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Abstract. Social scientists frequently rely on the cardinal comparability of test
scores to assess achievement gaps between population subgroups and their evolu-
tion over time. This approach has been criticized because of the ordinal nature
of test scores and the sensitivity of results to order-preserving transformations
that are theoretically plausible. Bond and Lang (2013, Review of Economics and
Statistics 95: 1468-1479) document the sensitivity of measured ability to scaling
choices and develop a method to assess the robustness of changes in ability over
time to scaling choices. In this article, I present the scale_transformation com-
mand, which expands the Bond and Lang (2013) method to more general cases and
optimizes their algorithm to work with large datasets. The command assesses the
robustness of an achievement gap between two subgroups to any arbitrary choice
of scale by finding bounds for the original gap estimation. Additionally, it finds
scale transformations that are very likely and unlikely to benchmark against the
results obtained. Finally, it also allows the user to measure how much gap growth
coefficients change when including controls in their specifications.

Keywords: st0652, scale_ transformation, test scores, measurement, achievement
gaps, robustness to scaling, psychometrics

1 Introduction

With enrollments at a historical high for low- and middle-income countries, the focus
in education has shifted away from enrollment and toward improving quality of educa-
tion (World Bank 2018). Countries around the world are focusing on both increasing
learning and closing substantial gaps across subpopulations, particularly in favor of
disadvantaged groups. These gaps have been extensively documented in the United
States, where much literature has identified stubborn test score gaps by sex (Bertrand
and Pan 2013; Fryer and Levitt 2010), socioeconomic status (Reardon 2011, 2013), and
race (Hanushek and Rivkin 2006; Clotfelter, Ladd, and Vigdor 2009; Fryer and Levitt
2004, 2006, 2013).

Gap measurement is essential to make inferences about equitable learning. What is
surprising, though, despite the seemingly large gaps across subgroups, is that different
studies often come to different conclusions. For instance, Fryer and Levitt (2004) first
noted that a substantial black—white test score gap that had received extensive attention
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in the literature (see Coleman et al. [1966];' Kaufman and Kaufman [1983]; Krohn
and Lamp [1989]; Phillips et al. [1998]; Phillips [2000]) disappeared after controlling for
covariates. Additionally, they found that over the first four years of school, blacks lose
about —0.10 standard deviations per year compared with other races. Bond and Lang
(2013) then demonstrated that even this seemingly rock-solid racial gap in the United
States is not robust to arbitrary scale transformations. That is, transformations that
minimize or maximize learning by weighting test items differently, while still preserving
order, create lower and upper bounds that are too wide to be informative or definitive.

These findings contribute to an ongoing debate around test score measurement,
particularly on whether the assumptions that justify cardinality are satisfied in most
tests (Ballou 2009; Ho 2009; Bond and Lang 2013; Jacob and Rothstein 2016). Three
alternatives have been proposed. The first is to argue that the test at hand has been
constructed in a manner that allows for cardinal measures of ability; this is the approach
of the Rasch measurement, and Domingue (2014) provides statistical methods to verify
the assumptions required for cardinality. The second is to give up on cardinality en-
tirely and focus only on ordinal comparisons. Reardon et al.’s (2017) hetop command
and Williams’s (2010) oglm command, as well as several official Stata commands, are
designed to help users follow this approach.

A third approach, which this article focuses on, is to assess the robustness of findings
to arbitrary scaling choices as proposed by Bond and Lang (2013). Specifically, their
method builds on the idea that any monotone transformation of an ordinal scale is rank
preserving and is therefore an equally valid measure of the underlying variable. They
present an optimization method that searches for monotone transforms that minimize
and maximize test score gaps, thus allowing researchers to provide bounds to their
estimates of test score evolution across subgroups over time.? Here I extend their
technique to more general cases and optimize their algorithm to work with large datasets.
This allows for the simulation of multiple monotone transforms several times and bound
differences by choosing transformations that maximize or minimize differences between
subgroups.

2 Robustness to scaling

The ordinal nature of test scores implies that any monotonic transformation to a test
score scale is potentially valid. We see this concept applied when colleges arbitrarily put
more weight on grades from “harder” classes for admission purposes or when, within
a particular test, a teacher decides that one question is worth more points because it
is more “challenging”. Thus, when comparing test scores, we can ascertain only that
someone with a high test score performed better than someone with a low one. It is

1. The basic findings of the report have been repeatedly affirmed in the research literature (Kahlenberg
2001, 25-35).

2. Note that to meaningfully compare test scores over time, you must vertically equate test scores. In
other words, test scores across time periods should be mapped into a single scale using, for instance,
item response theory or any other appropriate methodology. See Dorans, Moses, and Eignor (2010)
for more on test score equating.
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much more difficult to know by how much. Standardizing test scores, which is the
most common scale transformation, does not solve this issue. In fact, any analysis
that relies on comparing standardized test scores implicitly assumes that test scores
are interval scales. This assumption means that, in a scale from 0 to 100 points, the
difference in underlying knowledge between individuals who scored 0 and 10 points
is the same as that of those who score 90 and 100 points. In reality, this is seldom
the case because there is no theoretical justification for this assumption; most exams
have questions with varying levels of difficulty and use scales that are arbitrary in their
mean, range, and distribution. Without interval scale properties, mean differences and
standard deviations can be distorted depending on the weight each question receives.

Even when we equate test scores using item response theory, most of the time the
underlying @ ability parameters obtained are ordinal in nature and defined only up
to a linear transformation (see Lord [1975] and Ballou [2009] for a detailed explana-
tion). Only in the very special case where all questions are equally informative (that
is, the Rasch model) can item response theory scales be interpreted as interval scales.
Nonetheless, this assumption is rarely fulfilled.

An assumption that is more reasonable and appropriate in most settings is that test
scores are ordinal. Unlike temperature and distance, where the magnitude of a given
difference corresponds to the same underlying measurement at different parts of the
distribution, test score differences of the same “magnitude” can mean very different
things at different points of the distribution. The only inference that we can make
between someone with a score of 90 points and another person with a score of 100 is
that the individual with a score of 100 demonstrated a larger amount of underlying
knowledge or ability than the individual who scored 90.

Bond and Lang (2013) noted that the current literature does not adequately ensure
that results are robust to scaling transformations and devised a methodology to find
bounds for estimates measuring differences in test scores across subgroups and over time,
such as the black—white test score gap in the United States. In particular, they created
an algorithm that finds the upper and lower bounds for the estimates of differences in
test scores across two subgroups at two points of time. To do so, they transform test
scores using a sixth-degree polynomial monotonic transformation and optimize over the
test score gap growth (that is, the difference in test scores between two subgroups in tg
minus the difference in 1) to make it as large or small as possible.

In the next section, I describe the step-by-step methodology developed by Bond and
Lang (2013) and how the scale_transformation command extends their methodology
for general use to a wide range of applications in this literature.
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3 The scale_transformation command

3.1 Bond and Lang (2013) methodology

The Bond and Lang (2013) methodology tests the robustness to scaling of subgroup
differences using arbitrary monotone transformations of an underlying ability or test
score distribution. Relying on sixth-degree polynomial transformations, the original
code tries to minimize or maximize the differences in test score growth between any two
subgroups. These growth-minimizing and growth-maximizing transformations present
lower and upper bounds, respectively, of the differences between subgroups.

Step-by-step methodology

1. Define the objective function as

Gap growth = a(1,1—1) — (1,4=0)

where a1 4 is the difference in test scores between groups at time ¢ (see step 2d
for more details on how to obtain a(; 4)). Note that test scores need to be already
vertically equated. That is, they should be completely comparable and mapped
into a single scale regardless of the time in which they were captured.

2. Optimize the following function over the defined objective:

a.

b.

€.

Take the original test scores, and scale them down to be between 0 and 1
(for computational speed).

Transform original test scores (s) using a sixth-degree polynomial mono-
tonic transformation T'(s), optimizing over the gap growth by choosing five
coefficients (8s, B3, B4, B85, and ) and one constant (c¢) for the polynomial
transformation:

T(s) = Br(s—c)+P2(s—c)* +3(s—¢)° +Ba(s =) +Bs5(s =) +Bs(s—¢)® (1)

Standardize transformed test scores in both periods (that is, tg and ¢;) to-
gether. The original Bond and Lang (2013) code standardizes test scores
separately, which could artificially increase or decrease the resulting gap.
By jointly standardizing both years, we ensure that they remain vertically
equated and that the resulting gap is only due to the transformations.

Run an ordinary least-squares regression separately for each period using
a subgroup dummy and controlling for other desired variables. Given this
setup, the coefficient on the subgroup dummy can be interpreted as the dif-
ference between each subgroup.

T(s)¢ = (o,) + (1,4 Group dummy + 6;Controls
Find the gap growth between ty and ¢, as defined in step 1.

3. Run step 2 multiple times from different random starting values, checking that
transformations preserve order (monotonic rule).
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3.2 Improvements

The process described in section 3.1 is complex and computationally demanding. Most
of the original public code is written in Mata, which might restrict its wider use among
researchers. Furthermore, the public code was written for the specific estimation in
their article. Thus, it makes some assumptions that might not necessarily extrapolate
to other data and might affect the speed or magnitude of the results. This left space for
two areas of improvement: 1) making the methodology more accessible to Stata users
and 2) improving the precision, flexibility, and efficiency of the methodology.

In terms of accessibility, the scale_transformation command, together with this
article and its documentation, will allow any Stata user to perform these robustness
checks in one line of code.

Methodologically, the original process also sacrificed precision for efficiency. For
instance, the parameter 5; was not optimized, and the monotonicity rule used did not
check every single plausible value but rather checked monotonicity in small, equally
spaced intervals. The scale_transformation command improves on these aspects as
well as on computational speed.

Specifically, the original methodology has been improved by computing more accu-
rate estimates (in quad precision) using QR decomposition tools in Mata. The mono-
tonicity rule has also been enhanced to be more accurate and flexible with three variants:
1) a default rule that checks for monotonicity at every possible score value up to four
decimals within the plausible range in a transformed scale between 0 and 1; 2) a quick
rule that checks for monotonicity only at the unique score values present in the sam-
ple data; and 3) a theoretical rule that checks for monotonicity at every possible value
using an external file. The last is of particular value if test scores come from a larger
dataset that has scores for multiple years (that are not included in the optimization)
or includes scores for subgroups not being analyzed. Furthermore, other options such
as time-specific controls and weights have been included, as well as options to specify
the number of times the command will run (yielding different results), the optimization
methodology to be used at certain stages of the process, and the maximum number of
iterations before the optimization cycle stops and returns results as if convergence were
achieved.

Another important improvement of the scale_transformation command is that it
is robust to transformations that fully change the sign of the gap regardless of its initial
value. Because the optimization problem for the maximization or minimization gap
growth options is complex and does not have a closed-form solution, in some specific
cases, the maximization could yield the solutions for the minimization problem (and vice
versa). The robust (integer) option allows the command to use the first K = integer
iterations to check that the sign of the optimization is correct.

Finally, other robustness checks used by Bond and Lang (2013) have been added
to the command. In particular, the scale_transformation command can search for
transformations that maximize or minimize the correlation between initial and final
test scores by looking at either the binary correlation between them or the resulting
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R-squared from regressing initial test scores on final test scores. These transformations
allow the user to benchmark a likely or unlikely transformation and compare it with
the results obtained when maximizing or minimizing the gap. Likewise, the command
allows users to optimize over the absolute value of the difference between the gap growth
calculated with and without controls. This additional check helps users to measure how
much gap growth coefficients could change when including controls to their specifica-
tions.

3.3 Description

The scale_transformation command finds a monotonic transformation for a test score
scale, which optimizes a specific objective function. The optimization object includes
scores at two points of time for two comparison groups (for example, rich versus poor).
This command performs a grid search from multiple random initial parameters to find
the desired values. All the transformations found by this command are theoretically
plausible given the ordinal nature of test scores.

A sixth-degree polynomial monotonic transformation is used because it provides flex-
ibility to approach numerous continuous functions. Nevertheless, monotonicity checks
need to be applied because this type of transformation does not necessarily preserve
order. Furthermore, the monotonicity restriction introduces a discontinuity into the
objective function that creates multiple local maximums and minimums. These charac-
teristics yield a complex optimization problem that does not have a closed-form solution.

The scale_transformation command takes advantage of the Mata optimize()
(see [M-5] optimize()) function and performs a grid search to find multiple solutions.
The results are reported in a dataset format that includes the values of the evaluated
objective functions, the resulting parameters of each optimization iteration, and the
initial parameters that yielded that result.

3.4 Syntax

scale_transformation, type(integer) scorel(varname) score2(varname)
[ compgroup (varname) controls(varlist) controlsl(varlist)

controls2(varlist) weights(varname) iterations (integer)

maxoptiterations(integer) singhmethod (integer) bounddown (integer)

boundup (integer) monotonicity (integer) monofile(filename) timeroff

save (filename) seed(integer) robust (integer) ]
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3.5 Options

type (integer) indicates the type of optimization and the objective function to be per-
formed. type() is required. integer is one of the following:

integer  Description

Gap growth maximization

Gap growth minimization
Correlation maximization
Correlation minimization
R-squared maximization
R-squared minimization

Controls explanation maximization

~N O O WwN e

scorel (varname) and score2(varname) specify, respectively, the variable that con-
tains scores at (initial) period 1 and the variable that contains scores at (final)
period 2. To improve processing speed, these variables are automatically scaled to
be between 0 and 1 prior to running the command. The transformation used for
this process is the same for the options scorel () and score2() and does not affect
the resulting estimations in any way. scorel() and score2() are required.

compgroup (varname) specifies the variable that contains the group classification to be
analyzed and from which the command will compare the top and bottom groups.
This variable needs to be numeric. The command will take the lowest and highest
values (that is, groups) and compare them while controlling for all other groups in
the middle at the same time. Note that the option compgroup () should take on only
integers greater or equal to 0 (all missings will be ignored). This option is allowed
only when optimizing the gap growth or controls explanation (that is, type 1, 2,
or 7).

controls (varlist) includes varlist as controls at both period 1 and 2. Variables should
be numeric because they will be used directly in regressions. This option is allowed
only when optimizing the gap growth or controls explanation (that is, type 1, 2,
or 7).

controlsl(wvarlist) includes wvarlist as controls at period 1 only. Variables should be
numeric because they will be used directly in regressions. This option is allowed only
when optimizing the gap growth or controls explanation (that is, type 1, 2, or 7).

controls2(warlist) includes wvarlist as controls at period 2 only. Variables should be
numeric because they will be used directly in regressions. This option is allowed only
when optimizing the gap growth or controls explanation (that is, type 1, 2, or 7).

weights (varname) uses varname as inverse probability weights. The default is
weights(1).

iterations (integer) specifies the number of times the command will find optimal
values using unique random-generated initial parameters. The default is itera-
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tions(1000). The more iterations there are, the longer the command will take to
run and finish. Note that by default, if the command is stopped before ending, the
results will not be stored. It is recommended that you test your command with a
low number of iterations.

maxoptiterations (integer) specifies the maximum number of iterations before the op-
timization command stops and returns results as if convergence were achieved. The
default is maxoptiterations(25), which in practice should be enough to achieve
“convergence” with a fair degree of accuracy. This limit is necessary because the
monotonicity restriction and complexity of the objective functions cause the opti-
mization command to run indefinitely otherwise. See [M-5] optimize() for more
details.

singhmethod (integer) specifies what the optimizer should do when, at an iteration
step, it finds that H is singular. The default is singhmethod(1) for “hybrid”
but can be changed to singhmethod(2) for “modified Marquardt algorithm”. See
[M-5] optimize( ) for more details.

bounddown (integer) specifies the lower bound for the random-generated initial param-
eters for the optimization. This command creates random initial values and then
uses them to find all the different local maximums or minimums accordingly. The
default is bounddown (-1500).

boundup (integer) specifies the upper bound for the random-generated initial parameters
for the optimization. This command creates random initial values and then uses
them to find all the different local maximums or minimums accordingly. The default
is boundup (1500).

monotonicity(integer) specifies the type of monotonicity check to be applied. The
default is monotonicity (1) for “standard”, which checks for monotonicity at every
possible score value (up to four decimals within the plausible range) in the original
scale that was transformed to be between 0 and 1. When less precision is needed,
monotonicity() can be set to 2 for “sample”, which checks for monotonicity only
at the unique score values present in the sample data. If the test scores come from
a larger dataset that has scores for multiple years, you can do a more thorough (but
more time-consuming) check by putting together an external file with all theoretical
or observed plausible scores where you want the command to check for monotonicity.
For the latter, you must set monotonicity(3) for “external” and include the filename
in monofile (filename). The plausible test scores in the “external” file should be in
the original scale because the command will automatically transform them to the
new scale and check for monotonicity at each of these transformed scores.

monofile(filename) specifies the file to be used when the monotonicity() type is set
to 3 for “external”. This option should be used only with monotonicity(3). You
can use .dta, .csv, .xls, or .xlsx files. Make sure that .csv, .x1ls, and .xlsx
files have the name of the variable on the first row.

timeroff turns off the timer. The default is set to include the time (in minutes) that
the command took to run, which is reported only if the command finishes.
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save (filename) saves optimization results to filename once the command is done.

seed (integer) sets the seed for replication, where 0 <= integer <= 2147483647. If
missing, the seed is randomly generated and included in the header of the command.
Always save the log file to ensure you can recover the seed number for replication.

robust (integer) indicates the command to use the first K = integer iterations to check
that the sign of the optimization is correct. Because the optimization problem
for the maximization or minimization gap growth options (that is, type 1 or 2) is
complex and does not have a closed solution, in some specific cases the maximization
could yield the solutions for the minimization problem (and vice versa). To address
this issue, you could activate the robust() option to use the first K = integer
(where 20 <= K <= 300; K = even) iterations (in addition to N specified by
the iterations() option) to check for a possible change of sign in max/min gap
growth optimization results. Half the K iterations are used to find the maximization
solution, while the other half of the K iterations are used for the minimization
problem. Once the correct approach is selected, the command keeps the solutions
for the correct specification and runs the remaining IV iterations indicated in the
iterations() option.

3.6 Optimization objectives

scale_transformation finds a sixth-degree polynomial monotonic transformation for
a test score scale that optimizes one of the following:

1. Gap growth: gap difference between the bottom and top groups from the op-
tion compgroup() in period 2, minus the same gap difference in period 1. In other
words, it is the difference between the regression coefficient of the top compgroup ()
indicator (controlling for groups in the middle) in period 2, minus the same re-
gression coefficient of the top compgroup() indicator (also controlling for other
groups in the middle) in period 1. In both, the coefficient of the top compgroup ()
indicator measures the difference between the top and bottom groups. Note that
the gap growth is positive when the gap widens and negative when the gap shrinks
(always with respect to the gap in period 1). Thus, the gap growth will always be
negative when the coefficient changes signs between period 1 and 2 (regardless of
whether it is from + to — or from — to +). Conversely, it will be positive when
the gap widens, for instance, from —0.1 to —0.3.

2. Correlation: coefficient from regressing test scores in period 1 on test scores in
period 2 (no controls allowed).

3. R-squared: from regressing test scores in period 1 on test scores in period 2 (no
controls allowed).

4. Controls explanation: measures how much gap growth coefficients change when
including controls in controlsi (varlist) and controls2(warlist)—not in
controls (wvarlist). This allows you to test the explanatory power of only a subset
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of desired control variables. That means that if you want to measure how much
gap growth coefficients change by introducing time-invariant controls, you must
include these variables in both controlsl(warlist) and controls2(wvarlist). The
controls explanation term is estimated by taking the distance (that is, absolute
value of the difference) between the gap growth calculated without variables in-
cluded in controls1() and controls2(), minus the gap growth calculated with
these two controls’ varlists. To make the interpretation easier, both gap growths’
coefficients—with and without controls—are included in the results.

4 Resulting output
4.1 Example

In this section, we use timss_testscores.dta to find the gap growth maximization
solution for test scores between year 1 and 2, comparing males and females:

. use timss_testscores

. scale_transformation, type(1l) scorel(scorel) score2(score2)
> compgroup(sex) iterations(20) maxoptiterations(15) mono(2)
> seed(562) robust(20)

(output omitted )

Note that, given the above command, the command will run 40 times from different
initial parameters and that each time, the command will report convergence after 15
iterations, performing a “sample” monotonicity check. Given the option robust(20),
the command will use the first 20 simulations to check that the sign of the gap is correct
by carrying out 10 maximizations and 10 minimizations. Once the correct direction is
confirmed, the correct half is kept and the other discarded. Thus, in this example, the
resulting dataset will contain only 30 observations.

Figure 1 shows the resulting dataset from the gap growth maximization example
above. The missing values for the optimization object and transformation coefficients
(that is, columns 1 through 8) correspond to transformations that are not order pre-
serving. Thus, they are omitted in the final dataset.
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Figure 1. Resulting dataset from example

For this particular example, we can also plot the original and transformed scores
to understand what the command did. Because we are searching for the gap growth
maximization (that is, type (1)), we select the transformation that yields the highest
gap growth from the resulting dataset, which is equal to 0.695732. Then, we use the
corresponding coefficients and constant and apply the sixth-degree polynomial trans-
formation in (1). Figure 2 plots the original versus transformed scores on the left and
the test score gap evolution by sex between year 1 and 2. This particular gap growth
maximization makes the gap in year 1 as small as possible while making the gap in
year 2 as large as it can.

Note that the original gap magnitude was 0.343418, about half the size of the trans-
formed gap. These results are particular to this specific scenario, and in practice the
algorithm might behave differently depending on the data and the objective function at

hand.
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Figure 2. Original versus transformed scores

4.2 Interpretation

Regardless of the optimization object chosen, the resulting dataset has a similar struc-
ture. Each row contains the results for one simulation. The obj variable contains
the optimization object, while the rest of the variables contain the parameters of the
sixth-degree polynomial transformation that achieves that object and the initial ran-
dom starting values for these parameters. This format allows the user to not only have
the full distribution of results but also access the necessary parameters to replicate the
desired scale transformation if needed.

For the gap growth maximizing and minimizing options, one should be aware that
the command finds the most extreme transformations, some of which might be extremely
unlikely (although theoretically plausible). Thus, for instances where the bounds are too
wide, it might be useful to benchmark against likely transformations (such as those found
by the scale_transformation command that maximize correlation or R-squared) and
explore other properties of test scores that could help us discard some of the most
extreme and very unlikely transformations. For instance, Ho and Yu (2015) present
values for skewness and kurtosis from 330 U.S. state-level examinations. Based on this,
one could look at the moments of the resulting distributions and discard those that are
extremely rare and unlikely to happen, thus narrowing the space between the resulting
bounds.

5 Conclusion

One simple step that researchers can take to address some of the challenges of scaling and
the ordinal nature of test scores is to test the robustness of their results to changes in the
test score scales. The scale_transformation command allows anyone to implement
several robustness checks to scaling decisions, particularly in the context of analyzing
achievement gaps between subgroups in a panel setting. These checks build on the
methodology developed by Bond and Lang (2013) and allow users to find bounds to
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the original gap estimation or transformations that are very likely or unlikely so as to
benchmark against other results obtained. In practice, these are some of the essential
checks that should be done when comparing test score averages over time and across
subgroups.

When using the scale_transformation command, the researcher recognizes the or-
dinality of test scores and tests the robustness of his or her results to arbitrary monotonic
transformations. This approach is more defensible theoretically and has the potential
to discern real gaps from results that are significant only because of the arbitrary choice
of scales made or taken as given.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3
. net install st0652 (to install program files, if available)
. net get st0652 (to install ancillary files, if available)

Alternatively, install from the Statistical Software Components Archive:
. ssc install scale_transformation
You can also find the latest version of the program at

. net install scale_transformation,
> from(https://github.com/andresyichang/scale_transformation)
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