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Abstract. In this article, I describe several updates to xtdcce2 (Ditzen, 2018,
Stata Journal 18: 585-617). First, I explain how to estimate long-run effects in
models with cross-sectional dependence. I review three methods to estimate the
long-run effects and discuss their implementation into Stata using xtdcce2. Two
of the estimation methods build on Chudik et al. (2016, Advances in Econometrics:
Vol. 36—Essays in Honor of Aman Ullah, 85-135): the cross-sectionally augmented
distributed lag and the cross-sectionally augmented autoregressive distributed lag
estimator. As a third alternative, I review an error-correction model in the presence
of cross-sectional dependence. Second, I explain how to estimate the exponent of
cross-sectional dependence using xtcse2 following Bailey, Kapetanios, and Pesaran
(2016, Journal of Applied Econometrics 31: 929-960; 2019, Sankhya 81: 46-102).
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1 Introduction

Estimation of long-run relationships is important in empirical applications of economic
models, particularly macroeconomic models. Long-run relationships describe how one
or more variables react to changes in the steady state. An example would be the
relationships between macroeconomic variables, such as gross domestic product (GDP)
and inflation. Another would be the effects of investments, exchange rates, educational
progress, or technological progress on economic growth.

With pure time-series data, the autoregressive distributed lag (ARDL) model is widely
used to estimate long-run relationships. ARDL models estimate the short-run coefficients
and then back out the long-run coefficients. They were implemented by the community-
contributed ardl command in Stata (Kripfganz and Schneider 2018). A related model
is the error-correction model (ECM). The model consists of two terms; one term cap-
tures the short-run deviations from equilibrium, and the other captures the long-run
movements (Engle and Granger 1987). Both models can be applied to panel data (Pe-
saran and Smith 1995; Pesaran, Shin, and Smith 1999). Panel-data models add an
extra layer of dimension compared with time-series models. Time-series models cover
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one panel unit, and slope heterogeneity across units is not an issue. Panel models in-
clude many panel units, and long- or short-run coefficients can vary across those. A
popular method is the pooled mean-group (PMG) estimator, which assumes heteroge-
neous short-run and homogeneous long-run effects in a panel ECM (Pesaran, Shin, and
Smith 1999). Blackburne and Frank (2007) implemented this method into Stata with
the community-contributed command xtpmg.

The estimation of unit-specific coefficients requires datasets with many observations
across time periods and cross-sectional units. Such datasets often exhibit cross-sectional
dependence (CD). It implies that cross-sectional units depend on each other, for instance,
by sharing a common factor. If this dependence is ignored, estimation results can be
biased and inconsistent. Therefore, the extent of CD needs to be understood, and
the estimation method chosen accordingly. The literature proposes two methods to
identify CD. The first is to estimate the strength of the dependence (Bailey, Kapetanios,
and Pesaran 2016), and the other is to test for CD (Pesaran 2015). The community-
contributed command xtcd2 (Ditzen 2018) tests for CD. This article introduces the first
method, the estimation of the exponent of CD using xtcse2.

After one establishes the existence of strong CD, it can be approximated or controlled
for by either principal components (Bai and Ng 2002; Bai 2009) or adding cross-sectional
averages (Pesaran 2006). For a comparison, see Westerlund and Urbain (2015). Because
of its simplicity, the approach using cross-sectional averages is very popular and started
its own literature; Everaert and De Groote (2016), Chudik, Pesaran, and Tosetti (2011),
and Chudik and Pesaran (2015a) provide overviews. The estimation method, called the
common-correlated effects (CCE) estimator, applies to static (Pesaran 2006) and dy-
namic panel models (Chudik and Pesaran 2015b and Karabiyik, Reese, and Westerlund
2017), as well as pooled- (Juodis, Karabiyik, and Westerlund 2021) and mean-group es-
timators (Chudik and Pesaran 2019). The idea of the estimator is to add cross-sectional
averages of the independent and dependent variables that approximate the CD. This es-
timator was implemented into Stata in the static version by the community-contributed
command xtmg (Eberhardt 2012) and in the dynamic version by xtdcce2 (Ditzen 2018).

Neither of the commands was able to estimate long-run relationships directly. In
this article, I introduce an extended version of xtdcce2 that allows the estimation of
the long-run coefficients.! The estimation methods are based on Chudik et al. (2016)
and an augmented ECM.

The remainder of the article is structured as follows. The next section introduces
the panel model, CD, and CCE estimator. Then, I discuss three different methods to
estimate the long-run coefficients, first from a theoretical perspective and then from
an applied perspective. I give examples on how to fit the models using xtdcce2. The
article closes with a conclusion.

1. The estimation of long-run coefficients is possible with xtdcce2 version 1.33 and later. This article
refers to version 2.0 or later. See the author’s webpage (http: // www.jan.ditzen.net) for updates.
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2 Panel model and CCE estimators

For this section, assume a dynamic ARDL(1,1) panel model with heterogeneous coeffi-
cients in the form of?

Yie = Mi + Ailie—1 + BoiTie + B1iTie—1 + Ui (1)

m
Uiy = E Oyiifea+ €t
=1
m
Tip = E Ow,it fe + it
=1
withi=1,...,.N and t=1,...,T;

where y; ; is the dependent variable and z;: an observed independent variable that
includes m unobserved common factors f;;. The estimation of the long-run effect of x
on y is the main point of interest. e;,; is a cross-section unit-specific independent and
identically distributed error term. The factor loadings ¢, ,; and g, ;,; are heterogeneous
across units, and u; is a unit-specific fixed effect. The heterogeneous coefficients are
randomly distributed around a common mean, such that 8; = 8 4+ v;, and A\; = A + a;,
where v; and a; are random deviations with mean zero, independent of the error term
and the common factors. \; lies strictly inside the unit circle to ensure a nonexplosive
series.

2.1 Estimating and testing for CD

The strength of the factors can be measured by a constant 0 < « < 1, the so-called
exponent of CD. Depending on its limiting behavior, Chudik, Pesaran, and Tosetti
(2011) propose four types of CD: weak (a = 0), semiweak (0 < o < 0.5), semistrong
(0.5 < a < 1), and strong (« = 1) CD. (Semi)weak CD can be thought of as the following:
even if the number of cross-sectional units increases to infinity, the sum of the effect of
the common factors remains constant. In the case of strong CD, the sum of the effect of
the common factors becomes stronger with an increase in the number of cross-sectional
units.

Bailey, Kapetanios, and Pesaran (2016) propose a method for the estimation of the
exponent of a variable under semistrong and strong CD. They derive a bias-adjusted
estimator for a and its standard error based on auxiliary regressions using principal
components and cross-sectional averages. In the case of estimating the exponent of CD
in residuals, Bailey, Kapetanios, and Pesaran (2019) propose to use significant pairwise
correlations of the residuals after multiple tests. A closed-form solution for standard
errors is not available, and confidence intervals are constructed using a simple bootstrap.
The community-contributed command xtcse2 estimates the exponent of a variable and
residual.

2. A more in-depth discussion of the model and the assumptions is provided in Chudik, Pesaran, and
Tosetti (2011), Chudik and Pesaran (2015a), and Ditzen (2018).
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Another possibility to determine the strength of CD is to test for (semi)weak CD
(Pesaran 2015). Thus, the so-called CD test indirectly tests for a < 0.5. The test
statistic is the sum across all pairwise correlations and under the null asymptotically
standard normal distributed. For a further theoretical discussion of the CD test, see
Pesaran (2015). The CD test is implemented in Stata by the community-contributed
command xtcd2 (Ditzen 2018).

2.2 Common correlated effects estimator

Given the model in (1), leaving the factor structure unaccounted for leads to an omitted-
variable bias, and ordinary least squares becomes inconsistent (Everaert and De Groote
2016). Pesaran (2006) and Chudik and Pesaran (2015b) propose an estimator to esti-
mate (1) consistently by approximating the common factors with cross-sectional aver-
ages. In a dynamic model, the floor of ¥/T lags of the cross-sectional averages is added.
The estimated equation becomes

pT

Yit = i + NiYi—1 + Bo,i%ie + B1,iTip—1 + Z')’Z{,lztfl +ei (2)
1=0

where z; = (y,,7) = (1/N Zf\il Yit, 1/N Z@Z\; x;)" are the cross-sectional averages
of the dependent and independent variables. ~;; = ('yy7i,l,'ym7i,l)/ are the estimated
coeflicients of the cross-sectional averages and are generally treated as nuisance param-
eters. The model can be fit by either a mean-group estimator (Pesaran and Smith 1995;
Pesaran 2006; Chudik and Pesaran 2019) or a pooled estimator (Pesaran 2006; Juodis,
Karabiyik, and Westerlund 2021).% This estimator is known as the common-correlated
effects mean-group (CCE-MG) estimator or CCE pooled estimator. The CCE-MG estima-
tor is implemented in Stata by xtmg (Eberhardt 2012) and both estimators by xtdcce2
(Ditzen 2018).

3 Estimating long-run relationships

Dynamic models allow the estimation of long-run relationships. They measure the
effect of an explanatory variable on the steady state value of the dependent variable.
Following the notation from (1) and assuming that the model is in its steady state with
yi =y, =y and zf = x;_; = x*, we denote the long-run effect of variable x as

Bo,i + B,
g == " 3
! 1— X\ 3)
The long-run effect in (3) can be estimated by an ARDL, distributed lag (DL), and ECM
approach. All three can be augmented by cross-sectional averages to approximate CD.

3. The assumption of heterogeneous slopes can be tested; see Pesaran and Yamagata (2008), and
Blomquist and Westerlund (2013), and, in Stata, Bersvendsen and Ditzen (2020).
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3.1 CS-ECM

The cross-sectionally augmented error-correction approach (CS-ECM) follows on the lines
of Lee, Pesaran, and Smith (1997) and Pesaran, Shin, and Smith (1999). Equation (2)
is transformed into an ECM:*

pPT

Ay =i — & (Yir—1 — 01,:%i1) — BriAx; ¢ + Z%{,lit—l + et 4)
1=0

A is the first-difference operator, 6; is defined as in (3),
¢ =(1—N;)

is the error-correction speed of the adjustment parameter, and (y; (—1 — 61,i%;,) is the
error-correction term. A long-run relationship exists if ¢; # 0 (Pesaran, Shin, and Smith
1999). Bo,; captures the immediate or short-run effect of x;; on y;;. The long-run or
equilibrium effect is captured by ;. The long-run effect measures how the equilibrium
changes, and ¢; represents how fast the adjustment occurs.

In the case without CD and homogeneous long-run coefficients (6; = 6 V i), the
model can be fit by the PMG estimator (Pesaran, Shin, and Smith 1999).

3.2 CS-ARDL

An alternative to the CS-ECM is the cross-sectionally augmented ARDL (CS-ARDL) ap-
proach (Chudik et al. 2016). First, the short-run coefficients are estimated, and then
the long-run coefficients are calculated. The advantage of this approach is that a full
set of estimates for the long- and short-run coefficients is obtained. An ARDL model
can be rewritten as an ECM, and therefore the long-run estimates from the CS-ECM and
CS-ARDL approaches are numerically equivalent.

Equation (1) can be generalized to an ARDL(p,, p;) model:

Py Pz P
_ -
Yit = M + E ALiYip—1 + E Bl,i%ie—1 + E Vi Zt—1 t+ €t
=1 =0 =0

The individual long-run coefficients are calculated as

Zfio 6l,i

Py Y
L=202 A

0cs—ARDL,: =

The coefficients can be directly estimated by the mean-group or pooled estimator. The
mean-group variance estimator can be applied (Chudik et al. 2016) if the mean-group
estimator is used.

4. The ECM can be expressed in terms of regressors in time ¢t — 1 instead of time ¢. In this case,
(4) would be Ay; ¢ = pi — ¢s(ys,e—1 — 01,i%5,0-1) + Po,i Az + D17 Vi Zt—1 + eiz. This is only
a different parameterization, and long-run estimates will remain the same. For a more detailed
discussion, see the help file of the community-contributed ardl command (Kripfganz and Schneider
2018).
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3.3 CS-DL

Under the assumption that A; lies in the unit circle, the general representation of an
ARDL(py, p;;) model can be written in DL form:®

Yie =i + 01,70+ 6 (L)Az; ¢ + Uy (5)

Chudik et al. (2016) show that (5) can be directly estimated by the CCE estimator,
named the cross-sectionally augmented DL (CS-DL) approach. The regression is aug-
mented with the differences of the explanatory variables (x), their lags, and the cross-
sectional averages. Following Pesaran (2006), the estimation is consistent even if the
errors are serially correlated.

For a general ARDL(py,p,) model with added cross-sectional averages to take out
strong CD, the CS-DL estimator is based on the equation

pz—1
Yit = Wi + 01,iTi + Z 0i 1 AT 1y
1=0
.

v P
+ ) Yyl t+ E Vi1 Te—1 + €t
=0 =0

where 7,_; and T;_; are the cross-sectional averages and pz = |T/3| and py = 0.

4 Updates to the xtdcce2 command
4.1 Syntax

The updated syntax is described below. New and updated options compared with the
version explained in Ditzen (2018) are described in section 4.2.

xtdcce2 depvar [indepvars] [(varlist? = varlist_iv)] [zf] [in],
{crosssectional (varlist_cr) |nocrosssectional} [Booled(varlistip)

cr_lags (integers) ivreg2options(optionsl) e_ivreg2 ivslow noisily

pooledconstant reportconstant noconstant trend pooledtrend
[jackknife|recursive] nocd fullsample showindividual pooledvce (type)
fast lr(warlist_lr) lr_options(options?2) exponent xtcse2options(options?)

blockdiaguse nodimcheck useinvsym useqr noomitted showomitted]

5. The other parameters are defined as §;(L) = -— Z[’io{/\éJrl A=) B} 00 =
1- )\iL)71 Hiy Uie = (1 — )\iL)71 ug,¢, and L is the lag operator.
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4.2 New and updated options

In the following, the updated or new options are explained. For a full explanation, see
Ditzen (2018, 2019) and the help file for xtdcce2.

crosssectional (varlist) defines the variables that are included in z; and added as
cross-sectional averages (Z;—;) to the equation. Variables in crosssectional () may
be included in pooled(), exogenous_vars (), endogenous_vars(), and 1r(). Vari-
ables in crosssectional () are partialed out, and the coefficients are not estimated
and reported.

crosssectional (_all) adds all variables as cross-sectional averages. No cross-
sectional averages are added if crosssectional (_none) is used, which is equiv-
alent to nocrosssectional.

crosssectional () is required but can be substituted by nocrosssectional.

nocrosssectional suppresses adding cross-sectional averages. Results will be equiva-
lent to the Pesaran and Smith (1995) mean-group estimator or, if 1r (varlist) is spec-
ified, to the Pesaran, Shin, and Smith (1999) PMG estimator. nocrosssectional
cannot be specified with crosssectional ().

cr_lags (integers) specifies the number of lags of the cross-sectional averages. If not
defined but crosssectional () contains a varlist, then only contemporaneous cross-
sectional averages are added but no lags. cr_lags(0) is the equivalent. The number
of lags can be different for different variables, where the order is the same as defined
in crosssectional(). For example, if crosssectional(y x) and only contempo-
raneous cross-sectional averages of y but 2 lags of x are added, then cr_lags(0 2).

fast omits calculation of unit-specific standard errors.

1r (varlist_Ir) specifies the variables to be included in the long-run cointegration vector.
The first variable or variables are the error-correction speed of the adjustment term.
The default is to use the PMG model. In this case, each estimated coefficient is
divided by the negative of the long-run cointegration coefficient (the first variable).
If the option 1r_options(ardl) is used, then the long-run coefficients are estimated
as the sum over the coefficients relating to a variable divided by the sum of the
coefficients of the dependent variable.

1r_options (options2) specifies options for the long-run estimation. options2 may be
the following:

ardl estimates the CS-ARDL estimator.

nodivide, where coefficients are not divided by the error-correction speed of the
adjustment vector.

xtpmgnames, where coefficients’ names in e (b) and e (V) match the name convention
from xtpmg.
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exponent uses xtcse2 to estimate the exponent of the CD of the residuals. A value
above 0.5 indicates strong CD.

xtcse2options (options3) passes options to xtcse?2.

blockdiaguse uses the mata blockdiag option rather than an alternative algorithm.
mata blockdiag is slower but might produce more stable results.

nodimcheck does not check for dimension. Before fitting a model, xtdcce2 automati-
cally checks whether the time dimension within each panel is long enough to run an
MG regression. Panel units with an insufficient number are automatically dropped.

useinvsym calculates the generalized inverse via mata invsym.

useqr calculates the generalized inverse via QR decomposition. The default is mata
cholinv. QR decomposition was the default for rank-deficient matrices for xtdcce2
preversion 1.35.

noomitted suppresses checks for collinearity.

showomitted displays a cross-sectional unit—variable breakdown of omitted coefficients.

4.2.1 New stored results

The new version stores the following two additional results:

Matrices
e(alpha) estimates of the exponent of cross-section dependence
e (alphaSE) estimates of the standard-error exponent of cross-section dependence

5 The xtcse2 command

5.1 Syntax

xtcse2 [varlz’st] [zf] [, pca(integer) standardize nocenter nocd residual

reps (integer) size(real) tuning(real) lags (integer) ]

5.2 Options

pca(integer) sets the number of principal components for the calculation of cn. The
default is to use the first four components.

standardize standardizes variables.
nocenter specifies to not center variables (that is, the cross-sectional mean is zero).
nocd suppresses the test for weak CD using xtcd?2.

residual estimates the exponent of CD in residuals, following Bailey, Kapetanios, and
Pesaran (2019).
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reps (integer) sets the number of repetitions for bootstrap for calculation of the standard

error and confidence interval for the exponent in residuals. The default is reps(0).
size(real) sets the size of the test. The default is size(0.1) (10%).

tuning (real) specifies the tuning parameter for estimation of the exponent in residuals.
The default is tuning(0.5).

lags (integer) specifies the number of lags (or training periods) for calculation of recur-
sive residuals when estimating the exponent after a regression with weakly exogenous
regressors.

5.3 Stored results

xtcse2 stores the following in r():

Matrices
r(alpha) matrix of estimated as
r (alphaSE) matrix with standard errors of as
r(alphas) matrix with estimated &, @, and «
r(N_g) matrix with number of cross-sectional units
r(T) matrix with number of time periods
r(CD) matrix with values of CD test statistic (if requested)
r(CDp) matrix of p-values of CD test statistic (if requested)

6 Empirical examples

6.1 Estimating and testing for CD

Blackburne and Frank (2007) explain the use of xtpmg by estimating the long-run con-
sumption function from Lee, Pesaran, and Smith (1997) and Pesaran, Shin, and Smith
(1999):6

Cijp = 0ot + Oreyse 4 Oomie + s + €54 (6)

cit is the log of consumption per capita, y;; is the log of real per capita income, and
;¢ is the inflation rate.

6. The following example uses jasa2.dta, which is available with the xtpmg command.
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Before fitting the model, one must evaluate whether the variables inhibit CD. xtcse2
is used to estimate the exponent of and test for CD for the variables ¢;; (c), yit (¥),
and m; ¢ (pi):

. use jasa2

. xtcse2 c pi y
Cross-Sectional Dependence Exponent Estimation and Test

Panel Variable (i): id
Time Variable (t): year

Estimation of Cross-Sectional Exponent (alpha)

variable alpha  Std. Err. [95% Conf. Intervall
c 1.004833 .0544669 .8980796 1.111586

pi 1.004841 1.763292 -2.451148 4.460831

y 1.004833 .0466978 .913307 1.096359

0.5 <= alpha < 1 implies strong cross-sectional dependence.

Pesaran (2015) test for weak cross-sectional dependence.
HO: errors are weakly cross-sectional dependent.

variable CD p-value N_g T
c 89.656 0.000 24 33

pi 96.751 0.000 24 33

y 89.659 0.000 24 33

The CD test rejects the null of weak CD for all variables, and the estimated exponent
of CD is well above 0.5. This is evidence that an estimation method accounting for CD is
necessary. All remaining examples are dynamic models. Following Chudik and Pesaran
(2015b), the contemporaneous levels of the dependent and independent variables and
the floor of T''/3 lags of the cross-sectional averages will be added to approximate strong
CD. After each regression, the residuals are tested for strong CD using the CD test, and
the exponent of CD is estimated.

6.2 CS-ECM

The ECM representation of (6) is
Aci,t = i — ¢i(Ci,t—1 — 01,4Yi — 02,i7ri,t) - 51,iAy¢,t - BZ,iA'/Tz‘,t + €t (7)

Blackburne and Frank (2007) and Ditzen (2018) fit a PMG model without and with
contemporaneous cross-sectional averages using xtpmg and xtdcce2, respectively. This
exercise focuses on the CS-ECM model, and all coefficients are assumed to be heteroge-
neous. Following Chudik and Pesaran (2015b), p = |T%/3] = |29'/3] = 3 lags of the
cross-sectional averages are added to be estimated (7):”

7. |.] denotes the floor of a number.
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. xtdcce2 d.c d.y d.pi if year >= 1962,
> 1lr(L.c y pi) crosssectional(_all) cr_lags(3) exponent
(Dynamic) Common Correlated Effects Estimator - Mean Group (CS-ECM)

Panel Variable (i): id Number of obs = 695

Time Variable (t): year Number of groups = 24
Degrees of freedom per group: Obs per group:

without cross-sectional avg. min = 22 min = 28

max = 23 avg = 29

with cross-sectional avg. min = 10 max = 29

max =11

Number of F (432, 263) = 2.90

cross-sectional lags =3 Prob > F = 0.00

variables in mean group regression = 120 R-squared = 0.17

variables partialled out = 312 R-squared (MG) = 0.83

Root MSE = 0.01

CD Statistic = 0.27

p-value = 0.7899

D.c Coef.  Std. Err. z P>|z]| [95% Conf. Intervall

Short Run Est.

Mean Group:
D.y| .0088767 .0511634 0.17 0.862 -.0914017 .109155
D.pi .0146379  .0412939 0.35 0.723 -.0662966  .0955725

Adjust. Term

Mean Group:
L.c| -.6112082 .056361 -10.84 0.000 -.7216738 -.5007426

Long Run Est.

Mean Group:
pi| -.5976237 .275682  -2.17 0.030 -1.13795 -.057297
y . 7872628 .0995928 7.90 0.000 .5920646 .982461

Mean Group Variables: D.y D.pi pi y

Cross Sectional Averaged Variables: pi y c
Long Run Variables: piy

Cointegration variable(s): L.c

Heterogenous constant partialled out.
Estimation of Cross-Sectional Exponent (alpha)

variable alpha  Std. Err. [95% Conf. Intervall]

residuals .5844011 .0243676 .5366414 .6321607

0.5 <= alpha < 1 implies strong cross sectional dependence.
SE and CI bootstrapped with 100 repetitioms.

The mean-group estimate of the partial adjustment coefficients is (E = —0.611 (L.c),
the long-run effect of income on consumption is 6, = 0.787 (y), and the long-run effect
of inflation on consumption is 52 = —0.598 (pi). The results imply that 61.1% of the
disequilibrium is adjusted every period. An increase in income increases consumption
in the long run, while an increase in prices hampers consumption in the long run.
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There are some notable differences between xtpmg and xtdcce2. xtpmg calculates the
long-run coefficients using maximum likelihood. xtdcce?2 internally estimates (leaving
out any cross-sectional averages)

Aci = i — $iCit—1 + K1,iYit + k2Tt — B1,iAVie — B2 i AT + €54

using ordinary least squares with k1 ; = —6; ;¢; and k2 ; = —02 ;¢;. The long-run coef-
ficients and the mean-group coefficients are estimated in three steps, and the variances
are calculated using the delta method. First, the cross-section—specific coefficients p;,
Giy K1, K24, B1,, and P are estimated. Then, the cross-section—specific long-run
coefficients are calculated. Lastly, the mean-group coefficients are calculated as the
unweighed average over the unit-specific long-run coefficients. As an example, the av-
erage long-run unit- specn‘ic coefficient for 91 i 1s derived as 91 i = —Ri4/ d)l Then, the

mean-group estimator is 91 =1/N Zi:l 1. =1/N Zi:l( n171/¢i).

The PMG estimator assumes homogeneous long-run and heterogeneous short-run
coefficients. xtdcce?2 is built to handle both coefficients to be heterogeneous or homo-
geneous. If the long-run coeflicients are homogeneous but the short-run coeflicients are
heterogeneous, then the mean-group estimate of the error speed of the correction term
is used to calculate the long-run coefficient. They then become 07 = —k}/dumc.

The option exponent is used to calculate the exponent of the CD using xtcse2.
Standard errors and confidence intervals can be obtained by a simple bootstrap in
which the cross-sectional units are drawn with replacement. xtdcce2 automatically
runs a bootstrap with 100 repetitions. Further options to xtcse2 can be passed by the
option xtcse2option(). In the example above, the p-value of the CD test is 0.79, and
the test cannot reject the null hypothesis of (semi)weak CD. Bailey, Kapetanios, and
Pesaran (2019, S92) state that the estimated exponent of CD should be close to 0.5 if
the residuals are weakly CD. The estimated exponent of CD is 0.584 and close to the
threshold of 0.5.

6.3 CS-ARDL

The ECM in (7) can be transferred into an ARDL(1,1,1) model:

Cit = i + XNiCiz—1 + Br0,i¥it + Bi1,i¥it—1 + 520,iTit + B20,iTit—1 + €t
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Using xtdcce2, we add all short-run variables to the 1r () option and invoke the ARDL
routine by using 1r_options(ardl):®

. xtdcce2 c if year >= 1962,
> 1r(L.c L(0/1).y pi L.pi) 1lr_options(ardl)

> crosssectional(_all) cr_lags(3)

(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)
Panel Variable (i): id Number of obs 695
Time Variable (t): year Number of groups = 24
Degrees of freedom per group: Obs per group:
without cross-sectional avg. min = 22 min = 28
max = 23 avg = 29
with cross-sectional avg. min = 10 max = 29
max = 11
Number of F(432, 263) = 3.27
cross-sectional lags =3 Prob > F 0.00
variables in mean group regression = 120 R-squared = 0.16
variables partialled out = 312 R-squared (MG) = 1.00
Root MSE = 0.01
CD Statistic = 0.27
p-value = 0.7899
c Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
Short Run Est.
Mean Group:
L.c .3887918 .056361 6.90 0.000 .2783262 .4992574
pi .1113299 .0760736  -1.46 0.143 -.2604314 .0377716
y .486285 .0598417 8.13 0.000 .3689975 .6035726
L.y .0088767 .0511634  -0.17 0.862 -.109155 .0914017
L.pi .0146379 .0412939  -0.35 0.723 -.0955725 .0662966
Adjust. Term
Mean Group:
1r_c .6112082 .056361 -10.84 0.000 -.7216738 -.5007426
Long Run Est.
Mean Group:
1r_pi .5976237 .275682 -2.17 0.030 -1.13795  -.057297
lr_y . 7872628 .0995928 7.90 0.000 .5920646 .982461

Mean Group Variables: L.c pi y L.y L.pi 1r_pi 1lr_y
Cross Sectional Averaged Variables: pi y c

Long Run Variables:

1r_pi 1r_y

Adjustment variable(s): 1lr_c (L.c)
Heterogenous constant partialled out.

As expected, the regression results are the same as above for the CS-ECM model. In
the output, the long-run coefficient estimates have the prefix 1r_, and the adjustment
parameter (¢) is displayed in a separate section. If the long-run coefficients are pooled,

8. There is no need to specify the long-run variables separately because xtdcce2 automatically detects
the common base of variables if time-series operators are used. If lags are created as variables via

generate 1x =

be enclosed in parentheses, for example, 1r ((y 1y) (x 1x)).

L.x, then the variables with the same base that form a long-run coefficient need to
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xtdcce2 uses the delta method to calculate the variance—covariance matrix of the long-
run coeflicients.

For the remaining examples, the results in Chudik et al. (2013) will be replicated.
The authors estimate the long-run effect of public debt on output growth with the
following equation:

P P 3
Ayie=pi+ > NigDyir1+ Y B Xiei+ Y VB + i (8)
=1 1=0 1=0

yi¢ is the logarithm of real GDP, and Ay, , is its growth rate. x;; = (Ad; ¢, mit)’, dis
is the log of debt to GDP ratio, 7 is the log of the inflation rate, and p is the number
of lags. The cross-sectional averages are z; = (X;, Ay,)’. The variables in the example
dataset are dy for Ay; ¢, dgd for Ad;,, and dp for the inflation rate m; ;.

The degree of CD is checked with

. use cmpr, clear
. xtset ccode year

Panel variable: ccode (strongly balanced)
Time variable: year, 1965 to 2010
Delta: 1 unit

. generate double y=1n(gdp)
(34 missing values generated)

. generate double dy=d.y
(74 missing values generated)

. generate double p=ln(cpi)
(1 missing value generated)

. generate double dp=d.p
(41 missing values generated)

. generate double gd=1ln(gdebt)
(105 missing values generated)

. generate double dgd = d.gd
(145 missing values generated)

. xtcse2 y p gd, standardize
(output omitted )

All variables are strongly CD with &, = 1, Qlgp = 0.94, and Qiggq = 0.92. The CD test
statistic yields the same conclusion: all variables contain strong CD.

Next we can turn to fit the ARDL model. As before, three lags of the cross-sectional
averages are added to take out any strong CD. To replicate the results of the ARDL(1,1,1)
model from Chudik et al. (2013, table 17), we add the first lag of the dependent and
the base and the first lag of the dependent variables:
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. xtdcce2 dy, lr(L.dy L.dp dp L.dgd dgd)

> 1r_options(ardl) crosssectional(dy dp dgd) cr_lags(3)

> fullsample

(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)

Panel Variable (i): ccode Number of obs = 1599

Time Variable (t): year Number of groups = 40

Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages = 33.975
with cross-sectional averages = 21.975

Number of F(720, 879) = 0.79

cross-sectional lags =3 Prob > F = 1.00

variables in mean group regression = 200 R-squared = 0.61

variables partialled out = 520 R-squared (MG) = 0.44

Root MSE 0.03

CD Statistic = 0.57

p-value = 0.5690

dy Coef.  Std. Err. z P>|z| [95% Conf. Intervall

Short Run Est.

Mean Group:

L.dy .0475615 .0393516 1.21 0.227 -.0295662 .1246891
dp| -.1036032 .0402887  -2.57 0.010 -.1825676 -.0246389
dgd| -.0745686 .0122305 -6.10 0.000 -.0985399 -.0505974
L.dp| -.019946 .0462871 -0.43 0.667 -.1106671 .070775
L.dgd| -.0132481 .0156115  -0.85 0.396 -.0438461 .0173498

Adjust. Term

Mean Group:
1r_dy

.9524385 .0393516 -24.20 0.000 1.029566 -.8753109

Long Run Est.

Mean Group:
1r_dgd| -.0873993 .0164431  -5.32 0.000 -.1196272 -.0551713
1r_dp .1639757 .0378599  -4.33 0.000 .2381797 -.0897717

Mean Group Variables: L.dy dp dgd L.dp L.dgd 1lr_dgd lr_dp
Cross Sectional Averaged Variables: dy dp dgd

Long Run Variables: 1r_dgd 1lr_dp

Adjustment variable(s): lr_dy (L.dy)

Heterogenous constant partialled out.

The long-run coefficients for the logarithm of debt to GDP ratio and inflation are
both significant and negative. A decrease in the debt burden and inflation will increase
GDP growth. A 1% decrease of the debt to GDP growth is associated with an increase of
the GDP growth rate of 0.16%. A 1% decrease in the inflation rate leads to an increase
of the GDP growth rate of 0.087%. The partial adjustment to the long-run equilibrium
appears to be very quick; 95% of the gap is closed within one year.
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For the ARDL(3,3,3), the three lags of the explanatory variables and the dependent
variable are added. To improve readability, we enclose the different bases in parentheses:

. xtdcce2 dy, cr_lags(3) fullsample
> 1r((L(1/3).dy) (L(0/3).dp) (L(0/3).dgd))
> 1lr_options(ardl) crosssectional(dy dp dgd)

(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)
Panel Variable (i): ccode Number of obs = 1562
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 39
without cross-sectional averages = 27.05
with cross-sectional averages = 15.05
Number of F (960, 602) = 0.96
cross-sectional lags =3 Prob > F 0.71
variables in mean group regression = 440 R-squared = 0.39
variables partialled out = 520 R-squared (MG) = 0.51
Root MSE = 0.02
CD Statistic = -0.51
p-value = 0.6108
dy Coef.  Std. Err. z P>|z| [95% Conf. Intervall
Short Run Est.
Mean Group:
L.dy .0123738 .0349377 0.35 0.723 -.0561029 .0808506
L2.dy| -.1395645 .0948427  -1.47 0.141 -.3254529 .0463238
L3.dy| -.082903 .1072901  -0.77 0.440 -.2931877 .1273817
dp| -.070708 .0503039  -1.41 0.160 -.1693018 .0278858
dgd| -.085307 .0137595  -6.20 0.000 -.1122752 -.0583388
L.dp| -.0312712 .0513435  -0.61 0.542 -.1319025 .0693601
L2.dp .0982105 .1017365 0.97 0.334 -.1011893 .2976103
L3.dp| -.0424631 .0681692 -0.73 0.465 -.1564726 .0715464
L.dgd| -.0270311 .0204753  -1.32 0.187 -.0671619 .0130997
L2.dgd| -.0114103 .012726  -0.90 0.370 -.0363528 .0135322
L3.dgd| .0283551 .0177666 1.60 0.110 -.0064667 .0631769
Adjust. Term
Mean Group:
1r_dy| -1.210094 .2005902 -6.03 0.000 -1.603243 -.8169442
Long Run Est.
Mean Group:
1lr_dgd| -.1198362 .0402251 -2.98 0.003 -.198676 -.0409965
lr_dp| -.0795245 .0686992 -1.35 0.175 -.1945727 .0355238

Mean Group Variables: L.dy L2.dy L3.dy dp dgd L.dp L2.dp L3.dp L.dgd L2.dgd
> L3.dgd lr_dgd 1lr_dp

Cross Sectional Averaged Variables: dy dp dgd

Long Run Variables: 1r_dgd 1lr_dp

Adjustment variable(s): 1lr_dy (L.dy L2.dy L3.dy)

Heterogenous constant partialled out.
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Besides the ARDL model, Chudik et al. (2013) fit a CS-DL model. Equation (8) in CS-DL

form is

p—1

3

Ayip = p; + 0% + Zﬂ;lﬁxi,t—l + vy, A, + Z’Y;,i,zit—z + et

=0

=0

The results from Chudik et al. (2013, table 18) with 1 lag (p = 1) in the form of an
ARDL(1,1,1) model can be replicated as follows:

. xtdcce2 dy dp dgd d.(dp dgd),
> crosssectional(dy dp dgd) cr_lags(0 3 3) fullsample
(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): ccode Number of obs = 1601
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages = 35.025
with cross-sectional averages = 26.025
Number of F(560, 1041) = 0.90
cross-sectional lags 0 to 3 Prob > F = 0.93
variables in mean group regression = 160 R-squared = 0.67
variables partialled out = 400 R-squared (MG) = 0.40
Root MSE = 0.03
CD Statistic = 1.11
p-value = 0.2667
dy Coef. Std. Err. z P>|z| [95% Conf. Intervall
Mean Group:
dp| -.0889337 .0256445  -3.47 0.001 -.1391959 -.0386715
dgd| -.0865123 .0143  -6.05 0.000 -.1145398 -.0584849
D.dp .0053277 .0413627 0.13 0.898 -.0757417 .0863971
D.dgd .0068065 .0148306 0.46 0.646 -.022261 .0358739

Mean Group Variables: dp dgd D.dp D.dgd
Cross Sectional Averaged Variables: dy(0) dp(3) dgd(3)
Heterogenous constant partialled out.

The first differences as part of the vector Ax;; are added as d.(dp dgd). The
fullsample option is used to make use of the entire sample. The long-run coefficients
are —0.0889 (dp) and —0.0865 (dgd). While the coefficient on the inflation rate is
almost identical to the CS-ARDL model, the coefficient on the debt to GDP is about
half the absolute size. An advantage (or disadvantage) of the CS-DL model is that no
partial-adjustment coefficient is estimated, because the long-run coefficients are directly

estimated.
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An ARDL(3,3,3) model is fit using three rather than one lag for the differences, and
L(0/2) .4.(dp dgd) replaces d. (dp dgd):

. xtdcce2 dy dp dgd L(0/2).d.(dp dgd),
> crosssectional(dy dp dgd) cr_lags(0 3 3) fullsample

(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): ccode Number of obs 1571
Time Variable (t): year Number of groups = 40
Degrees of freedom per group: Obs per group (T) = 39
without cross-sectional averages = 30.275
with cross-sectional averages = 21.275
Number of F(720, 851) = 1.12
cross-sectional lags 0 to 3 Prob > F = 0.06
variables in mean group regression = 320 R-squared = 0.51
variables partialled out = 400 R-squared (MG) = 0.47
Root MSE = 0.03
CD Statistic = 0.73
p-value = 0.4680
dy Coef.  Std. Err. z P>|z| [95% Conf. Intervall
Mean Group:
dp| -.0855842 .0400845 -2.14 0.033 -.1641483 -.00702
dgd| -.0816583 .0196252  -4.16 0.000 -.1201231 -.0431936
D.dp .0183584 .0478696 0.38 0.701 -.0754643 .112181
LD.dp .0015586 .0373619 0.04 0.967 -.0716695 .0747866
L2D.dp .0034012 .0294771 0.12 0.908 -.0543729 .0611752
D.dgd| .0045224 .0144741 0.31 0.755 -.0238463 .0328912
LD.dgd| -.0129675 .0134553  -0.96 0.335 -.0393395 .0134045
L2D.dgd| -.0095151 .0090813 -1.05 0.295 -.0273142 .008284

Mean Group Variables: dp dgd D.dp LD.dp L2D.dp D.dgd LD.dgd L2D.dgd
Cross Sectional Averaged Variables: dy(0) dp(3) dgd(3)
Heterogenous constant partialled out.

The first two variables (dp and dgd) represent the long-run coefficients.

7 Conclusion

In this article, I explained how to test for CD and estimate the exponent of CD using
the community-contributed command xtcse2. I then reviewed three different methods
to estimate long-run coefficients in dynamic panels with many observations over time
and cross-sectional units with CD. I used an extended version of xtdcce2 (Ditzen 2018)
that allows for the estimation of long-run coefficients using the CS-DL, CS-ARDL, and
CS-ECM estimators. Examples on how to apply xtdcce2 were given and options were

explained.
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9 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3
. net install st0536_1 (to install program files, if available)
. net get st0536_1 (to install ancillary files, if available)
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