matrix are implemented, which does not happen in this case.
Hence, a Wald test is better suited in this context.

The µRRM model can be obtained by typing rrmfn(mu), implementing (7) as sys-
tematic regret. For this model, similar to the GRRM model, we use an ancillary param-
eter approach to bound the searching space of our algorithm for µ between 0 and M .
The transformation used is µ = M × [exp(µ∗)/{1 + exp(µ∗)}] = M × {logit−1(µ∗)} =
M × {invlogit(µ∗)}, where µ∗ is an unbounded ancillary parameter and M is equal to
the upper bound of the searching space. The upper bound that we used in this case
was equal to 10, as can be seen in the uppermu() option. From the output, we see that
randregret first runs the classical RRM model and uses the common parameters with
the µRRM model as starting points for the maximization procedure.
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. local up = 10

. randregret choice tc tt, group(obs) alternatives(altern) rrmfn(mu) noconstant
> uppermu(`up') showancillary cluster(id)

Fitting Classic RRM for Initial Values

initial: log likelihood = -1164.529
alternative: log likelihood = -1156.5784
rescale: log likelihood = -1121.29
Iteration 0: log likelihood = -1121.29
Iteration 1: log likelihood = -1118.4843
Iteration 2: log likelihood = -1118.4784
Iteration 3: log likelihood = -1118.4784

Fitting muRRM Model

initial: log likelihood = -1121.2577
rescale: log likelihood = -1121.2577
rescale eq: log likelihood = -1121.2577
Iteration 0: log likelihood = -1121.2577 (not concave)
Iteration 1: log likelihood = -1118.9528
Iteration 2: log likelihood = -1118.5884
Iteration 3: log likelihood = -1118.398
Iteration 4: log likelihood = -1118.3965
Iteration 5: log likelihood = -1118.3965
muRRM: Mu-Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 66.95
Log likelihood = -1118.3965 Prob > chi2 = 0.0000

(Std. Err. adjusted for 106 clusters in id)

Robust
choice Coefficient std. err. z P>|z| [95% conf. interval]

RRM
tc -.4280409 .0557747 -7.67 0.000 -.5373572 -.3187245
tt -.1059436 .0152902 -6.93 0.000 -.1359119 -.0759754

mu_star
_cons -2.0056 .7911288 -2.54 0.011 -3.556183 -.4550157

mu 1.186163 .8270969 .2775523 3.881689

LR test of mu=1: chi2(1) =0.16 Prob >= chibar2 = 0.686

The resulting µ̂∗ is displayed in the _cons variable of the mu_star equation because
of the showancillary option. To recover the value of µ̂, randregret applies the trans-
formation described above. The same procedure can be performed using nlcom in the
same fashion as we did for the GRRM model, with the only difference being that we need
to multiply by the defined upper bound of the searching space to recover the parameter
µ̂ correctly. The same discrepancies in the CI produced by nlcom are due to the matter
explained earlier in the GRRM model context and can be addressed as stated.
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. nlcom (mu :invlogit(_b[mu_star:_cons])*`up')
mu: invlogit(_b[mu_star:_cons])*10

choice Coefficient Std. err. z P>|z| [95% conf. interval]

mu 1.186163 .8270969 1.43 0.152 -.4349177 2.807243

Additionally, randregret shows the LR test results for testing µ = 1. We see that
it is not possible to reject the hypothesis that µ is equal to 1 (p = 0.686), meaning that
the model is statistically equivalent to the classical RRM. However, because we fit the
model using a cluster–robust variance–covariance matrix, the inference derived from LR
tests is no longer valid, and a Wald test should be performed instead. An important
remark for practitioners is that if the maximum is reached at µ̂ = M , it is highly likely
that µ is tending to infinity. Therefore, as argued in van Cranenburgh, Guevara, and
Chorus (2015), this fact suggests that there is evidence in favor that the choice behavior
is better represented by a linear RUM model.

Finally, the PRRM model can be fit using the rrmfn(pure) option. As we mentioned
before, this model is a particular case of the µRRM with µ arbitrarily small, and it
is described by (9) and (10). Important differences with the common syntax need
to be mentioned. Given that we need to feed the model with the expected signs of
attributes, we do not include the explanatory variables conventionally. Instead, we split
the attributes between the ones with an assumed positive sign and the ones with an
assumed negative sign in the options positive() and negative(), respectively. In this
particular case, both of our attributes are expected to have a negative sign because
faster and cheaper routes are preferable to slower and costlier ones. Therefore, when
the level on a nonchosen alternative increases, the regret decreases. Consequently, we
need to include the two attributes as follows: negative(tc tt).

. randregret choice, negative(tc tt) group(obs) alternatives(altern) rrmfn(pure)
> noconstant cluster(id)
PRRM: Pure Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 21.06
Log likelihood = -1128.3777 Prob > chi2 = 0.0000

(Std. err. adjusted for 106 clusters in id)

Robust
choice Coefficient std. err. z P>|z| [95% conf. interval]

choice
tc -.285628 .0647545 -4.41 0.000 -.4125446 -.1587114
tt -.0661575 .0169355 -3.91 0.000 -.0993505 -.0329645

The Pure-RRM uses a transformation of the original regressors using options
positive() and negative() as detailed in S. van Cranenburgh et. al (2015)
Afterward, randregret invokes clogit using these transormed regresors
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As mentioned in the footnote of the output, randregret performs the attribute
transformation using (10). The transformed attributes are generated using the com-
mand randregret_pure. Afterwards, randregret simply invokes clogit to fit the
model using these transformed attributes.

Additionally, for the sake of illustration, we will also fit the PRRM model using
randregret_pure and clogit independently. The randregret_pure command can
generate the transformed attributes described in (10). When dealing with a mix of
positive and negative attributes, their transformations need to be created in two different
runs of randregret_pure, that is to say, one for assumed positive attributes and the
other for assumed negative attributes. In our case, all the attributes are assumed to have
negative signs. Hence, we can create them in a single run of randregret_pure using
the option signbeta(neg). Finally, given that the function will add the transformed
attributes as new Stata variables, the user needs to provide a prefix to name and include
them in the dataset. Consequently, we type prefix(p_) to declare that all the new
attributes’ names will start with the p_ prefix.

. randregret_pure tc tt, sign(neg) group(obs) prefix(p_)

. list obs altern choice tt p_tt tc p_tc in 1/3, sepby(obs)

obs altern choice tt p_tt tc p_tc

1. 1 First 0 23 0 6 5
2. 1 Second 0 27 4 4 1
3. 1 Third 1 35 20 3 0

To further illustrate the process of generating the new attributes, we will follow
the calculations in (10) to obtain the transformed attribute (p_tt) from the original
attribute total time (tt) for the first choice situation (obs==1) of the first individual.

The new transformed attribute p_tt, conditional on an assumed negative sign from
the original attribute, is given by xPRRM

i,tt,1 =
∑3

j 6=i min (0, xj,tt,1 − xi,tt,1). Subsequently,
in matrix format, we will perform the following calculations to obtain p_tt.

XPRRM
tt,1 =


xPRRM
1,tt,1

xPRRM
2,tt,1

xPRRM
3,tt,1

 =

min (0, x2,tt,1 − x1,tt,1) + min (0, x3,tt,1 − x1,tt,1)
min (0, x1,tt,1 − x2,tt,1) + min (0, x3,tt,1 − x2,tt,1)
min (0, x1,tt,1 − x3,tt,1) + min (0, x2,tt,1 − x3,tt,1)



=

min (0, 27− 23) + min (0, 35− 23)
min (0, 23− 27) + min (0, 35− 27)
min (0, 23− 35) + min (0, 27− 35)


=

 0 + 0
−4 + 0
−12 +−8

 =

 0
−4
−20


It is worth mentioning that randregret_pure flips the signs of the variables to

be used directly in combination with clogit. This is because to obtain the choice
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probabilities using (11), we need to use the negative of (10), which is exactly what we
achieve by invoking clogit using the transformed variables. Finally, we can check that
we get the same results when running randregret using the rrmfn(pure) option and
using randregret_pure together with clogit.

. clogit choice p_tc p_tt, group(obs) vce(cluster id)
Iteration 0: log pseudolikelihood = -1132.2901
Iteration 1: log pseudolikelihood = -1128.3852
Iteration 2: log pseudolikelihood = -1128.3777
Iteration 3: log pseudolikelihood = -1128.3777
Conditional (fixed-effects) logistic regression Number of obs = 3,180

Wald chi2(2) = 21.06
Prob > chi2 = 0.0000

Log pseudolikelihood = -1128.3777 Pseudo R2 = 0.0310
(Std. err. adjusted for 106 clusters in id)

Robust
choice Coefficient std. err. z P>|z| [95% conf. interval]

p_tc -.285628 .0647545 -4.41 0.000 -.4125446 -.1587114
p_tt -.0661575 .0169355 -3.91 0.000 -.0993505 -.0329645

As we mentioned earlier, randregret also allows for the inclusion of ASC for all the
models using (12). Below, we run a classic RRM model using the basealternative(1)
option, which specifies that the first alternative is the reference for the ASC. We list
the results here to illustrate the syntax only because the survey was implemented using
nonlabeled alternatives.

. randregret choice tc tt, group(obs) alternatives(altern) basealternative(1)
> rrmfn(classic) nolog

Fitting Classic RRM Model

RRM: Classic Random Regret Minimization Model
Case ID variable: obs Number of cases = 1060
Alternative variable: altern Number of obs = 3180

Wald chi2(2) = 89.98
Log likelihood = -1113.5986 Prob > chi2 = 0.0000

choice Coefficient Std. err. z P>|z| [95% conf. interval]

RRM
tc -.389129 .0411256 -9.46 0.000 -.4697336 -.3085244
tt -.0910313 .0106063 -8.58 0.000 -.1118192 -.0702433

ASC
ASC_2 -.1673341 .0769052 -2.18 0.030 -.3180656 -.0166026
ASC_3 .0876183 .0815384 1.07 0.283 -.072194 .2474306

To generate predictions, we can invoke randregretpred after running randregret.
To illustrate this, we rerun the classical RRM model and generate two different predic-
tions. First, using the option proba, we generate the prob variable, which contains
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the predicted probability of (4). Additionally, we also used the xb option to generate a
variable containing the linear predicted systematic regret of (3).

. quietly randregret choice tc tt, group(obs) alternatives(altern)
> rrmfn(classic) noconstant nolog
. randregretpred prob, group(obs) alternatives(altern) proba
. randregretpred xb, group(obs) alternatives(altern) xb
. list obs altern choice id cs tt tc prob xb in 1/12, sepby(obs)

obs altern choice id cs tt tc prob xb

1. 1 First 0 1 1 23 6 .22354907 3.4618503
2. 1 Second 0 1 1 27 4 .54655027 2.567855
3. 1 Third 1 1 1 35 3 .22990067 3.4338339

4. 2 First 0 1 2 27 5 .43840211 2.7134208
5. 2 Second 1 1 2 35 4 .19128045 3.5428166
6. 2 Third 0 1 2 23 6 .37031744 2.8821967

7. 3 First 1 1 3 35 3 .25800373 3.2759017
8. 3 Second 0 1 3 23 5 .44187012 2.7378597
9. 3 Third 0 1 3 31 4 .30012616 3.1246728

10. 4 First 0 1 4 27 4 .43840211 2.7134208
11. 4 Second 0 1 4 23 5 .37031744 2.8821967
12. 4 Third 1 1 4 35 3 .19128045 3.5428166

11 Conclusions
We presented the randregret command, which allows the user to easily fit four different
RRM models, namely, the classic RRM (Chorus 2010), the GRRM (Chorus 2014), the
µRRM, and the PRRM (van Cranenburgh, Guevara, and Chorus 2015). We illustrated
the results using stated choice discrete choice data in the context of route selection given
in van Cranenburgh and Alwosheel (2019). Additionally, we have included additional LR
tests that rely on the relationships among the models, which allows us to test whether
the data are more likely to be generated by RRM or RUM choice behavior.
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13 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3

. net install st0649 (to install program files, if available)

. net get st0649 (to install ancillary files, if available)
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A Technical appendix
A.1 Generic score functions for RRM models

Without loss of generality, we can state that the log likelihood of the four RRM models
presented in this article can be represented by (16). In particular, when R∗

in is replaced
by (3), (5), (7), or (9), we can fit, respectively, the classical RRM, the GRRM, the µRRM,
or the PRRM model.

lnL =
N∑

n=1

J∑
i=1

yin ln (P
∗
in)

=

N∑
n=1

J∑
i=1

yin ln

{
exp (−R∗

in)∑J
j=1 exp
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jn

)}

= −
N∑

n=1
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yinR
∗
in −

N∑
n=1

J∑
i=1

yin ln


J∑

j=1

exp
(
−R∗

jn

) (16)

Furthermore, any partial derivative of the log likelihood with respect to any param-
eter θ ∈ θ, where θ stands for the full set of parameters of the model, can be expressed
as in (17). The rank of θ will depend on the particular model.

∂ lnL

∂θ
= −

N∑
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J∑
i=1

yin
∂R∗
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= −

N∑
n=1

J∑
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(yin − Pin)

(
∂R∗

in

∂θ

)
(17)
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In the appendices A.2–A.5, we will list the partial derivatives, also known as score
functions, per type of parameter in each type of model. Additionally, note that, in any
case, we can check that ∂R∗

in/∂αi = 1, where αi represents the coefficient associated
with the ASC of alternative i.

A.2 Score functions for the classical RRM model

To obtain the log likelihood of the classic RRM model, we need to substitute R∗
in in (16)

by (3). Accordingly, the set of parameters θ is now given by θ = (β,α)
′. Here β is an

m× 1 vector of alternative-specific regression coefficients, and α is a (J − 1)× 1 vector
of ASC. Subsequently, the score functions of the classical RRM model will be described
as follows:

∂ lnL

∂θ
=

(
∂ lnL

∂β1
, . . . ,

∂ lnL

∂βM
,
∂ lnL

∂α1
, . . . ,

∂ lnL

∂αJ−1

)
=

(
∂ lnL

∂β
,
∂ lnL

∂α

)

Finally, to obtain the expression for ∂ lnL/∂βm, we need to replace (18) into (17).

∂Rin

∂βm
=

J∑
j 6=i

[
exp {βm (xjmn − ximn)} × (xjmn − ximn)

1 + exp {βm (xjmn − ximn)}

]
(18)

A.3 Score functions for the GRRM model

The log likelihood of the GRRM model can be constructed by replacing the term R∗
in in

(16) with (5). Hence, the full set of parameters θ is now given by θ = (β,α, γ∗)
′. Here

β is an m × 1 vector of alternative-specific regression coefficients, α is a (J − 1) × 1
vector of ASC, and γ∗ is a scalar equal to the parameter γ in the logit scale. Hence, the
corresponding score functions are described by

∂ lnL

∂θ
=

(
∂ lnL

∂β1
, . . . ,

∂ lnL

∂βM
,
∂ lnL

∂α1
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∂ lnL
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,
∂ lnL
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)
=
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∂ lnL

∂β
,
∂ lnL
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,
∂ lnL
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)

Additionally, to obtain the expression for ∂ lnL/∂βm, we need to replace (19) into
(17).

∂RGRRM
in

∂βm
=

J∑
j 6=i

[
exp {βm (xjmn − ximn)} × (xjmn − ximn)

γ + exp {βm (xjmn − ximn)}

]
(19)

However, the score function of the parameter γ∗ needs a slightly different treatment.
As mentioned earlier, the optimization procedure does not directly fit the parameter γ;
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instead, it fits the model by using an ancillary parameter: γ∗ = logit(γ). Hence, we
model the parameter γ in the logit scale. This fact has a direct impact on the score
function of parameter γ∗. Using the chain rule, we can state

∂ lnL

∂γ
=

∂ lnL

∂γ∗ ×
∂γ∗

∂γ

Subsequently, solving ∂γ∗/∂γ and rearranging terms, we see in (20) that to compute
the score function of the parameter γ∗, we need to adjust the partial derivative from
the log likelihood with respect to γ by a factor of γ(1− γ).

∂ lnL

∂γ∗ =
∂ lnL

∂γ
× γ(1− γ) (20)

The expression for ∂ lnL/∂γ can be computed by replacing (21) into (17), which together
with (20) gives us the required expression for ∂ lnL/∂γ∗.
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γ + exp {βm (xjmn − ximn)}

]
(21)

A.4 Score functions for µRRM model

The µRRM model has a log likelihood that is a particular case of (17), where R∗
in is

replaced by (7). Thus, the full set of parameters θ is now described by θ = (β,α, µ∗)
′.

Here β is an m×1 vector of alternative-specific regression coefficients, α is a (J−1)×1
vector of ASC, and µ∗ is a scalar equal to the µ parameter in a transformed scale. Thus,
the corresponding score functions can be represented by

∂ lnL
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)
First, by replacing (22) back into (17), we can easily obtain the expression for

∂ lnL/∂βm.

∂RµRRM
in

∂βm
=
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(
exp {(βm/µ)× (xjmn − ximn)} × (xjmn − ximn)

µ× [1 + exp {(βm/µ)× (xjmn − ximn)}]

)
(22)

The µRRM model, similarly to the GRRM model, also fits the parameter µ by using
an unbounded ancillary parameter: µ∗ = ln{µ/ (M − µ)}. Accordingly, this transfor-
mation needs to be accounted for when computing the score function of the parameter
µ∗. Using the chain rule, we can state

∂ lnL

∂µ
=

∂ lnL

∂µ∗ ×
∂µ∗
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Solving for ∂µ∗/∂µ and rearranging terms, we can see that the score function of the
parameter µ∗ is the same as the partial derivative of the log likelihood with respect to
µ multiplied by a factor equal to µ (M − µ) /M .

∂ lnL

∂µ∗ =
∂ lnL

∂µ
× µ (M − µ)

M
(23)

Finally, the expression for ∂ lnL/∂µ can be obtained by replacing (24) and (25) into
(17), which together with (23) provides the required expression for ∂ lnL/∂µ∗.
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A.5 Score functions for the PRRM model

We can recover the log likelihood of the PRRM model by replacing the expression R∗
in

in (16) by (9). Thus, the full set of parameters θ is now described by θ = (β,α)
′. Here

β is an m× 1 vector of alternative-specific regression coefficients, and α is a (J − 1)× 1
vector of ASC. Consequently, the score functions are then

∂ lnL
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Accordingly, we can obtain the expression for ∂ lnL/∂βm by replacing (26) into (17).

∂RPURE
in

∂βm
= xPURE

imn (26)
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