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Abstract. Despite constituting a major theoretical breakthrough, the quantile
selection model of Arellano and Bonhomme (2017, Econometrica 85: 1-28) based
on copulas has not found its way into many empirical applications. We introduce
the command arhomme, which implements different variants of the estimator along
with standard errors based on bootstrapping and subsampling. We illustrate the
command by replicating parts of the empirical application in the original article
and a related application in Arellano and Bonhomme (2018, Handbook of Quantile
Regression, chap. 13).
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1 Introduction

Ever since the contributions by Gronau (1974) and Heckman (1974), economists and
researchers from other disciplines have been aware of the possibility that measured re-
lationships may suffer from selection bias. The classic example is the determinants of
pay (that is, wages) and the selectivity through participation in employment. If one is
interested in measuring how individuals with certain characteristics are paid, one has to
deal with the possibility that some of them may actually not take up employment, espe-
cially if their potential pay is too low (in comparison with their alternative options). If
these individuals differ in terms of unobservables from the general population, omitting
them from wage regressions will yield biased estimates of regression coefficients.

Following Heckman (1979), a large literature has studied generalized models of sam-
ple selection for regression models, for example, Ahn and Powell (1993); Andrews and
Schafgans (1998); Chen and Khan (2()03), and Das, Newey, and Vella (2003). This liter-
ature initially focused on correcting regressions for the mean outcome (for example, the
mean wage). An even more challenging case is to correct entire outcome distributions
for selection bias. In an influential contribution, Buchinsky (1998, 2001) proposed a
control function approach to correcting quantile regressions for selection bias. However,
it was later shown by Huber and Melly (2015) that the proposed correction was based
on restrictive assumptions that are unlikely to hold in general (conditional independence
and additivity). It was not until the contribution by Arellano and Bonhomme (2017)
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that the selection problem for entire distributions was solved in some generality. In
particular, Arellano and Bonhomme (2017) showed that, in the general case, sample se-
lection corrections may not be additive but nonlinearly “rotate” observed distributional
ranks.

Despite representing a theoretical breakthrough, Arellano and Bonhomme’s (2017)
method has not yet found its way into many empirical applications (recent exceptions
include Maasoumi and Wang [2019] and Bollinger et al. [2019]). The purpose of this
article is to provide an implementation of their method that is easy to use by practition-
ers. We also provide some replications of original analyses in Arellano and Bonhomme
(2018, 2017). More generally, Arellano and Bonhomme’s (2017) contribution is part of
an active recent literature that addresses the problem of correcting entire distributions
for selection with potential applications in many fields (for example, Albrecht, van Vu-
uren, and Vroman [2009]; Picchio and Mussida [2011]; Ferndndez-Val, van Vuuren, and
Vella [2018]; D’Haultfoeuille et al. [2020]; and Biewen, Fitzenberger, and Seckler [2020]).

The rest of this article is organized as follows. Section 2 describes the Arellano
and Bonhomme (2017) selection model and estimation method. Section 3 introduces
and describes the command arhomme, which implements this estimation method along
with several options. Section 4 presents three empirical examples, two of them being
successful replications of original applications in Arellano and Bonhomme (2018, 2017).
Section 5 concludes.

2 The Arellano and Bonhomme (2017) method
2.1 Model

Although they consider more general versions in theoretical parts of their analysis, the
practical version of the Arellano and Bonhomme (2017) quantile regression model with
selection correction takes the form

Y* =X'B(U) (1)
D=1{V <p(Z)} (2)
Y=Y*ifD=1 (3)

where Y* is the potential outcome, D the selection indicator, and Y the observed
outcome (available only for individuals with D = 1). The vectors X and Z are covariate
vectors, where X is assumed to be a strict subset of Z (exclusion restriction). The
uniformly distributed variable U denotes the rank of the individual in the conditional
distribution Y*|X, while the uniformly distributed V represents a normalized error term
describing the resistance toward selection. The propensity score p(Z) = P(D = 1|Z)
describes the selection probability of individuals with characteristics Z. The propensity
score is assumed to follow a probit model; that is, p(Z) = ®(Z’+). The main substantive
assumption of the model is that (U, V) is jointly statistically independent of Z given X.
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Equation (1) is a linear quantile regression model for the potential outcome Y*
defining the value of Y* that an individual with rank U would get if he or she was selected
(for example, the Uth quantile in a distribution of wage offers for individuals with
characteristics X). Equation (2) specifies that, among individuals with characteristics
Z, a percentage of p(Z) gets selected, but only those whose resistance toward selection
V is low enough. Equation (3) states that outcomes are observed only for selected
individuals (for example, an individual would earn some wage Y™* if he or she decided
to work, but this wage is observed only if he or she actually decides to do so).

The interest lies in uncovering the coefficients B(U) characterizing the conditional
distribution Y*|X, which includes all individuals with characteristics X, although not
all of these individuals actually produce observable outcomes Y. For example, the 3(U)
describe the pay structure for women with characteristics X, although not all of these
women actually take part in the labor market. To establish a link between the quantiles
of the distribution of observable outcomes Y and those of the distribution of potential
outcomes Y*, Arellano and Bonhomme (2017) observed that

PY*"<X'B(r)D=1Z=2} = P{U<|V<pz),Z=z}

. CU,V|X:X{Tap(Z)} . T Z
- o) =Gx{rp(z)}  (4)

where Cyyix=x{7,0(2)}/p(z) = Gx{7,p(z)} is the conditional copula of U and V,
that is, the probability for an individual with characteristics Z = z to have at most
ranks (U, V) conditional on having at most rank p(z) in the propensity to get selected.
Because the left-hand side of (4) describes outcome quantiles in the selected popula-
tion, this means that the coefficients 3(7) belonging to the 7th quantile in the overall
population can be recovered by looking at the G {, p(z) }-quantile observations of the
selected population. This establishes the validity of the following “rotated” quantile
regression, which uses the observed outcomes Y but applies to them individual specific
ranks Gx{7,p(z)} (instead of the target rank 7).

2.2 Estimation

Based on an independent and identically distributed sample (Y;, D;,Z;) (with i =
1,...,Nand X; C Z;), Arellano and Bonhomme’s (2017) estimation method proceeds as
follows. For practical implementation, one assumes that the true copula Cy v x—x(u,v)
belongs to a parametric family with parameter p (such as Gaussian or Frank; see below)
and that it does not depend on X. The latter restriction can be relaxed by carrying
out estimations by subgroup (see below). The resulting conditional copula function is
denoted by G(u,v;p). For the following, define a™ = max(a,0) and a~ = max(—a, 0).

Propensity score estimation (step 1)

n
4 =argmin Y D;In® (Zja) + (1 — D;)In ® (~Z}a) (5)
A
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Estimation of the copula parameter (step 2)

N
Bln,r) = argmin > Di[G {m, ® (Z7) 57} {Yi — Xib(r)} "
b(r)eB ;3

+[1— G {n, ® (ZF) ;7)) {Y: = Xib(r)} | (7)

Rotated quantile regression (step 3)

B(T) = argmin XN:Di {ém‘ {Yi - X;b(r)}Jr 4 (1 — am’) {Yi - ng(T)}] (8)

b(T)eB i=1

Step 1 estimates the probit parameters of the propensity score. Step 2 is a generalized

method of moments estimating equation for the copula parameter p, which is identified
by the conditional moment condition

B[1{Y; < XiB(r)} = G{r.® (Z{7)ip} |D = 1,Z = 2] =0

[following from (4)]. As an instrumental variable for estimating p in (6), one can use
a suitable function ¢(Z;) of Z;, for example, ¢(Z;) = ®(Z~v). Minimization in (6)
is carried out over a grid of candidate values for the copula parameter r € R. For
each candidate value r, the estimated B3(7,r) in (6) are obtained by rotated quantile
regression over a grid of auxiliary quantiles 71,...,7 [see (7)]. Step 3 estimates, for
any desired 7, selection-corrected quantile regressions based on the preestimated copula
parameter p. For this, individual-specific rotated ranks G ; = G{7, ®(Z}7); p} are used.
This can be seen by comparing (8) with the (infeasible) quantile regression, which would
be carried out if potential outcomes Y* were observed for the whole population (that
is, if there was no selection problem),

N
B(r) = argmin 3 D {T YV —Xb) T+ (1—7) (v — X;b)‘} 9)
beB
Note that, if one is interested only in 3(71),...,B3(7L), step 3 is not necessary, because

these are already estimated in step 2. However, for computational reasons and for
reasons of flexibility, it may be useful to separate steps 2 and 3. For example, one
may already have obtained individual specific copula estimates G, ; (for example, by
subgroup estimation) and then carried out the desired rotated quantile regressions of
step 3 conditional on these preestimated quantities (also see below).
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2.3 Inference

Arellano and Bonhomme (2017) showed that the estimators defined in (6), (7), and
(8) are asymptotically normal. However, the resulting form of the asymptotic variance
matrix is very complex. This makes the use of resampling techniques attractive. In
their empirical application, Arellano and Bonhomme (2017) used subsampling (Politis,
Romano, and Wolf 1999). An alternative is the bootstrap (for example, Shao and Tu
[1995]). The bootstrap draws independent and identically distributed resamples of size
N from the original sample and repeats the estimation for several bootstrap replications.
The empirical distribution of the bootstrap replications then serves as an estimate of
the asymptotic distribution. Subsampling draws subsamples of size m < N without
replacement from the original sample and repeats the estimation on the subsamples to
obtain an estimate of the asymptotic distribution (after rescaling by m/N). A related
method is the m-out-of-n bootstrap, which also draws subsamples of size m < N from
the original sample but with replacement. Subsampling and the m-out-of-n bootstrap
require that N — oo and m/N — 0; that is, the subsamples are required to be small in
relation to the sample size N.!

Subsampling and the m-out-of-n bootstrap work under more general conditions than
the bootstrap. In particular, they do not require that the asymptotic distribution be
normal. It suffices that a suitably normalized version of the estimator has a limit dis-
tribution (Politis, Romano, and Wolf 1999). The bootstrap is guaranteed to work if
the limit distribution is normal (Shao and Tu 1995). In the given case, both methods
will work because the limit distribution is known to be normal. Subsampling and the
m-out-of-n bootstrap are attractive for computational reasons if the sample size is very
large because estimations have to be repeated on smaller portions of the data only. How-
ever, subsampling and the m-out-of-n bootstrap have to deal with the difficult issue of
determining the subsample size (for example, Politis, Romano, and Wolf [1999]; Cher-
nozhukov and Ferndndez-Val [2005]; Bickel and Sakov [2008]). Based on Chernozhukov
and Ferndndez-Val (2005), Arellano and Bonhomme (2017) used a subsample size of a
constant plus the square root of the sample size, where the constant is chosen such that
the subsamples are large enough to ensure a reasonable finite sample performance of
the estimator (Arellano and Bonhomme 2017, footnote 19).

Our version of Arellano and Bonhomme’s (2017) estimator implements the m-out-
of-n bootstrap as well as the conventional bootstrap.

2.4 Algorithms

It is well known that quantile regression problems such as (9) can be solved using linear
programming techniques. However, the rotated versions (7) and (8) cannot be handled
with standard implementations of quantile regression such as qreg, because these do not
allow for individual specific ranks @” An exception are the codes of Morillo, Koenker,

1. As evident from their MATLAB codes, Arellano and Bonhomme (2017) actually use the m-out-of-n
bootstrap but call it subsampling. In view of the requirement m/N — 0, the numerical difference
between subsampling and m-out-of-n bootstrap is typically small.
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and Eilers (available at http: //www.econ.uiuc.edu/~roger/research/rq/rq.m), also used
by Arellano and Bonhomme (2017). For our implementation of Arellano and Bonhomme
(2017), we translated these codes from MATLAB to Mata. The codes are based on an
interior point algorithm (Koenker 2005) as opposed to the exterior point algorithm used
in the current version of qreg. Our experience was that the interior point algorithm
converged considerably faster than that used in qreg for most of the datasets analyzed
by us. Our implementation also includes safeguards against problems related to using
copula values too close to the boundary cases of the counter and the comonotonicity

~

copula (in this case, G, ; — 0 or G ; — 1; see the ado-file).

Our implementation allows sampling weights (as used in the empirical application of
Arellano and Bonhomme [2018], which we replicate in section 4.2). If sampling weights
are specified, we premultiply observations Y;, X;, and ¢(Z;) with the sampling weight
of observation i before carrying out all calculations. This ensures that the sums over
i=1,...,N in (6) to (8) are weighted sums. In addition, we include weights in (5).

2.5 Copula functions

Our implementation allows the user to choose among four copula functions, as shown
in table 1 (for an overview of copula functions and their properties, see Joe [2015]). An
important feature of all of these copulas is that they contain as limit cases the extreme
forms of positive (or negative) dependence described by the comonotonicity (counter-
monotonicity) copula. Not restricting the strength of dependence between U and V
(and therefore the strength of selection) appears to be important to avoid imposing
restrictions that are not compatible with the data. Out of the four copulas listed in
table 1, the Frank, Gaussian, and Plackett copulas can represent only symmetrical pat-
terns, while the Joe and Ma (2000) copula can also accommodate asymmetrical patterns
(Joe 2015).


http://www.econ.uiuc.edu/~roger/research/rq/rq.m
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Table 1. Copula functions C(u,v; p)

Frank copula

1 —pu _ | —pv _
—1og{1—i—(e (e )} VpeR
p e P —1

Gaussian copula

By {7 (u), @7 (v); p} Vpe(-1,1)

Plackett copula

m(l—k (p—1D(u+v)— [{1+ (p—1)(u+v)}?

—4(p — l)uv} §) YV p € (0,00)

Joe and Ma (2000) copula

1- Fr <[{F51(1 —u;p) " + {Fr'(1 —v;p)}p]% ;p> v p e (0,00)

SOURCE: Joe (2015). Fr(-,a) is the cumulative Gamma distribution with shape pa-
rameter a.

Because the value of the copula parameter p typically has no direct interpretation,
our estimation command reports standard measures of bivariate concordance as listed
in table 2. These represent generalized measures of correlation between U and V', which
are a function of the copula and the copula parameter (Joe 2015). The concordance
measures describe the association between the rank in the latent outcome distribution
U and that in the distribution of resistance toward selection V. For example, if high
values of U are associated with low values of V', then individuals who get selected tend to
have higher outcomes than those who do not (positive selection). Note that positive (or
negative) selection will be represented by negative (or positive) concordance measures
because of the definition of V' as the resistance toward selection.
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Table 2. Bivariate concordance measures

Spearman’s rank correlation

1 1
pS:12/ / uv dC(u,v; p) — 3
0o Jo

Kendall’s tau

T« = P{({U1 = U)) (V2 = V3) > 0} = P{(U1 = Uy) (V2 = V3) < 0}

//Cuvp dC (u,v; p)

Blomgqvist’s beta

(G GRESRIGOIR

SOURCE: Joe (2015).

The interpretation of the different concordance measures is as follows. Spearman’s
rank correlation measures the (ordinary) correlation between the ranks U and V. Ken-
dall’s tau is positive if it is more likely that ranks go into the same rather than into
opposite directions, and it is negative otherwise. Blomqvist’s beta is positive if it is
more likely that both ranks U and V lie on the same side of the median rank (which is
one half) than on opposite sides.
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The arhomme command

3.1 Syntax

arhomme depvar [indepvars] [zf] [m] [weight],

@ect([depvars} [=} varlist ) [@points(#) taupoints(#) meshsize(#)
centergrid(#) frank gaussian plackett joema nostderrors subsample (#)
ﬂetitions(#) fillfraction(#) instrument (varname)

copulaparameter (varname) quantiles(# [# [# H) graph

output ( [normal ] [bootstrap] ) ]

pweights are allowed; see [U] 11.1.6 weight.

arhomme is byable.

3.2 Options

3.2

.1 Selection

select ([ depvar,| [=] warlist,) specifies the variables and options for the selection

3.2

equation. It is an integral part of specifying the Arellano and Bonhomme (2017)
model and is required. The selection equation must contain at least one variable
that is not in the outcome equation.

If depvar, is specified, it should be coded as 0 or 1, with 0 indicating an observation
not selected and 1 indicating a selected observation. If depvar, is not specified,
observations for which depvar is not missing are assumed selected and those for
which depvar is missing are assumed not selected.

.2 Grid tuning

rhopoints (#) determines the number of candidate points for the copula parameter grid

search. The default is rhopoints(19). When the option frank is chosen, the copula
candidate values are constructed as follows. First, the unit interval is divided into
(# + 1) equidistant intervals. Then, the ith candidate is defined as the ith quantile
of a Cauchy distribution with scale meshsize () and shift centergrid(). With the
option gaussian, the quantiles of a sinus density with emphasis centergrid() and
range meshsize () x (1 — |centergrid()|) are built. The grid for the copula options
plackett and joema is designed as the square root of the ith unit interval point
divided by 1 minus this point. This method ensures that the resulting grid is denser
around centergrid(). The user can shift the focus of the grid search by specifying
the desired centergrid(), by reducing (or increasing) meshsize (), or by increasing
(or reducing) rhopoints (). Note that the default rhopoints(19) is likely to be too
small for many applications.
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taupoints (#) specifies the number of quantiles for which the moment restriction is
supposed to hold (step 2 in Arellano and Bonhomme [2017]). We recommend using
this option with graph. The resulting scatterplot should suggest a smooth objective
function (at least around the gravity center of search; the objective function may look
erratic toward outer values no matter how many taupoints() are used). Increase
taupoints () to further smooth the objective function. The default taupoints(3)
is a good start in many applications, but many taupoints() are recommended for
more reliable estimates.

meshsize (#) scales the grid search interval up (or down). For large #, the resulting
grid becomes less dense but searches a wider range. # is restricted to strictly positive
real values for the options frank, plackett, and joema and is restricted to (0, 1]
when using gaussian. The default meshsize (1) tends to be a good start.

centergrid(#) sets the gravity center of the grid. If you already suspect the optimal
copula parameter to be a specific value, this option helps shift the emphasis of
your search. # is restricted to (—1,1) with gaussian and to (0,00) for plackett
and joema, and it is unrestricted with frank. By default, the grid will always be
symmetric about the independence copula, that is, centergrid(0) for frank and
gaussian, and centergrid(1) for plackett and joema.

frank specifies the Frank copula to model individually rotated quantiles. The copula
parameter is p € R, with p — —oo corresponding to the lower Fréchet—Hoeffding
bound, p = 0 to the independence copula, and p — oo to the upper Fréchet—
Hoeffding bound.

gaussian specifies the Gaussian copula used to model individually rotated quantiles.
The copula parameter is p € (—1,1), with p — —1 corresponding to the lower
Fréchet—Hoeffding bound, p = 0 to the independence copula, and p — 1 to the
upper Fréchet—Hoeffding bound.

plackett specifies the Plackett copula used to model individually rotated quantiles.
The copula parameter is p € (0, 00), with p — 0 corresponding to the lower Fréchet—
Hoeffding bound, p = 1 to the independence copula, and p — oo to the upper
Fréchet—Hoeffding bound. If standard errors are computed, the copula parameter is
tested for p = 1 instead of p = 0. The p-value is reported accordingly.

joema specifies the Joe and Ma (2000) copula to model individually rotated quantiles.
The copula parameter is p € (0, 00), with p — 0 corresponding to the lower Fréchet—
Hoeffding bound, p = 1 to the independence copula, and p — oo to the upper
Fréchet—Hoeffding bound. If standard errors are computed, the copula parameter is
tested for p = 1 instead of p = 0. The p-value is reported accordingly.

3.2.3 Standard errors/subsampling

nostderrors disables the computation of standard errors. This option precludes the
use of subsample(#) and repetitions (#).
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subsample (#) draws samples of size # with replacement from the marked dataset.
Standard errors are computed by the m-out-of-n bootstrap method. If # is greater
than or equal to the effective size of the entire dataset, the conventional bootstrap
is executed.

repetitions(#) specifies the number of bootstrap replications to be used to obtain
an estimate of the variance—covariance matrix of the estimators. The default is
repetitions(100), which is likely to be too small in many applications.

fillfraction(#) determines up to which fraction of overall bootstrap repetitions
the program replaces subsamples in case of failed convergence. If this limit is
reached, further failed subsamples are dropped without being replaced. The de-
fault is fillfraction(.3).

3.2.4 Instrument/copula parameter

instrument (varname) lets the user define a variable in the dataset that serves as the
instrument to estimate the copula parameter [see (6)]. The instrument has to be a
function of varlist;. The default is the propensity score.

copulaparameter (varname) indicates that the copula parameter has already been es-
timated by the user (for example, separately by sample subgroups in a first stage)
and stored per observation in the variable varname. In this case, only step 3 of
Arellano and Bonhomme (2017) is performed (estimation of the selection-corrected
quantile coefficients). The values in varname are restricted to (—1,1) with the op-
tion gaussian and to the positive real line for plackett and joema. They are
unrestricted for frank. This option must be used in connection with nostderrors
and precludes the use of rhopoints(), taupoints(), meshsize(), centergrid(),
subsample(), repetitions (), instrument (), and graph. The reason is that the
user will have to code his or her own bootstrap procedure, including all the different
stages of his or her estimations (for example, using bootstrap). It is only in this way
that the sampling variability of the preestimated copula parameters is accounted for.

3.2.5 Reporting

quantiles(# [# [# e ] ]) specifies the quantiles to be estimated. Valid inputs
range from 0 to 1, exclusively, and in ascending order. The default is
quantiles(0.1(0.1)0.9) corresponding to all deciles.

graph specifies that a scatterplot of all objective function values be automatically gen-
erated after estimation.

output([normal} [bootstrap]) defines whether the output table generated is based
on the asymptotic, that is, normal, or the bootstrap distribution. If both are
specified, two separate output tables are produced. The first stage (probit) stan-
dard errors in the output are always asymptotic (coming from the default probit
command). repetitions() should always be set to at least 500 when choosing
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output (bootstrap). If both normal and bootstrap are specified, then results
based on the normal distribution are reported first.

4 Empirical examples

4.1 Comparison with Heckman selection model

Our first empirical illustration uses the example in the Stata manual for the command
heckman, which fits the Heckman (1979) selection model for the mean outcome.

The result of using heckman is

. webuse womenwk

. global X educ age

. global B married children

. heckman wage $X, select($X $B)

log likelihood = -5178.7009
log likelihood = -5178.3049
log likelihood = -5178.3045

Iteration O:
Iteration 1:
Iteration 2:

Heckman selection model Number of obs 2,000
(regression model with sample selection) Selected = 1,343
Nonselected = 657
Wald chi2(2) = 508.44
Log likelihood = -5178.304 Prob > chi2 = 0.0000
wage | Coefficient Std. err. z P>|z| [95% conf. intervall
wage

education .9899537 .0532565 18.59  0.000 .8855729 1.094334
age .2131294 .0206031 10.34 0.000 .1727481 .2535108
_cons .4857752  1.077037 0.45 0.652 -1.625179 2.59673

select
education .0557318 .0107349 5.19  0.000 .0346917 .0767718
age .0365098 .0041533 8.79  0.000 .0283694 .0446502
married .4451721 .0673954 6.61  0.000 .3130794 .5772647
children .4387068 .0277828 15.79  0.000 .3842534 .4931601
_cons -2.491015 .1893402 -13.16  0.000 -2.862115  -2.119915
/athrho .8742086 .1014225 8.62 0.000 .6754241 1.072993
/1nsigma 1.792559 .027598 64.95 0.000 1.738468 1.84665
rho .7035061 .0512264 .5885365 .7905862
sigma 6.004797 .1657202 5.68862 6.338548
lambda 4.224412 .3992265 3.441942 5.006881
LR test of indep. eqns. (rho = 0): chi2(1) = 61.20 Prob > chi2 = 0.0000

We then use arhomme to fit a selectivity-corrected regression model for the median.
For doing this, we also illustrate a useful stepwise procedure to arrive at a reasonable
choice for the grid used to estimate the copula parameter.
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A first step is

. arhomme wage $X, select($X $B) nostderrors gaussian quantiles(.5)
First step estimation (probit model) successfully completed.

Second step (gaussian copula parameter estimation) successfully completed.
Found objective function minimum 1.705e-05 for rho = -0.5903

Third step (minimization of rotated check function) successfully completed.

Arellano & Bonhomme (2017) selection model
(conditional quantile regression with sample selection)

Number of obs. = 2,000
Num. of selected = 1,343
Rho points = 19
Tau points = 3
Meshsize = 1.0000
Spearman's rho = -0.5723
Kendall's tau = -0.4020
Blomgvist's beta = -0.4020
Minimum Fval = 1.705e-05
wage Coefficient
select
education .0583645
age .0347211
married .4308575
children .4473249
_cons -2.467365
.5_quantile
_cons 1.487906
education .992114
age .1923601
_anc
rho -.5903345

note: parameter estimates based on Gaussian copula model

. local c¢ = e(rho)
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We then use a refined grid:

. arhomme wage $X, select($X $B) nostderrors gaussian quantiles(.5)
> taupoints(7) rhopoints(25) centergrid(c') meshsize(.2)

First step estimation (probit model) successfully completed.

(output omitted )

Arellano & Bonhomme (2017) selection model
(conditional quantile regression with sample selection)

Number of obs. = 2,000
Num. of selected = 1,343
Rho points = 25
Tau points = 7
Meshsize = 0.2000
Spearman's rho = -0.6339
Kendall's tau = -0.4519
Blomgvist's beta = -0.4519
Minimum Fval = 8.993e-07

I
(output omitted )

.5_quantile
_cons .5695862
education 1.016767
age .203274
_anc
rho -.6516752

note: parameter estimates based on Gaussian copula model

. local c¢ = e(rho)
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So far, we have used the option nostd to save computing time. In the next step, we
also include the computation of standard errors:

. set seed 1337

. arhomme wage $X, select($X $B) gaussian quantiles(.5) taupoints(7)
> centergrid( c') repetitions(250)

option subsample left unspecified: subsample automatically set to 2000
(bootstrap)
use option nostderrors to disable estimation of covariance matrix

First step estimation (probit model) successfully completed.

Second step (gaussian copula parameter estimation) successfully completed.
Found objective function minimum 8.993e-07 for rho = -0.6517

Third step (minimization of rotated check function) successfully completed.

Initialising standard error estimation by 2000 out of 2000 bootstrap method:

T 1 T 2 T 3 T 4 T 5
.................................................. 50
.................................................. 100

(output omitted )
.................................................. 250

Arellano & Bonhomme (2017) selection model
(conditional quantile regression with sample selection)

Number of obs. = 2,000
Num. of selected = 1,343
Rho points = 19
Tau points = 7
Meshsize = 1.0000
Spearman's rho = -0.6339
Kendall's tau = -0.4519
Blomgvist's beta = -0.4519
Minimum Fval = 8.993e-07
Replications = 250
Subsample Size = 2,000
wage | Coefficient Std. err. z P>|z| [95% conf. intervall
select
education .0583645 .0111586 5.23 0.000 .036494 .0802351
(output omitted )
.5_quantile
_cons .5695862 1.387861 0.41 0.682 -2.150571 3.289744
education 1.016767 .0756374 13.44  0.000 .8685207 1.165014
age .203274 .0259474 7.83 0.000 .1524181 .2541299
_anc
rho -.6516752 .0764418 -8.53  0.000 -.8014983 -.501852

note: parameter estimates based on Gaussian copula model

Both heckman and arhomme find substantial positive selection (recall that a nega-
tive copula parameter in arhomme represents positive selection). The coefficients for
education and age in arhomme for the median wage are quite similar to those for the
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mean wage in heckman. This will be the likely outcome if the conditional distributions
are symmetric (implying that the mean is equal to the median).

Finally, we illustrate the postestimation features of arhomme:

. test [.5_quantile]education = [.5_quantile]age
(1) [.5_quantileleducation - [.5_quantile]lage = O

chi2( 1) 93.17
Prob > chi2 0.0000

. predict medpred, equation(.5_quantile)

4.2 Replication of Arellano and Bonhomme (2018)

This section replicates the empirical example in Arellano and Bonhomme (2018). The
data are from Huber and Melly (2015) and can be downloaded from the Journal of
Applied Econometrics data archive (http://qed.econ.queensu.ca/jae/2015-v30.7 /huber-
melly /). The application refers to the returns to education and experience for women
in the United States using data from the 2011 Current Population Survey. The sample
covers white non-Hispanic women aged between 25 and 54 years. Individuals who
are self-employed or work for the military, public, or agricultural sector are excluded.
Working is defined as having worked for more than 35 hours in the week preceding the
survey. The application uses the Current Population Survey sampling weights.

We first load the data and modify some of the variable names to make them conform
to those used in Arellano and Bonhomme (2018):

. use application, clear

. rename hsg educ_7

. rename some_college educ_8
. rename associate educ_9

. rename college educ_11

. rename advanced educ_13

. rename mw midwest

. rename So south

. rename We west


http://qed.econ.queensu.ca/jae/2015-v30.7/huber-melly/
http://qed.econ.queensu.ca/jae/2015-v30.7/huber-melly/
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We now apply arhomme, following as closely as possible the specification in Arellano
and Bonhomme (2018):

. global X educ_7 educ_8 educ_9 educ_11 educ_13 exp exp2 exp_edu exp2_edu
> midwest south west married

. global B child02 child35 child613 child02_m child35_m child613_m
. set seed 1337

. arhomme lwage $X [pw=wgt], select(ft = $X $B) taupoints(4) rhopoints(39)
> gaussian subsample(1000) repetitions(500) quantiles(.25 .5 .75)
> centergrid(-.0989229)

(output omitted )

Arellano & Bonhomme (2017) selection model
(conditional quantile regression with sample selection)

Number of obs. = 44 562
Num. of selected = 20,055
Rho points = 39
Tau points = 4
Meshsize = 1.0000
Spearman's rho = -0.0945
Kendall's tau = -0.0631
Blomgvist's beta = -0.0631
Minimum Fval = 1.473e-08
Replications = 500
Subsample Size = 1,000
lwage | Coefficient Std. err. z P>|z| [95% conf. interval]

ft
educ_7 .5869417 .0428666 13.69  0.000 .5029247 .6709586
educ_8 .073392 .0226713 3.24 0.001 .0289571 .1178269
educ_9 .2325266 .0261318 8.90 0.000 .1813092 .2837441
educ_11 .0598427 .0287012 2.09 0.037 .0035894 .1160959
educ_13 .1910608 .0310857 6.15 0.000 .130134 .2519876
exp .0036565 .0044806 0.82 0.414 -.0051252 .0124382
exp2 -.0003162 .0001053 -3.00 0.003 -.0005225  -.0001098
exp_edu -.0020776 .0008418 -2.47 0.014 -.0037275  -.0004278
exp2_edu .0000259 .0000201 1.29 0.197 -.0000134 .0000652
midwest .0948917 .0208117 4.56 0.000 .0541015 .135682
south .0542725 .0199717 2.72 0.007 .0151286 .0934163
west -.0596079 .0214657 -2.78 0.005 -.1016799 -.017536
married -.1490132 .0186358 -8.00 0.000 -.18556387  -.1124877
child02 -.3361118 .0471503 -7.13  0.000 -.4285247  -.2436989
child35 -.1825115 .0374979 -4.87 0.000 -.256006 -.109017
child613 -.1016576 .0209263 -4.86 0.000 -.1426724 -.0606428
child02_m -.0714047 .0510075 -1.40 0.162 -.1713775 .0285681
child35_m -.0990061 .0411064 -2.41 0.016 -.1795732  -.0184391
child613_m -.101258 .0232153 -4.36 0.000 -.1467592  -.0557568
_cons -.5040045 .0760898 -6.62 0.000 -.6531377  -.3548713
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.25_quantile

_cons 1.95851 .0885078 22.13  0.000 1.785038 2.131982
educ_7 .2042428  .0712498 2.87 0.004 .0645957 .3438898
educ_8 .1047957  .0181724 5.77  0.000 .0691785 .140413
educ_9 .0759379  .0212158 3.58 0.000 .0343558 .11752

educ_11 .2806021 .0230952 12.15  0.000 .2353364 .3258678
educ_13 .1891199  .0260612 7.26  0.000 .1380409 .240199
exp .0163292  .0031733 5.15 0.000 .0101096 0225488

exp2 -.0002454  .0000769 -3.19 0.001 -.0003962  -.0000946
exp_edu .0011344  .0008901 1.27  0.203 -.0006102 .0028789
exp2_edu -.000021 .0000233 -0.90 0.368 -.0000666 .0000246
midwest -.0753589  .0185544 -4.06 0.000 -.1117249 -.038993
south -.1066912  .0180001 -5.93 0.000 -.1419708  -.0714117
west -.0272446  .0190795 -1.43 0.153 -.0646398 .0101505
married .0232687  .0130662 1.78 0.075 -.0023407 .048878

.5_quantile

_cons 2.018633 .053574 37.68  0.000 1.91363 2.123636
educ_7 .3126759  .0308411 10.14  0.000 .2522284 .3731234
educ_8 .1042804  .0150589 6.92  0.000 .0747656 .1337953
educ_9 .098068  .0191286 5.13 0.000 .0605766 .1355595

educ_11 .2915985  .0205943 14.16  0.000 .2512344 .3319625
educ_13 .2039454  .0225455 9.05 0.000 .1597571 .2481337
exp .0255916  .0027972 9.15  0.000 .0201092 .031074

exp2 -.0003969  .0000667 -5.95 0.000 -.0005276  -.0002663
exp_edu .0019973  .0006724 2.97 0.003 .0006794 .0033153
exp2_edu -.0000407 .000017 -2.40 0.016 -.000074  -7.44e-06
midwest -.0907382  .0144737 -6.27  0.000 -.1191062  -.0623702
south -.1120291 .0146407 -7.65 0.000 -.1407244  -.0833338
west -.0219371 .0160317 -1.37 0.171 -.0533587 .0094845
married .0235552  .0109308 2.15 0.031 .0021313 .0449791

.75_quantile

_cons 2.249392  .0619358 36.32 0.000 2.128 2.370784
educ_7 .2992705  .0356045 8.41  0.000 .229487 .369054
educ_8 .1287676 .017044 7.55  0.000 .0953619 .1621733
educ_9 .142979  .0199721 7.16  0.000 .1038345 .1821236

educ_11 .2513494 .022425 11.21  0.000 .2073973 .2953015
educ_13 .2046976  .0235484 8.69  0.000 .1585436 .2508516
exp .0301231 .0032344 9.31  0.000 .0237838 .0364624

exp2 -.0004632  .0000762 -6.08 0.000 -.0006126  -.0003138
exp_edu .0032962 .000767 4.30 0.000 .0017928 .0047995
exp2_edu -.00007  .0000195 -3.59  0.000 -.0001083  -.0000318
midwest -.1216595  .0159755 -7.62  0.000 -.152971  -.0903481
south -.0978834  .0164134 -5.96  0.000 -.1300529  -.0657138
west -.0157402  .0168385 -0.93 0.350 -.048743 .0172627
married .0210093  .0123409 1.70 0.089 -.0031784 .045197

anc

rho -.0989229  .0536844 -1.84 0.065 -.2041424 .0062966

note: parameter

estimates based on Gaussian copula model
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The results for the selection-corrected quantile regression coefficients are almost
identical to those reported by Arellano and Bonhomme (2018, table 1). Standard-error
estimates are also very similar. The point estimate for the copula parameter and its
standard error also come close to those reported by Arellano and Bonhomme (2018)
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(p = —0.10 with standard error 0.054). Small differences between our results and those
of Arellano and Bonhomme (2018) are to be expected because standard errors are the
result of a random process (subsampling), because of numerical software differences,
and because we do not know the exact choices of Arellano and Bonhomme (2018) for
grid search, number of supporting quantiles, etc.

4.3 Partial replication of Arellano and Bonhomme (2017)

Our last empirical example replicates selected results in Arellano and Bonhomme (2017).
wagedata.dta can be downloaded from Stéphane Bonhomme’s webpage (https: //sites.
google.com /site / stephanebonhommeresearch /) and refers to selectivity-corrected wage
distributions for the UK for the period 1978-2000. This section illustrates the use of the
graph option, which displays the grid search optimization for the copula parameter.

To replicate a selected quantile regression for the subgroup of single females, we first
run some preparatory steps (taken from the file sample_construction.do, which can
also be downloaded from the above webpage; details are available on request).

. use wagedata, clear

. * now data preparation as in sample_construction.do downloadable
. * from https://sites.google.com/site/stephanebonhommeresearch/

(commands omitted)

. * keep females
. keep if sex==
(90,731 observations deleted)

. * keep singles
. keep if married==0
(66,851 observations deleted)

(commands omitted)
We then start with a first crude estimation attempt:

. global X trendl trend2 trend3 c1919_34 c1935_44 c1955_64 c1965_77 edl7 ed18
> reg_dl reg_d2 reg_d3 reg_d4 reg_d5 reg_d6 reg_d7 reg_d8 reg_d9 reg_dil0 reg_dil
> kids_d1 kids_d2 kids_d3 kids_d4 kids_d5 kids_d6

. arhomme lw $X, select(work = $X s_zero) frank graph rhopoints(49) taupoints(4)
> quantiles(.5) nostderrors

(output omitted )
. local ¢ = e(rho)

. graph save "female single objective function.gph"
file female single objective function.gph saved


https://sites.google.com/site/stephanebonhommeresearch/
https://sites.google.com/site/stephanebonhommeresearch/
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Figure 1. Plot of objective function over crude grid

Refine grid:

. arhomme lw $X, sel(work = $X s_zero) frank graph rhopoints(19) taupoints(7)
> quantiles(.5) centergrid( c') meshsize(0.1) nostderrors

(output omitted )

. local ¢ = e(rho)

. graph save "female single objective function magnified.gph"
file female single objective function magnified.gph saved
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Figure 2. Plot of objective function over refined grid
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Finally, we estimate the preferred specification with standard errors based on sub-
sampling (using the same subsample size as in Arellano and Bonhomme [2017]):

. local s = 1000 + ceil(sqrt(_N))
. set seed 1337

arhomme 1w $X, select(work = $X s_zero) frank rhopoints(39) taupoints(7)
> quantlles( 5) centergrid(“c') repetitions(250) subsample(’s')

(output omitted )
Initialising standard error estimation by 1154 out of 23583 bootstrap method:
} }

I 1 I 2 I 3 I 4 I 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
Arellano & Bonhomme (2017) selection model
(conditional quantile regression with sample selection)

Number of obs. = 23,583
Num. of selected = 15,185
Rho points = 39
Tau points = 7
Meshsize = 1.0000
Spearman's rho = -0.0824
Kendall's tau = -0.0550
Blomgvist's beta = -0.0618
Minimum Fval = 9.002e-09
Replications = 250
Subsample Size = 1,154
lw | Coefficient Std. err. z P>zl [95% conf. intervall
work
trendl -.1179342 .0177487 -6.64 0.000 -.1527209 -.0831474
(output omitted)
_cons 2.300847 .1125997 20.43 0.000 2.080156 2.521539
.5_quantile
_cons 1.405257 .0351858 39.94 0.000 1.336294 1.47422
(output omitted )

kids_d6 -.0778446 .0321618 -2.42 0.016 -.1408805 -.0148087

_anc
rho -.495928 .4760549 -1.04 0.298 -1.428978 .4371224

note: parameter estimates based on Frank copula model

Arellano and Bonhomme (2017) do not document their estimated selectivity-corrected
regression coefficients (they are used only in their later calculations), but they do report
estimated copula parameters for different population subgroups. For the group of single
females, they report an estimated Spearman rank correlation of —0.080 (Arellano and
Bonhomme 2017, 16) and an estimated parameter for the Frank copula of —0.4820
(documented in replication file Graphs_Frank_copula.m downloadable from Stéphane
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Bonhomme’s webpage; see above). Up to numerical differences, this is very close to the
results we obtain above.

5 Conclusion

In this article, we described a command, arhomme, implementing the Arellano and Bon-
homme (2017) method of sample selection correction for quantile regressions along with
standard errors based on bootstrapping and subsampling. arhomme is fast and poten-
tially applicable in many fields in which there is a need to correct estimates of conditional
distributions for sample selection. If one is interested in obtaining unconditional dis-
tributions corrected for sample selection, the resulting conditional distributions may
be aggregated up as described in Albrecht, van Vuuren, and Vroman (2009) or Cher-
nozhukov, Ferndndez-Val, and Melly (2013).
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-3
. net install st0648 (to install program files, if available)
. net get st0648 (to install ancillary files, if available)
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