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Abstract. The Kitagawa–Oaxaca–Blinder decomposition approach has been
widely used to attribute group-level differences in an outcome to differences in en-
dowment, coefficients, and their interactions. The method has been implemented
for Stata in the popular oaxaca command for cross-sectional analyses. In recent
decades, however, research questions have been more often focused on the decom-
position of group-based differences in change over time, for example, diverging
income trajectories, as well as decomposition of change in differences between
groups, for example, change in the gender pay gap over time. We review five exist-
ing methods for the decomposition of changes in group means and contribute an
extension that takes an interventionist perspective suitable for applications with
a clear before–after comparison.

These decompositions of levels and changes over time can be implemented using
the xtoaxaca command, which works as a postestimation command for different
regression commands in Stata. It is built to maximize flexibility in modeling and
implements all decomposition techniques presented in this article.

Keywords: st0640, xtoaxaca, decomposition, longitudinal data, panel data, Oax-
aca, Blinder, Kitagawa

1 Introduction

The decomposition of group differences in means (Kitagawa 1955; Oaxaca 1973; Blinder
1973) is a popular tool when researchers seek to attribute such differences to differ-
ences in the groups’ characteristics and an unexplained part. As such, scholars have
applied such decompositions to a variety of topics such as gender income inequality
(Blau and Kahn 2017), happiness (Arrosa and Gandelman 2016), or obesity (Taber
et al. 2016). This approach has also seen numerous extensions over the last decades to
suit researchers’ needs, such as its application to distributional parameters other than
the mean (Freeman 1980, 1984), to nonlinear models (Fairlie 2005; Bauer and Sinning
2008), to quantile regression (Machado and Mata 2005), to selection models (Neuman
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H. Kröger and J. Hartmann 361

and Oaxaca 2003), and to other topics (for an overview, see Fortin, Lemieux, and Firpo
[2011]). In large parts of the applied literature, these kinds of decompositions are known
as Oaxaca–Blinder decompositions, after two of the three scholars who pioneered these
approaches (Oaxaca 1973; Blinder 1973). We refer to this way of decomposing group
mean differences as the Kitagawa–Oaxaca–Blinder (KOB) approach to reference the ear-
liest and often overlooked contribution to this literature as well (Kitagawa 1955).

As researchers became increasingly interested in research questions involving devel-
opments over time, further extensions were developed to decompose the changes in mean
group differences between two points in time (Smith and Welch 1989; Wellington 1993;
Makepeace et al. 1999; DeLeire 2000; Kim 2010). These decomposition techniques are
based on principles similar to those in the original KOB decomposition and have been
primarily used in repeated cross-sectional studies on income gaps. None of those ap-
proaches mentioned above have been coherently implemented in Stata. We therefore
propose the xtoaxaca command. It implements extensions of the original KOB decom-
position that focus on the decomposition of changes between groups across time and
makes decompositions available for pooled cross-section and panel data.

The command enables a user-friendly implementation of five existing decomposition
methods for change (Smith and Welch 1989; Wellington 1993; Makepeace et al. 1999;
DeLeire 2000; Kim 2010) and retains the possibility of applying it to panel data instead
of only repeated cross-sectional regression models. It provides a generalization of the
existing oaxaca command (Jann 2008) to longitudinal and panel data. It also includes
a modified version of an existing decomposition approach (Wellington 1993), which
is suitable for easy interpretation of the results under an interventionist perspective.
This approach is aimed at before–after comparisons such as settings of interventions,
policy changes, or (natural) experiments with a posttreatment follow-up. We believe
that, in many instances, this perspective is applicable to numerous applied research
settings in social sciences and has a more natural interpretation than the existing five
decompositions of group differences in change over time.

The purpose of this article is to introduce both the xtoaxaca command for Stata
and the new decomposition approach for change. In the next section, we introduce the
concepts of longitudinal decompositions of levels and change of mean group differences
over time. Both decompositions are implemented in the xtoaxaca command. We
then elaborate on cross-sectional decomposition of levels—recapitulating the original
KOB decomposition—and apply these principles to the decomposition of levels over
time using longitudinal and panel data. The fourth section presents a discussion of
different approaches to the decomposition of change. Thereafter, in the fifth section,
we argue that an interventionist perspective on the decomposition of change has a
crucial advantage in terms of interpretation for applied research. We then describe in
the sixth section the syntax and options of the new xtoaxaca command. We present
three empirical examples in the seventh section. The eighth section summarizes the
main limitations of the xtoaxaca command. The last section concludes and provides
an outlook for future research.
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2 Decomposition of levels and change

Generally speaking, there are two ways in which we can use mean decomposition tech-
niques with longitudinal data.

The first way of exploiting longitudinal data examines the contribution of past
changes or events to levels of outcome differences between two groups A and B at
a single time tu. The second way is the decomposition of group differences in change
in an outcome between two groups A and B between times s and t. We address both
approaches in turn but highlight the importance of the latter.

Using longitudinal data to determine the contribution of past changes, we ask a
typical research question:

1. How much of the difference in an outcome Y between groups A and B at time t
is due to the differences in the incidence of a past event X, its different effects, or
its different cumulative effects over the last n years?

This type of question utilizes longitudinal data by accounting for individuals’ past
experiences. For instance, we may ask to what extent differences in past unemployment
spells and their cumulative impact affect the gender wage gap at time t. In figure 1, this
would translate into the decomposition of the outcome difference at tu, ∆Yt. It would
account for the different incidences and effects of events at r and u to explain the level
difference ∆Yt. Analytically, this type of question is still cross-sectional in nature, and
we can examine it using the traditional KOB decomposition.1

In the following, we denote the repeated decomposition of group differences over
time as the longitudinal decomposition of levels over time. Decomposing levels is a
distinct approach from the second way of using longitudinal data for decomposition,
the decomposition of change.

1. Possibly accounting for panel attrition (Oaxaca and Choe 2016).
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Figure 1. Decomposition of changes over time

If we seek to decompose the change in mean group differences over time, we compare
the mean group differences between groups A and B between two points in time, s and
t, and ask what factors narrowed or widened the outcome difference over time. For
example, the wage gap between men and women may have decreased over the last 10
years. A researcher might ask whether this occurred because of compositional changes
(differential changes in endowments of the groups) or changes in the contribution of
coefficients of the two groups. Thus, the second kind of longitudinal question can be
expressed as follows:

2. How much of the change in differences in an outcome Y between groups A and
B and between times t and s is due to changes in the groups’ composition or the
effects of the explanatory variables?

In figure 1, this amounts to decomposing the change in group differences between
time s and t, ∆Y B −∆Y A.

As has been shown (Smith and Welch 1989; Wellington 1993; Makepeace et al.
1999; DeLeire 2000; Kim 2010), this type of question can be answered with repeated
cross-sectional data. In this article, we demonstrate that these existing approaches to the
decomposition of change can be easily generalized to the use of panel regression models
as well. We argue, however, that the existing approaches are not always easy to interpret
when asking a set of research questions that falls under what we call the interventionist
perspective. Therefore, we argue that they can be usefully complemented by a new
approach to the decomposition of change, which we lay out in detail in section 5.
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3 Decomposition of levels

3.1 The KOB decomposition for cross-sectional data

Before we review the existing approaches to the decomposition of change, it is useful
to recapitulate what the original KOB decomposition does using cross-sectional data
(Kitagawa 1955; Oaxaca 1973; Blinder 1973). We will also introduce the notation we
will use throughout the article. We start with a basic linear regression model for an
outcome Y and two groups A and B:

Yl
t = Xl

tβ
l
t + εlt, E(εl) = 0, cov(X, ε) = 0 l ∈ [A,B]

X represents the matrix of covariates, including the unity vector, while β contains the
k − 1 coefficients and the constant, t denotes the time, and ε is the error term. The
basic KOB decomposition applies to data with one time point and divides the mean
outcome difference between the two groups into a part that is explained by differences
in the groups’ characteristics and an unexplained part (twofold approach). Given that
the decompositions of change we introduce in section 4 are often based on the assump-
tion that there are group differences in the coefficients (threefold decomposition), we
illustrate our notation on this approach. Given the outcome difference

∆Yt = E(YA
t )− E(YB

t )

= E(XA
t )β

A
t − E(XB

t )β
B
t

and given that E(Xl
tβ

l
t + εlt) = E(Xl

tβ
l
t), the outcome difference can be decomposed

into

∆Yt = Et + Ct + It

Et =
{
E
(
XA

t

)
− E

(
XB

t

)}
βB
t

Ct = E(XB
t )(β

A
t − βB

t )

It =
{
E
(
XA

t

)
− E

(
XB

t

)}
(βA

t − βB
t ) (1)

Et is defined as the part of the difference that is due to differences in the groups’
characteristics at time t (endowments effect). Ct is the part of the difference that is due
to differences in the coefficients at time t. It, finally, is the part of the difference at time
t that is due to the interaction of the groups’ different characteristics and coefficients.

The presented decomposition in (1) is a threefold decomposition from the viewpoint
of group B, meaning that Et is weighted by B’s coefficients and that Ct is weighted
by B’s characteristics. While this suffices to represent the basic principle of the KOB

decomposition, other decompositions such as a twofold decomposition or a decomposi-
tion from the viewpoint of group A are possible (compare with Jann [2008] and Fortin,
Lemieux, and Firpo [2011]).
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From the viewpoint of group A, we would weight the differences in characteristics
and coefficients with the characteristics and coefficients of group A instead of group B:

∆Yt =
{
E(XA

t )− E(XB
t )
}
βA
t + E(XA

t )
(
βA
t − βB

t

)
+
{
E(XB

t )− E(XA
t )
} (

βB
t − βA

t

)
For the twofold decomposition, which is the one originally devised by Oaxaca and Blin-
der, the outcome difference (with group A as the reference) is decomposed by

∆Yt =
{
E(XB

t )− E(XA
t )
}
βA
t + E(XB

t )(β
B
t − βA

t )

This is also implemented in xtoaxaca but not discussed in detail in this article. Nor-
malization of explanatory variables (Yun 2005) has also been implemented as explained
in the next section, 3.2.

3.2 Normalization of categorical variables

As has been noted in the literature (Jann 2008; Kim 2010; Yun 2005), there is an
identification problem when categorical variables are used for decomposition. A widely
used solution is to normalize the coefficients of categorical variables by subtracting
the variable-specific mean of the coefficient from each category of the variable-specific
coefficients and adding all subtracted means to the intercept for decomposition purposes.
This yields a new set of coefficients for the decomposition defined as

β̃l
t,j = βl

t,j −
∑c

i=1 β
l
t,j,i

c

In this notation, j indicates the jth categorical variable and c the cth category
within the jth categorical variable, with βt,j,1 constrained to zero for identification in
the original model. The time-specific intercept is then defined as

β̃l
t,0 = βl

t,0 +

j∑
i=1

∑c
h=1 β

l
t,i,h

c
= βl

t,0 + β
l

t (2)

As can be seen, the basic principle of the original KOB decomposition is to get coun-
terfactual estimates for the outcome, for example, group B, assuming it had the same
endowments or coefficients as group A. This reasoning is retained in the decomposition
of levels and change over time as well.

3.3 Longitudinal data using nonpanel regression models

The use of the KOB decomposition with nonpanel regression models is unproblematic
with longitudinal data as long as time is measured discretely. Discretely in this context
means that observations are categorized together to have been observed at the same
undifferentiated time point, for example, in waves of a cohort of panel study. In this
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case, the analysis is identical to a repeated cross-sectional approach. However, the
assumption can also be that the time variable is (quasi)continuous. In this case, we
have to define a bandwidth (b) around the time points to allow for an estimation of
the endowments part. The wider the bandwidth is, the more reliable the estimate is
because more data points fall into the bandwidth around the time point (and the smaller
the standard errors become). Broadening the bandwidth comes at the price of losing
sensitivity to time-dependent changes in the endowment. For nonparametric modeling,
this is similar to the tradeoff that has to be made between bias and variance (Härdle
et al. 2004, 28). We estimate

E(Xl
t−b;t+b) (3)

The subscript t − b refers to the lower bound and t + b refers to the upper bound
of the interval on the time variable that is used to estimate the mean of the variables.
In the case of the continuous-time variable, the decomposition components become a
function of the chosen bandwidth b.

This raises the question of whether the coefficients, like the endowment, can also
become dependent on the chosen bandwidth. This has to be decided in line with the
choice of the functional form of the time variable in the regression models used for the
decomposition. Even when a bandwidth of some kind is used for the endowments, a
parametric form can be chosen for the coefficients over time. However, the time variable
can be constructed to reflect the bandwidth around prespecified points in time. In such a
case, the coefficients can be estimated nonparametrically for each of these time intervals
separately, and the decomposition can be done for each of these time intervals. Under
these circumstances, coefficients and endowments would be treated analogously.

For simplicity’s sake, we leave out the bandwidth in the index for the remainder of
the article, but note that it is theoretically necessary and practically possible to set the
bandwidth in cases in which time is assumed to be continuous.

3.4 Longitudinal data using panel regression models

Using panel data, we can also estimate β from a panel regression model. Because panel
regressions model time-constant individual error terms, a decomposition using panel
regression models must account for empirical group differences in these time-constant,
unobserved variables. Thereby, the time-constant individual error terms ul become part
of the decomposition of group-level differences.

Yl
t = Xl

tβ
l
t + ul + εlt, E(εlt) = 0, cov(Xt, εt) = 0 l ∈ [A,B]
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Accounting for the time-constant error terms adds the differences in the expectation
of ul as a fourth component U to the decomposition. This component is not time
dependent. It only comprises differences between groups in the time-constant error
terms.2

∆Yt = Et + Ct + It + U

Et =
{
E(XA

t )− E(XB
t )
}
βB
t

Ct = E(XB
t )(β

A
t − βB

t )

It =
{
E(XA

t )− E(XB
t )
}
(βA

t − βB
t )

U =
{
E(uA)− E(uB)

}
Accordingly, a decomposition using panel regression models attributes parts of the

differences between groups to unobserved factors that do not change within the period
of observation.

3.5 Model assumptions

Selection and causal identification

Note that any results produced by decompositions of levels or change rely on the as-
sumptions made in the original regression models. This pertains especially to the causal
interpretation of the results. Following a counterfactual interpretation of causality in the
social sciences (Morgan and Winship 2015), the estimators for the explanatory variables
would need to be unbiased. Only then could the results of any of the decomposition
approaches presented here (including the original KOB decomposition) be given inter-
pretations like “how much would the gap between group A and group B be reduced if
group A had the same endowments as group B?” Panel regression models offer some
advantages when it comes to arguing that the assumptions for causal interpretation
are fulfilled but still rest on certain assumptions that are often not realistic in applied
research (Firebaugh, Warner, and Massoglia 2013).

For example, from a more technical perspective, note that in a standard random-
effects model (which includes the grouping variable l as a covariate), the assumption is
that cov(l,u) = 0. This implies that E{E(uA)−E(uB)} = 0. If our model conforms to
this assumption, we should therefore expect that the time-constant error terms cannot
contribute to the explanation of differences in group levels of the outcome. If we see
strong deviations in an empirical estimation of E{E(uA)−E(uB)} = 0, this might in-
dicate a misspecified model leading to biased coefficient estimates, which in turn could
lead to a biased decomposition.

2. Note that in applied research, an unbalanced panel might mean that taking the expectation of the
time-constant error term at different time points t can lead to time-varying results if the dropout
is related to the time-constant error terms.
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Panel dropout

With longitudinal data, panel dropout is a serious issue that may affect the estimation
of coefficients (Oaxaca and Choe 2016) as well as the estimation of the time-specific
endowment component. If the results are to be interpreted causally, endogeneity prob-
lems resulting from panel dropout have to be solved when designing the panel regression
models before the decomposition is applied.

It is possible for dropout rates to differ between the groups under study. This can also
affect the estimation of the endowments in (3). To avoid biased endowment estimators,
one must construct weights that account for the effects of differential panel dropout
and applied them in the estimation of the endowments. How these are constructed is
beyond the scope of this article; however, we recommend standard procedures from the
literature on survey research (Kalton and Flores-Cervantes 2003; Deming and Stephan
1940; Kim and Kim 2007), which can be implemented in Stata using survwgt (Winter
2002).

Functional form of the time variable

In the modeling process, one can either specify time nonparametrically, estimating an
interaction of each time point with the group variable and each decomposition variable,
or assume a certain functional form like linear growth. The decomposition will rely
on these assumptions made in the modeling process. If the functional form is chosen
incorrectly, this will also affect the decomposition, and the results will consequently be
biased. This is important not only for the overall growth of the dependent variable but
also for the change in the effect of the decomposition variables over time. A nonpara-
metric approach is less statistically efficient but has much weaker assumptions than any
parametric function and might therefore be preferred if researchers are uncertain in this
regard.

3.6 Decomposition in a multilevel framework

Because all panel models can be understood as a special case of multilevel models
(with time points nested within units), we believe that xtoaxaca can also be used to
decompose levels and differences3 between clusters or higher-level units. Thus, the time
variable needs to reflect the cluster variable (for example, countries) and should be used
in categorical interaction with the desired variables in the model. Differences between
units in a multilevel framework and differences between time points can both be seen
as a form of difference-in-differences decomposition.

The interpretation of the decomposition of levels over different clusters does not de-
viate from repeated cross-sectional KOB decompositions, and so using xtoaxaca would
not contribute much extra benefit over using oaxaca. However, decomposition of dif-
ference in differences between groups over clusters or higher-level units might be of

3. The multilevel analogue to change.
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interest (Blau and Kahn 1992). The interpretation then refers to whether differences
between clusters or higher-level units in the group differences in the outcome can be
attributed to cluster differences in the group differences in endowments, coefficients, or
their interactions.

4 Decomposition of change

Regardless of whether we have repeated cross-sectional or panel data, given two groups
A and B for which we have data for at least two points in time, t and s with t > s, the
change in the outcome difference between the two groups and between the two points
in time is given by

∆Y = ∆Yt −∆Ys (4)

Alternatively, changes in outcome differences between two groups and two points in
time can be expressed as the difference of group differences over time:

∆Y = ∆Yt −∆Ys

= (E(YA
t )− E(YB

t ))− (E(YA
s )− E(YB

s ))

= E(YA
t )− E(YB

t )− E(YA
s ) + E(YB

s )

= E(YA
t )− E(YA

s )− E(YB
t ) + E(YB

s )

= E(YA
t )− E(YA

s )− (E(YB
t )− E(YB

s ))

= ∆Y A −∆Y B

Essentially, changes over time can therefore be expressed as the difference between two
KOB decompositions at different time points.

Several approaches for the decomposition of change in group differences over time
exist. We cover the five most prominent examples.4 These decompositions of change
have been applied to both points using repeated cross-sectional data. The generalization
of the decomposition of levels to continuous time and panel data introduced in the
previous section applies in the same way to the decomposition of change as it does to
the decomposition of levels.

4.1 Simple subtraction method (SSM)

The simplest decomposition of change is a simple subtraction of the decomposition
components of the original KOB decomposition at time s from the components at time
t and is defined in our notation as SSM:

4. There are 2 × 2 × 2 = 8 (endowments and coefficients per 2 groups per 2 time points) estimates
that make up (4). Decompositions can take any number of possible differences and products as
part of the decomposition and combine them to form a new kind of decomposition.
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∆Y = ∆Yt −∆Ys

= Et + Ct + It − (Es + Cs + Is)

= (Et − Es) + (Ct − Cs) + (It − Is)

=
{
E(XA

t )− E(XB
t )
}
βB
t︸ ︷︷ ︸

Et

−
{
E(XA

s )− E(XB
s )
}
βB
s︸ ︷︷ ︸

Es

+ E(XB
t )
(
βA
t − βB

t

)︸ ︷︷ ︸
Ct

−E(XB
s )
(
βA
s − βB

s

)︸ ︷︷ ︸
Cs

+
{
E(XA

t )− E(XB
t )
} (

βA
t − βB

t

)︸ ︷︷ ︸
It

−
{
E(XA

s )− E(XB
s )
} (

βA
s − βB

s

)︸ ︷︷ ︸
Is

This method is straightforward to calculate, applied for example in DeLeire (2000).
The endowment part can be interpreted as the part in the change in the gap that is
due to changes in the endowments given changes in the evaluation (coefficient) in the
reference group over time. The coefficient part is the part in the change in the gap that
is due to changes in the coefficients given changes in the evaluation (endowment) in
the reference group over time. The interaction part is the difference in the interactions
of group differences in coefficients and endowments. Similarly to the original KOB,
this component is difficult to interpret and might often be treated as the substantively
unexplained part.

The approach has also attracted criticism because it does not estimate the unique
contribution of coefficient changes and changes in the variable distributions over time
(Kim 2010). As Kim (2010) shows, the coefficient differences at each time point are
weighted by the mean distribution of the endowments at their respective time and,
because the endowments likely change over time, the coefficient effect captures these
changes. Similarly, the endowment effect contains interactions between the coefficient
and endowment changes. This kind of criticism applies differently for all the decompo-
sitions presented here, except for the one by Kim (2010).

4.2 Smith and Welch (1989)

Smith and Welch (1989) propose a fourfold decomposition of change that is defined in
our notation as SW (Smith and Welch 1989, 529):

i =
[{
E
(
XA

t

)
− E

(
XB

t

)}
−
{
E(XA

s )− E(XB
s )
}]

βB
s

ii =
{
E(XA

t )− E(XA
s )
} (

βA
s − βB

s

)
iii =

{
E(XA

t )− E(XB
t )
} (

βB
t − βB

s

)
iv = E(XA

t )
{(

βA
t − βB

t

)
−
(
βA
s − βB

s

)}
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The components can be given the following interpretation:5

i. Main effect: The component estimates the predicted change in the outcome be-
tween the two groups that can be attributed to the two groups are changing in
the endowments (valued at base time s) between time t and s.

ii. Group interaction: The second component describes the part of change in the
endowment of the group that is valued differently at time s. Therefore, a secular
rise in endowments gives a higher benefit to the group with the higher return to
this endowment at time s.

iii. Time interaction: This component takes the endowment differences at the second
time point and attributes change to the change in the coefficient of group B. This
would mean that higher returns to an endowment benefit the group with higher
endowments at time point t.

iv. Group-time interaction: The last component attributes change to a change in the
differences in the coefficients (returns to endowments) given the initial level of
group A. If group A were the disadvantaged group, reduction in the differences to
the return to their endowments would close the overall gap between the groups.

4.3 Wellington (1993)

Wellington (1993) proposes a simple twofold decomposition of change in differences in
labor market returns. Her decomposition is defined in our notation as WL (Wellington
1993, 393):

WL1 =
{
E(XA

t )− E(XA
s )
}
βA
t −

{
E(XB

t )− E(XB
s )
}
βB
t

WL2 = E(XA
s )
(
βA
t − βA

s

)
− E(XB

s )
(
βB
t − βB

s

)
Wellington (1993, 393–394) gives the following description of the two components:

WL1. The portion of the change in the gap that can be accounted for by changes in
the means if the returns to the independent variables were constant at t (not at
baseline s).

WL2. The portion of the change in the gap that can be explained by changes in the
coefficients (including the constant term) over the period, evaluated at the groups’
baseline (s) means.

This approach is the one that is closest to our own addition (see next subsection)
to the set of possible decomposition approaches, but there is a slight but significant
difference, as we discuss in section 5.

5. See Smith and Welch (1989, 529–530) for their interpretation of the change in the race gap in
wages.
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4.4 A threefold extension of WL (interventionist)

There is another useful way in which the change in gaps can be decomposed. This is an
extension of the WL decomposition, which takes the form of a threefold decomposition.

∆Y A −∆Y B = ∆Y = ∆E +∆I︸ ︷︷ ︸
WL1

+ ∆C︸︷︷︸
WL2

The three components are named analogously to the original KOB decomposition.
To obtain the endowments effect, we allow only the groups’ composition to vary over
time and hold the coefficients constant at their initial group-specific levels at time s.

∆E = E(XA
t )β

A
s − E(XA

s )β
A
s − E(XB

t )β
B
s + E(XB

s )β
B
s

=
{
E(XA

t )− E(XA
s )
}
βA
s −

{
E(XB

t )− E(XB
s )
}
βB
s (5)

As can be seen in (5), we obtain the endowments component by subtracting the groups’
compositional changes over time weighted by their initial coefficients. The endowments
component then answers the following question: Given the initial differences in coeffi-
cients, how much does the gap between groups change because of the changes in the
endowments between both points (if the coefficients do not change)?

Similar to the endowments effect, the component attributable to a change in coeffi-
cients is obtained by fixing the groups’ endowments so that E(Xl

t) = E(Xl
s),

∆C = E(XA
s )β

A
t − E(XA

s )β
A
s − E(XB

s )β
B
t + E(XB

s )β
B
s

= E(XA
s )
(
βA
t − βA

s

)
− E(XB

s )
(
βB
t − βB

s

)
which denotes the change of the difference due to a change in coefficients (including
the constant) over time between the groups given the groups’ initial differences in en-
dowments at s. The coefficient component answers this question: Given the initial
differences in endowments, how much does the gap between groups change because of
changes in the coefficients (if the endowments do not change)?

The interaction between the change in endowments and coefficients is the last com-
ponent of the decomposition:

∆I =
{
E(XA

t )− E(XA
s )
} (

βA
t − βA

s

)
−
{
E(XB

t )− E(XB
s )
} (

βB
t − βB

s

)
As with the original KOB decomposition, it is difficult to give this component a straight-
forward interpretation on its own. Additionally, note that the subcomponent of ∆C that
is attributable to a change in the intercept is usually also a kind of residual, unexplained
by the (change in) X variables in the model.
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We can show that our suggested approach is a direct extension of Wellington (1993).
First, our ∆C component is exactly the same as WL2 of the Wellington decomposition.

WL2 = E(XA
s )
(
βA
t − βA

s

)
− E(XB

s )
(
βB
t − βB

s

)
= ∆C

In addition, if we add up the endowment and interaction term of the interventionist
decomposition, we get the first part of the Wellington decomposition.

∆E +∆I =
{
E(XA

t )− E(XA
s )
}
βA
s −

{
E(XB

t )− E(XB
s )
}
βB
s +{

E(XA
t )− E(XA

s )
} (

βA
t − βA

s

)
−
{
E(XB

t )− E(XB
s )
} (

βB
t − βB

s

)
=
{
E(XA

t )− E(XA
s )
}
βA
t −

{
E(XB

t )− E(XB
s )
}
βB
t

= WL1

4.5 Makepeace et al. (1999)

Another well-known approach aims at partially mirroring the twofold cross-sectional
KOB decomposition into explained and unexplained in the decomposition of change.
The authors further divide the explained and unexplained components into a component
related to change in endowments (pure) and one aspect related to change in coefficients
(price) (Makepeace et al. 1999, 539). Their decomposition is defined in our notation as
MPJD:

∆Epure =
[ {
E(XA

t )− E(XA
s )
}
−
{
E(XB

t )− E(XB
s )
} ]

βA
t

∆Eprice =
{
E(XA

s )− E(XB
s )
} (

βA
t − βA

s

)
∆Upure = E(XB

t )
{(

βA
t − βA

s

)
−
(
βB
t − βB

s

)}
∆Uprice =

{
E(XB

t )− E(XB
s )
} (

βA
s − βB

s

)
4.6 Kim (2010)

While many decomposition approaches were developed with particular research ques-
tions in mind, Kim (2010) develops the most analytical approach. It yields five com-
ponents, of which two can be attributed purely to the change in endowments and coef-
ficients. He argues that all methods discussed so far in this article confuse or at least
conflate the pure change in endowment and the pure change in the coefficients with
interactions of such changes with initial (or current) level differences in coefficients and
endowments. We agree with the analysis but argue in section 5 that for the sake of
interpretability, this might be a desirable property of a decomposition.

To better understand how the KIM decomposition (Kim 2010, 629) decomposes group
differences over time, we need to take the intercepts apart from the rest of the coefficients
in this subsection. So far, decompositions have used the standard matrix notation of
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multiple regression. This means that the time-specific intercepts βl
t,0 are part of the

coefficient vectors,

βl
t =

(
βl
t,0, β

l
t,1, . . . , β

l
t,d

)′
=

(
βl
t,0

β∗l
t

)
with d being the number of decomposition variables used in the model. Accordingly,
the means matrices so far have contained a unity vector that is multiplied with the
intercepts:

E(Xl
t) =

{
1, E(Xl

t,1), . . . , E(Xl
t,d)
}
=
{
1, E(X∗l

t )
}

Kim (2010) uses a different approach by explicitly distinguishing between intercepts

and covariates. Therefore, the notation for the coefficients uses β̃∗l
t to represent the

coefficient vector without the intercept and E(X∗l
t ) as the means vector without the 1.

Additionally, the decomposition uses the normalization of categorical variables proposed
by Yun (2005) (see section 3.2). After normalization, the vector of coefficients may
contain normalized categorical and nonnormalized continuous variables. We distinguish
categorical variables by counting them first in the set of coefficients until the total
number of categorical variables j is reached. Continuous variables start with an index
of j + 1 until they reach d, which is the total number of decomposition variables. Such
an explicit distinction between continuous and categorical variables is not necessary
for other sections of the article. The normalized (demeaned) vector of coefficients thus
contains

β̃l
t =

(
β̃l
t,0, β̃

l
t,1,c, . . . , β̃

l
t,j,c, β

l
t,j+1, . . . , β

l
t,d

)′
with j being the number of categorical variables, c indexing the categories of each
categorical variable, β̃l

t,0 being the intercept for the demeaned coefficients [see (2)],

β̃l
t,1,c, . . . , β̃

l
t,j,c being the demeaned coefficients of the categorical variables, and βl

t,j+1,

. . . , βl
t,d being the regular coefficients of the continuous variables. If we now take the

normalized vector of coefficients and leave out the intercept β̃l
t,0, we get β̃∗l

t .

With the definition of normalization in section 3.2 and β̃∗l
t being the normalized

coefficient vector without the intercept, it follows that

E(X∗l
t )β̃∗l

t + βl
t,0 + β

l

t =
{
1, E(X∗l

t )
}(

βl
t,0, β̃

∗l
t + β

l

t

)
= E(Xl

t)β
l
t
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Taking these definitions into account, we define the five-part KIM decomposition in
our notation as follows:

D1 =
{
(βA

t,0 − βA
s,0)− (βB

t,0 − βB
s,0)
}
+
{(
β
A

t − β
A

s

)
−
(
β
B
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B

s

)}
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t ) + E(X∗A
s ) + E(X∗B

t ) + E(X∗B
s )

4
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Following Kim (2010), we can give the following descriptions of the five components:

D1 Intercept effect: This is purely the difference in differences between group and
overall intercepts.

D2 Pure coefficient effect: This component measures how much the gap between
groups changes because of changes in the coefficients if there were no differences
in the endowments at all, neither between groups nor over time.

D3 Coefficient interaction effect: This component measures how much the gap be-
tween groups changes because of the average change in endowment combined
with the difference in the averaged coefficient. It is supposed to capture the as-
pect of initial level differences in coefficients, which affect the change in the gap
in interaction with changes in endowments.

D4 Pure endowment effect: This component is the analog to D2 for endowments. It
measures how much the gap between groups changes because of changes in the
endowments if there were no differences in the coefficients at all, neither between
groups nor over time.

D5 Endowment interaction effect: This component is the analog to D3 but reverses
the role of endowment and coefficients. It measures how much the gap between
groups changes because of the average change in coefficients combined with the
difference in the averaged endowments. It is supposed to capture the aspect of
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initial level differences in endowments, which affect the gap in interaction with
changes in coefficients.

4.7 Panel models and time-constant error terms

As mentioned in section 3.4, decompositions can also attribute parts of group differ-
ences in levels of the outcome to factors that are time constant within the period of
observation. The same can be done for change over time (∆U). However, this makes
sense only if we have an unbalanced panel. If the panel is balanced, the expectations of
the time-constant error terms cannot change over time and cannot contribute anything
to the decomposition of change between groups.

If we see substantial contributions of the time-constant error terms, the data suffer
from group-specific panel attrition, which contributes to a change in the group differ-
ences in the outcome. In this case, we can add a component ∆U to all the previous
five decompositions as well as to the interventionist decomposition method introduced
in the next section.

∆U =
{
E(uA

t )− E(uA
s )
}
−
{
E(uB

t )− E(uB
s )
}

4.8 The relationship between the different types of decompositions

Because all decomposition approaches decompose the same differences in change over
time, each decomposition can be expanded and transformed into any other of the ex-
isting decompositions. Nevertheless, there are some direct relationships that are worth
mentioning and that are also depicted in figure 2.6

The six decomposition methods can be divided into a heuristic based on a combi-
nation of two characteristics. The first one is simply the number of components used.
Here we see between two and five components. The second characteristic divides the
methods into those that conduct decompositions groupwise across time and those that
conduct decompositions timewise across groups. Timewise across groups means that
the differences between groups at one time point are subtracted from the differences be-
tween groups from another time point. In contrast, groupwise across time means that
the differences between time points within one group are subtracted from the differences
between time points within the other group.

WL, KIM, and the interventionist approach fall clearly into the groupwise-across-time
category, while SSM is a timewise-across-group approach. For MPJD and SW, not all
components of their decomposition follow this logic. For MPJD, the pure components
are groupwise across time, and for SW the components i and iv are timewise across
group.

6. We are very grateful to an anonymous reviewer for pointing out some of these relationships.
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In section 4.4, we have already shown that WL can be further divided to yield a
threefold decomposition that we label interventionist and that we argue has a certain
desirable property in contrast with all other approaches, which we elaborate on in
section 5.

The simple subtraction method does timewise subtractions across groups of the
components of endowments, coefficients, and interactions. If we were to exchange time
points with groups, we would end up with a groupwise subtraction across time. This
is exactly what is done in the interventionist perspective. So if we were to substitute
t = A and s = A, the equations would be

∆E = EA − EB =
{
E(Xt

A)− E(Xs
A)
}
βs
A −

{
E(Xt

B)− E(Xs
B)
}
βs
A
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A)
(
βt
A − βs

A

)
− E(Xs

B)
(
βt
B − βs

B

)
∆I = IA − IB =

{
E(Xt

A)− E(Xs
A)
} (

βt
A − βs

A

)
−
{
E(Xt

B)− E(Xs
B)
} (

βt
B − βs

B

)
These are the same components as in the interventionist perspective, and after chang-

ing groups with time points, the SSM could also be reduced to the twofold decomposition
of Wellington (1993).

Note that each decomposition retains its substantively different interpretation even
if each can be transformed into a different decomposition. When one interprets the
results, the decompositions should therefore not be treated as 1:1 substitutes for each
other.
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groupwise across time timewise across groups

twofold WL

threefold Interventionist SSM

fourfold MPJD SW

fivefold KIM

expand first component
WL1 = ∆YE +∆YI

swap groups with
time points

swap groups with
time points &
other evaluations

Separate intercept
component & aver-
aged evaluations

Figure 2. Relationship among decomposition approaches. note: SSM = simple subtrac-
tion method (section 4.1), WL = Wellington (1993) (section 4.3), MPJD = Makepeace et
al. (1999) (section 4.5), SW = Smith and Welch (1989) (section 4.2), KIM = Kim (2010)
(section 4.6)

5 An interventionist perspective on the decomposition of
change

While all the decomposition approaches that we discussed in the previous section have
their uses, we argue that the interventionist approach is best suited to address a certain
kind of research question that regularly arises in applied social science research and
similar fields like epidemiology or public health (see section 4.4). The premise of this
approach is that we take the initial differences in levels between the groups at the
reference time point s as given. We then ask how the difference between the groups
could have changed if either the change in endowments or the change in coefficients
had been different. This reflects real-world applications in which either an intervention
is designed or a (natural) experiment or policy change occurs between s and t and is
evaluated at time point t. The initial differences in both coefficients and endowments
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at time point s are seen as inextricably linked to an explanation of change because
any change is built on the existing levels at s. These initial levels are assumed to be
beyond intervention and are therefore not subject to counterfactual predictions within
the decomposition approach.

There are two combinable types of counterfactual predictions about endowments and
coefficients at time s: 1. across groups and 2. across time (and a combination of both).
The former would make statements such as “if group A had the same endowment as
group B at time point s,” while the latter would make statements such as “if group A
already had the coefficients of time t at time point s.”

From these two types of counterfactual statements, we can derive two formal require-
ments for a decomposition approach to conform to the assumptions of our interventionist
perspective. First, no component should contain a term that takes group differences
at s (which constitutes a counterfactual prediction at time s across groups). Instead,
only differences of within-group change7 should be used for the decomposition. Second,
changes within groups should be multiplied (valued) only at the initial levels (s) or at
change (t− s) but not at the levels at t (or any function of the levels, endowments, or
coefficients at t). If we value at levels of t, we make a counterfactual prediction at time
s across time.

Except for the interventionist approach, all other decompositions described in sec-
tion 4 violate these assumptions. They are therefore not applicable under an inter-
ventionist perspective.8 In such a research scenario, it is therefore desirable to use a
decomposition that can attribute changes in the gaps to changes in endowments and
coefficients given the initial differences in levels in the outcome between groups. We de-
signed the interventionist approach to fill exactly this lack of a decomposition approach
to the mean-based decompositions of change in linear models.

Thus, using this decomposition, we seek to answer questions such as how group
differences in an outcome would have developed over time had both groups’ characteris-
tics or coefficients changed in the same way. These are counterfactual statements about
changes that might have been the result of an intervention, policy change, natural ex-
periment, or any other process or event that occurs between two time points s and t. To
this end, we need to find a decomposition that does not violate our two interventionist
assumptions. This can be achieved by setting the endowments and coefficients at which
within-group changes are valued to their groups’ initial values.9

7. Because we assume that we could manipulate the change through an intervention.
8. For SSM, it is all three components. For SW, it is components i, ii, and iv. For WL, it is component

WL1. For MPJD, it is all components. And for KIM, it is components D2–D5 that violate the
assumptions.

9. However, by definition and as mentioned above, it does depend on the differences in the initial levels
of coefficients and would be regarded as conflating change in endowments with levels of coefficients
in Kim’s (2010) analytical perspective.



380 Extending the Kitagawa–Oaxaca–Blinder decomposition approach

6 The xtoaxaca command

The xtoaxaca postestimation command provides decomposition techniques after any
kind of regression-based growth curve analysis. For the programming of xtoaxaca,
Stata 14.1 was used. Currently, xtoaxaca supports the analysis of stored models fit
using reg, xtreg, or mixed.

xtoaxaca relies heavily on the use of factor variables. Users are therefore actively
encouraged to specify all variables in their regression command explicitly as factor
variables (including noninteracted, continuous variables). All variables that are not
specified as factor variables are treated as continuous, and the use of dummy variables
is not supported.

The exception to this rule is interactions among decomposition variables. These
must be created as handmade interaction terms (possibly using dummy variables) and
interacted using factor-variable syntax with time and grouping variables. The example
in section 7.5 shows how this can be achieved.

The maximum length of variable names for decomposition variables that is supported
by xtoaxaca is 20.

A longitudinal decomposition using xtoaxaca works in two steps:

1. Fit a (growth curve) model. This model should condition on the variables that are
used as decomposition variables to explain the gap over time between the groups.

2. xtoaxaca takes the model and the dataset as input to decompose the gaps over
time using Stata’s margins command in the background.
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Choose data, 
model, and 
estimator

Data

xtoaxaca

Stored estimates
Group, time, 

decomposition 
variables, and 

time points

Level Change

margins mean

β(g,t) E(X(g,t))

Figure 3. xtoaxaca workflow
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6.1 Syntax

The general syntax is

xtoaxaca varlist, groupvar(varname) groupcat(##) timevar(varname)

times(numlist) model(name)
[
timeref(#) timebandwidth(#)

basemodel(name) weights(varname) change(changetype) normalize(varlist)

noisily detail forcesample twofold(weight | pooled | off)
resultsdata(

[
pathname

]
filename

[
, replace

]
)

blocks(blockname1 = (varlist1)
[
, blockname2 = (varlist2)...

]
) tfweight(#)

fmt(#)
[
nolevels | nochange

]
seed(#) bootstrap(#)

]
varlist contains all decomposition variables and should include all variables inter-

acted with the variable specified in timevar(). Otherwise, the decomposition will be
incomplete. estout (Jann 2004) is required to run xtoaxaca.

6.2 Options

groupvar(varname) specifies the group variable for decomposition. groupvar() is
required.

groupcat(##) identifies the group categories in groupvar() between which differences
across time will be decomposed. Only two codes are allowed. groupcat() is required.

timevar(varname) specifies the time variable in the growth curve model. timevar()

is required.

times(numlist) defines the values of timevar() at which group differences will be
decomposed. times() is required.

model(name) is the name under which the (growth curve) model is stored. Please
ensure that the basic functional form of timevar() and possible interactions with
the groupvar() variable are correctly specified. Please use factor-variable notation
for all variables in the model. Therefore, do not use dummy variables to represent
categorical variables (both timevar() and groupvar(), as well as decomposition
variables), but use the factor-variable prefix i. instead. All variables without a
factor-variable prefix are treated as continuous by xtoaxaca. model() is required.

timeref(#) defines the reference time point for which change decomposition will be
calculated. This option is required if the option change() is specified. It must be
one of the time points specified in times().

timebandwidth(#) defines the time span around the time points in times(numlist)
that is used to estimate the time-specific means of the decomposition variables. This
option is required only if timevar() is specified as a continuous (factor) variable in
the models. The default is timebandwidth(0.1).
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basemodel(name) is the name under which an optional baseline model is stored. This
is not necessary for the decomposition. It can be used to ensure that the functional
form and interactions of the timevar() with the grouping variable are correctly
specified. This might be helpful if the code of model() contains many complicated
interactions that might be prone to errors or typos. Please use factor-variable nota-
tion for all variables in the baseline model. Therefore, do not use dummy variables to
represent categorical variables (both timevar() and groupvar() as well as decom-
position variables). Instead, use the factor-variable prefix i.. All variables without
a factor-variable prefix are treated as continuous by xtoaxaca.

weights(varname) specifies the variable containing (longitudinal) weights for the esti-
mation of the endowments (means).

change(changetype) specifies the decomposition method of change over time.
changetype may be one of the following: interventionist, ssm, smithwelch,
wellington, mpjd, kim, interventionist twofold, or none. interventionist

yields the decomposition using the interventionist perspective presented in this ar-
ticle (see section 5). ssm gives the simple subtraction method described in sec-
tion 4.1; smithwelch gives the decomposition by Smith and Welch (1989) described
in section 4.2; wellington gives the decomposition by Wellington (1993) described
in section 4.3; mpjd gives the Makepeace et al. (1999) decomposition described
in section 4.5; kim gives the decomposition presented in Kim (2010) described in
section 4.6. interventionist twofold gives the decomposition presented in sec-
tion A.1 in the appendix, which is akin to the original twofold KOB decomposition.
The default is change(none), which shows only the decomposition of levels.

normalize(varlist) will normalize the categorical variables according to the method by
Yun (2005), as described in section 3.2. varlist may be any categorical variables
from the decomposition varlist .

noisily yields more output from the in-between estimation steps of, for example, ma-
trices of means and coefficients over time. If you specify noisily with bootstrap(),
you also need to specify resultsdata().

detail is the same as noisily.

forcesample forces the command to accept differences in the current sample in the
dataset and the samples used to fit the models. If a basemodel() is specified,
it also forces xtoaxaca to accept differences in sample size between model() and
basemodel(). In normal circumstances, it is not recommended to use this option,
and it should be used only if the output is interpreted according to the differences
between the samples.

twofold(weight | pooled | off) gives the twofold decomposition of the level over time.
weight allows the user to specify a weight for the coefficients. pooled uses the
method proposed by Oaxaca and Ransom (1994), which is equivalent to a pooled re-
gression model and accounts for the relative amount of variance in the decomposition
variables between the two groups found in the data. The default is twofold(off),
which conducts the threefold decomposition.
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resultsdata(
[
pathname

]
filename

[
, replace

]
) saves the main decomposition results

in a results dataset that can be used for further presentation of results in tables or
graphs.

blocks(blockname1 = (varlist1)
[
, blockname2 = (varlist2)...

]
) allows the calcula-

tion of decomposition in blocks of variables. This is especially useful with the
bootstrap() option because it will generate block-specific standard errors. If you
specify blocks(), you also need to specify resultsdata().

tfweight(#) specifies the weight that is to be given to the first of the two groups
specified in groupcat(##). This is allowed only if twofold(weight) is specified.

fmt(#) specifies the decimal points that are to be used in the results presentation.

nolevels skips the output of the decomposition of levels.

nochange skips the output of the decomposition of change.

seed(#) specifies the seed for the bootstrapping option. The default is the seed cur-
rently set in the Stata session.

bootstrap(#) estimates standard errors via bootstrapping with # iterations. In ad-
dition to the normal results, it returns an e(dec b) and an e(dec V) matrix for
further processing. If bootstrap clustered standard errors are to be estimated,
the clustering has to be specified in the original regression command using Stata’s
cluster(varlist) option. If you specify noisily with bootstrap(), you also need
to specify resultsdata().

6.3 Stored results

When one uses the xtoaxaca command, the results of the original regression command
are retained in Stata’s e() format. Additionally, the user will find matrices specific to
the xtoaxaca command that are named after the decomposition method chosen (see
table 1).
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Table 1. Overview of stored results after xtoaxaca

Method Stored results
absolute values percentages

Levels e(E | C | CE) e(pE | pC | pCE)
SSM e(dE | dC | dCE) e(pdE | pdC | pdCE)
Interventionist e(dE | dC | dCE) e(pdE | pdC | pdCE)
Smith and Welch (1989) e(sw X) e(psw X)
Wellington (1993) e(wl X) e(pwl X)
Makepeace et al. (1999) e(mpjd X) e(pmpjd X)
Kim (2010) e(kim DX) e(pkim DX)

note: X stands for the different components within one method.

The resultsdata() option allows users to store the results matrices as a dataset as
well, which can be useful if they are to be presented graphically. The resultsdata()

option will also store all draws from the bootstrapping procedure if this has been chosen
as an option. Several additional results are also stored by xtoaxaca as described in
table 2.

Table 2. Overview of additional results stored after xtoaxaca

Name Content

e(catX coef mean) coefficients for category X of group variable
e(catX endow mean) means of decomposition variables for

category X of group variable
e(change model) change in the gap predicted by the model
e(change observed) change in the gap as observed in the dataset
e(means model) group means predicted by the model
e(means observed) group means as observed in the dataset
e(prefmat | drefmat) contribution of random effects or fixed effects to the

decomposition (p for percentage, d for change)
e(summary levels) summary matrix of level decomposition results
e(summary change) summary matrix of change decomposition results
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7 Example: Increasing household income inequality and
composition effects

7.1 Example 1—Decomposition of changes in household income be-
tween East and West Germany

To demonstrate the capabilities of the xtoaxaca command, we take an example from
research on income inequality and examine the extent to which the decreasing gap in
household income between households in the new and old German federal states can be
traced back to their changing household composition. To this end, we use data from the
German Socio-Economic Panel (SOEP) v.34.1 (Goebel et al. 2019; Liebig et al. 2018)
and compute the logarithmized monthly net equivalent and inflation-adjusted household
income. In addition to income data, we use information on the households’ composi-
tion and employment situation (hh emp). The variable we build from this information
captures whether the household consists of a full-time working person, a full-time part-
time working person, a not-working person, a full-time and part-time working couple,
a couple both working full time, and other constellations.

First, we fit the panel regression model and store its results. Because we are inter-
ested in the effects of changing household compositions over time, the model includes a
threefold interaction term that includes time, the group variable hh east, and the de-
composition variable of interest hh emp. In this way, the model predicts income changes
for each group and every household composition at every year. Note that we model time
as a categorical variable in this example. However, the xtoaxaca command does not
assume any functional form of time and that we can also specify time as a continuous
variable.

After fitting the model, we run the xtoaxaca command. In our example, we specify
hh emp as the decomposition variable we are interested in, the group variable (hh east),
and the two values of the group variable that we want to compare (0 and 1). Fur-
ther, we need to specify the time variable (year) and the specific time values (2006
2010 2014), the reference time (2006), and the name of the stored fitted model. Fi-
nally, we tell xtoaxaca that we wish to use the interventionist approach, denoted by
change(interventionist).
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. quietly eststo est1: xtreg hh_inc i.year##i.hh_east##i.hh_emp

. xtoaxaca hh_emp, groupvar(hh_east) groupcat(0 1) timevar(year)
> times(2006 2010 2014) timeref(2006) model(est1) change(interventionist)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Decomposition of Levels

Summary of level decomposition

year
2006 2010 2014

Level
non-parame~c 0.199 0.182 0.176

Decomp
Endowments 0.011 0.010 0.018
Coefficients 0.170 0.151 0.136
Interaction 0.002 -0.002 -0.002
RE 0.017 0.023 0.025
Total 0.199 0.182 0.176

Decomp %
Endowments 5.404 5.647 9.998
Coefficients 85.200 82.685 77.310
Interaction 0.764 -1.063 -1.324
RE 8.631 12.730 14.017
Total 100.000 100.000 100.000

RE = random effects.

Decomposition of Change

Summary of changes in the outcome

year
2006 2010 2014

Change
non-parame~c 0.000 -0.017 -0.023

Decomp
Endowments 0.000 -0.007 -0.004
Coefficients 0.000 -0.015 -0.024
Interactions 0.000 -0.001 -0.002
RE 0.000 0.006 0.008
Total 0.000 -0.017 -0.023

Decomp %
Endowments . 40.920 16.559
Coefficients . 89.446 105.874
Interactions . 5.111 10.334
RE . -35.478 -32.767
Total . 100.000 100.000

RE = random effects.
For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder
> Decomposition Approach to Panel Data. https://doi.org/10.31235/osf.io/egj79
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By default, xtoaxaca displays a table of the decomposition of levels and another
table showing the decomposition of change. In the first table, the row non-parametric

denotes the mean group differences in log household incomes as estimated nonparamet-
rically from the observed data. The rows in the Decomp section show the results of the
income gaps’ decomposition into an endowments part, a coefficient part, an interac-
tions part, and a part that is due to the time-constant error term (RE). In our example,
household compositions hardly contribute to the gap in household income, and their
contribution grows only in 2014. Because the RE component is close to 0, our model is
also reasonably well specified. However, the RE component is nonnegligible compared
with the size of the other components. Further, we see that the decomposed parts sum
up to the difference predicted by the base model for all years. The lower part of the
table displays the relative contribution of the four decomposition effects to the overall
gap.

The second table displays the results of the decomposition of change. We see the
change in the income gap in comparison with the reference year 2006 in the second and
third column. For the observed data, the gap decreased between 2006 and 2014 by 0.023
log incomes. We can now examine the role of changing endowments and coefficients over
time. As we can see, the changing household composition decreased the gap by 0.004 log
incomes, and the changing coefficients contributed 0.024 log incomes to the narrowing
gap between 2006 and 2014. The part that is due to differences between groups in the
time-constant error term increased the gap by 0.008 log incomes. While this part is
rather small, it still indicates that group-specific panel dropout has a small effect on the
results.

7.2 Bootstrapping for standard errors

So far, we have decomposed the changes in household incomes between 2006 and 2014
in Germany and have the estimates but no standard errors. The xtoaxaca command
provides a bootstrap() option to estimate the standard errors. Because there have been
no attempts to analytically derive standard errors for all decomposition models of change
over time, we believe that bootstrapping is a viable alternative. By default, xtoaxaca
does not bootstrap the standard errors, because it is a potentially time-consuming
endeavor.

Below, we see the same example as above with bootstrap standard errors. The
point estimates of the decomposition components are by design identical to the previous
example. However, we now get a standard error below the point estimate and can now
be more confident that the households’ composition contributes about 5.4% to the
income gap in 2006 and almost 10% in 2014, because the components are statistically
significant. However, the size of the component of households’ changing composition is
small in size and is not statistically significant.
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. quietly eststo est2: xtreg hh_inc i.year##i.hh_east i.year##i.hh_east##i.hh_emp

. xtoaxaca hh_emp, groupvar(hh_east) groupcat(0 1) timevar(year)
> times(2006 2010 2014) timeref(2006) model(est2) change(interventionist)
> bootstrap(100)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de
WARNING: Bootrapping requires the original data set for estimation
> and the regressions need to be repeated 100 times. This may take some time.
(running xtoaxaca_bootstrap_wrapper on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Decomposition of Levels

year
2006 2010 2014
b/se b/se b/se

Outcome
Observed 0.199*** 0.182*** 0.176***

(0.011) (0.013) (0.013)
Decomp
Endowments 0.011*** 0.010* 0.018**

(0.003) (0.004) (0.006)
Coefficients 0.170*** 0.151*** 0.136***

(0.010) (0.010) (0.011)
Interactions 0.002 -0.002 -0.002

(0.002) (0.002) (0.002)
RE 0.017 0.023* 0.025*

(0.010) (0.011) (0.012)
Total 0.199*** 0.182*** 0.176***

(0.011) (0.013) (0.013)
Decomp%
Endowments 5.404*** 5.647* 9.998***

(1.503) (2.336) (2.948)
Coefficients 85.200*** 82.685*** 77.310***

(4.994) (5.672) (6.486)
Interactions 0.764 -1.063 -1.324

(1.060) (0.954) (1.332)
RE 8.631 12.730* 14.017*

(4.905) (5.517) (6.309)
Total 100.000 100.000 100.000

(.) (.) (.)
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Decomposition of Change

year
2006 2010 2014
b/se b/se b/se

Outcome
Observed 0.000 -0.017 -0.023

(.) (0.012) (0.014)
Decomp
Endowments 0.000 -0.007* -0.004

(.) (0.003) (0.004)
Coefficients 0.000 -0.015 -0.024**

(.) (0.008) (0.009)
Interactions 0.000 -0.001 -0.002

(.) (0.001) (0.002)
RE 0.000 0.006 0.008

(.) (0.008) (0.010)
Total 0.000 -0.017 -0.023

(.) (0.012) (0.014)
Decomp%
Endowments 0.000 40.920 16.559

(.) (237.566) (102.940)
Coefficients 0.000 89.446 105.874

(.) (283.015) (458.214)
Interactions 0.000 5.111 10.334

(.) (43.023) (42.913)
RE 0.000 -35.478 -32.767

(.) (397.911) (466.494)
Total 0.000 100.000 100.000

(.) (.) (.)

For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder
> Decomposition Approach to Panel Data. https://doi.org/10.31235/osf.io/egj79

7.3 Blocks of variables

One can also combine two or more variables to blocks and get the standard error via
bootstrapping for their combined contribution to the decomposition of both levels and
change. The relevant option is blocks(), and the resultsdata() option needs to be
specified as well. Below is an example of code and output for variable blocks. The
results for the variables are shown after all other output is given. Here the contribution
of all categories of the variables hh emp and hh edu is combined into the block socio.
The variable hh married is treated separately. One can specify more than one block of
variables.

. quietly eststo est3: xtreg hh_inc i.year##i.hh_east
> i.year##i.hh_east##i.(hh_emp hh_married hh_edu), fe

. xtoaxaca hh_emp hh_married hh_edu, groupvar(hh_east) groupcat(0 1) timevar(year)
> times(2006 2010 2014) timeref(2006) normalize(hh_emp hh_married hh_edu)
> model(est3) change(interventionist) bootstrap(10) detail
> blocks(socio = (hh_emp hh_edu)) resultsdata(results_example1.dta, replace)

(output omitted )
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Detailed Decomposition of Levels - Variable Blocks

Level Component: C

2006 2010 2014
b/se b/se b/se

hh_married~n -0.009 -0.004 0.003
(0.005) (0.007) (0.005)

hh_married_1 0.010 0.005 -0.004
(0.006) (0.008) (0.005)

socio -0.119* -0.109** -0.075
(0.051) (0.039) (0.070)

Intercept 0.244*** 0.216** 0.167*
(0.070) (0.067) (0.074)

Total 0.126*** 0.108** 0.092*
(0.036) (0.041) (0.038)

Level Component: CE

2006 2010 2014
b/se b/se b/se

hh_married~n 0.001 0.000 -0.000
(0.001) (0.001) (0.000)

hh_married_1 0.001 0.000 -0.000
(0.001) (0.001) (0.000)

socio 0.035*** 0.030** 0.021
(0.010) (0.010) (0.011)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total 0.037*** 0.031** 0.020
(0.011) (0.011) (0.011)

Level Component: E

2006 2010 2014
b/se b/se b/se

hh_married~n -0.000 0.000 0.000
(0.000) (0.001) (0.000)

hh_married_1 -0.000 0.000 0.000
(0.000) (0.001) (0.000)

socio -0.057*** -0.060*** -0.037**
(0.016) (0.012) (0.014)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total -0.058*** -0.060*** -0.036**
(0.016) (0.012) (0.014)
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Percentages of Level Component: C

2006 2010 2014
b/se b/se b/se

hh_married~n -4.304 -2.344 1.971
(2.681) (3.883) (2.623)

hh_married_1 5.018 2.694 -2.363
(3.089) (4.299) (3.109)

socio -59.852* -59.522** -42.358
(23.887) (20.890) (40.748)

Intercept 122.507*** 118.227*** 94.820*
(34.509) (35.711) (44.731)

Total 63.368*** 59.055** 52.069*
(19.209) (21.464) (21.899)

Percentages of Level Component: CE

2006 2010 2014
b/se b/se b/se

hh_married~n 0.491 0.211 -0.175
(0.335) (0.480) (0.248)

hh_married_1 0.491 0.211 -0.175
(0.335) (0.480) (0.248)

socio 17.445** 16.477** 11.835
(5.487) (6.298) (7.070)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total 18.427** 16.898* 11.486
(5.962) (6.843) (6.963)

Percentages of Level Component: E

2006 2010 2014
b/se b/se b/se

hh_married~n -0.064 0.000 0.128
(0.231) (0.277) (0.182)

hh_married_1 -0.064 0.000 0.128
(0.231) (0.277) (0.182)

socio -28.714*** -32.669*** -20.913*
(8.371) (7.227) (8.747)

Intercept 0.000 0.000 0.000
(.) (.) (.)

Total -28.842*** -32.669*** -20.657*
(8.651) (7.341) (8.659)
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7.4 Example 2—An intervention

As a further example, we simulate a dataset with a group variable (group), two time
points, and two binary intervening variables, of which the first is exogenous (int1) and
the second is endogenous to the first one (int2). The purpose of this example is to
demonstrate how xtoaxaca can decompose change in group differences over time using
multiple intervening and exogenous decomposition variables similar to experimental
settings. For instance, an exogenous treatment effect, such as a policy change, could
lead to increases in one group’s endowments, and we can then ask whether the treatment
has any effect on the changing group differences.

As with the previous example, the first step involves fitting the model, which now
includes two interaction terms: the interaction of the group variable with time and the
first decomposition variable and the interaction of the group variable with time and the
second decomposition variable. These two interaction terms are included so that the
xtoaxaca command can estimate the groups’ counterfactual trajectories. In the second
step, we call the xtoaxaca command followed by the two decomposition variables and
specify the interventionist decomposition method (interventionist).

. use xtoaxaca_example2, clear

. quietly eststo m: xtreg dep i.time##i.group##i.int1 i.time##i.group##i.int2,
> i(id)
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. xtoaxaca int1 int2, groupvar(group) groupcat(0 1) timevar(time) times(1 2)
> timeref(1) model(m) change(interventionist)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Decomposition of Levels

Summary of level decomposition

time
1 2

Level
non-parame~c 1.623 3.770

Decomp
Endowments 0.034 -0.005
Coefficients 1.711 3.824
Interaction -0.122 -0.049
RE -0.000 -0.000
Total 1.623 3.770

Decomp %
Endowments 2.086 -0.132
Coefficients 105.445 101.424
Interaction -7.531 -1.292
RE -0.000 -0.000
Total 100.000 100.000

RE = random effects.

Decomposition of Change

Summary of changes in the outcome

time
1 2

Change
non-parame~c 0.000 2.147

Decomp
Endowments 0.000 -0.097
Coefficients 0.000 2.265
Interactions 0.000 -0.021
RE 0.000 0.000
Total 0.000 2.147

Decomp %
Endowments . -4.510
Coefficients . 105.482
Interactions . -0.972
RE . 0.000
Total . 100.000

RE = random effects.
For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder
> Decomposition Approach to Panel Data. https://doi.org/10.31235/osf.io/egj79
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As can be seen from the output, the changing endowments cause the gap to decrease
by 4.5% over time, while the changing coefficients increase the gap by 105%. Thus,
we conclude that the increasing gap between the groups over time is not caused by
their changing endowments. On the contrary, they decrease the gap over time, while
all the increase in the gap can be attributed to changing coefficients. If the role of
the changing return to the decomposition variables is to be investigated, results using
the detail option should be used (as illustrated in the last example in section 7.5)
because the intercept is part of the coefficient block. A change in the intercept does
not usually have a meaningful substantive interpretation with respect to the intervening
variables and therefore might be considered an unexplained part within the coefficient
component. Note also that because the example uses simulated data, the contribution
of the time-constant error term is now exactly zero as expected by model assumptions.

7.5 Example 3—Interaction of decomposition variables

In the last example, we showed how a regression model has to be set up if interactions
of decomposition variables are to be used in xtoaxaca. For this purpose, we distinguish
between three types of interactions: Categorical-categorical, continuous-continuous, and
categorical-continuous interactions.

Categorical-categorical interactions

For these kinds of interactions, we recommend generating a new variable that contains
all combinations of the two categorical variables.

egen newvar = group(var1 var2)

Then, we can use this new variable (newvar) as a decomposition variable in both
the regression and the xtoaxaca command.

Continuous-continuous interactions

For these kinds of interactions, the key is to create interaction terms by hand and then
combine them with the standard Stata factor-variable notation of the group and time
variable.

. use xtoaxaca_example, clear

. xtset id
panel variable: id (balanced)

. * Create interaction term for a squared term

. replace exp = exp-10
(10,000 real changes made)

. generate exp2 = exp*exp

. * for interactions among decomposition variables (squared experience)

. * a handmade interaction term is used

. quietly eststo est3: xtreg inc i.group##i.time##c.(exp exp2)
> i.group##i.time##i.edu
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. xtoaxaca edu exp exp2, groupvar(group) groupcat(0 1) timevar(time) nolevels
> times(4 2 1) model(est3) timeref(2) change(interventionist) detail normalize(edu)
WARNING: This is a beta version. Please check the results carefully

and report bugs and suggestions to hkroeger@diw.de

Group variable: group (0,1)
Decomposition variables: edu exp exp2
Times: time (4 2 1)

[ Progress ] Calculating endowment means for each time ...

[ Progress ] Calculating mean outcomes ...
[ Estimating random effects ] Estimating mean of random effects for both groups
> ...
[ Progress ] Calculating coefficients ...

[ Progress ] Running level decomposition ...
[ Progress ] Running Interventionist decomposition ...

[ Progress ] Display output ...

Outcome

Mean predicted outcome differences between the groups (empirical values)

Time
4 2 1

Group A 3663.107 2983.06 2715.14
Group B 6524.738 4533.923 3951.633
Diff -2861.632 -1550.863 -1236.493

Endowments

Endowment means for each time (Group (group) 0, variables: edu exp exp2)

Time
4 2 1

0.edu .0914697 .1438849 .1819116
1.edu .3329908 .4110997 .4635149
2.edu .3103803 .307297 .270298
3.edu .2651593 .1377184 .0842754
exp -4.367934 -4.75334 -4.971223
exp2 24.46249 27.72148 29.62076
Intercept 1 1 1

Endowment means for each time (Group (group) 1, variables: edu exp exp2)

Time
4 2 1

0.edu .0681597 .2755599 .5423564
1.edu .2375852 .4333009 .3417722
2.edu .3446933 .2259007 .1051607
3.edu .3495618 .0652386 .0107108
exp 2.057449 .661149 -.0467381
exp2 15.46933 11.35054 10.73418
Intercept 1 1 1
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Coefficients

Group A coefficients

Time
r1 r2 r3

0.edu -235.8521 83.33642 238.1277
1.edu -78.87413 22.97487 67.34441
2.edu 76.95988 -28.07654 -98.34574
3.edu 237.7663 -78.23475 -207.1264
exp 28.87513 -4.020149 -14.08591
exp2 .9153148 .5256663 .278332
Intercept 3727.745 2947.345 2606.376

Group B coefficients

Time
r1 r2 r3

0.edu -312.1004 93.12871 297.7939
1.edu -98.5876 55.99646 72.83483
2.edu 108.9784 -35.06983 -137.1094
3.edu 301.7096 -114.0553 -233.5193
exp 79.22486 -32.17301 -65.14026
exp2 .2232951 -.2076859 -.0671643
Intercept 6259.948 4522.989 3779.826

Decomposition of Change

Summary of changes in the outcome

time
4 2 1

Change
non-parame~c -1,310.769 0.000 314.370

Decomp
Endowments 93.165 0.000 -41.610
Coefficients -1,073.681 0.000 431.704
Interactions -330.253 0.000 -75.724
RE 0.000 0.000 0.000
Total -1,310.769 0.000 314.370

Decomp %
Endowments -7.108 . -13.236
Coefficients 81.912 . 137.324
Interactions 25.195 . -24.088
RE 0.000 . 0.000
Total 100.000 . 100.000

RE = random effects.
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Total change: Endowments

time
4 2 1

0.edu 14.947 0.000 -21.677
1.edu 9.165 0.000 6.330
2.edu 4.079 0.000 -3.196
3.edu 22.458 0.000 -2.038
exp 43.374 0.000 -21.899
exp2 -0.858 0.000 0.870
Intercept 0.000 0.000 0.000
Total 93.165 0.000 -41.610

Note: Change in group differences over time if only the groups´ endowments had
> changed.

Total change: Coefficients

time
4 2 1

0.edu 65.738 0.000 -34.125
1.edu 25.111 0.000 10.944
2.edu -0.263 0.000 1.457
3.edu 16.395 0.000 -9.957
exp -230.013 0.000 69.642
exp2 5.910 0.000 -8.451
Intercept -956.559 0.000 402.194
Total -1,073.681 0.000 431.704

Note: Change in group differences over time if only the groups´ coefficients had
> changed.

Total change: Interactions

time
4 2 1

0.edu -67.314 0.000 -48.718
1.edu -22.299 0.000 3.867
2.edu -16.788 0.000 -9.720
3.edu -77.940 0.000 0.374
exp -142.867 0.000 -21.144
exp2 -3.045 0.000 -0.383
Intercept 0.000 0.000 0.000
Total -330.253 0.000 -75.724

Note: Change in group differences over time attributable to the interaction of
> change in endowments and change in coefficients.
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Total Percentages of change: Endowments

time
4 2 1

0.edu -1.140 . -6.896
1.edu -0.699 . 2.013
2.edu -0.311 . -1.016
3.edu -1.713 . -0.648
exp -3.309 . -6.966
exp2 0.065 . 0.277
Intercept 0.000 . 0.000
Total -7.108 . -13.236

Total Percentages of change: Coefficients

time
4 2 1

0.edu -5.015 . -10.855
1.edu -1.916 . 3.481
2.edu 0.020 . 0.464
3.edu -1.251 . -3.167
exp 17.548 . 22.153
exp2 -0.451 . -2.688
Intercept 72.977 . 127.937
Total 81.912 . 137.324

Total Percentages of change: Interactions

time
4 2 1

0.edu 5.135 . -15.497
1.edu 1.701 . 1.230
2.edu 1.281 . -3.092
3.edu 5.946 . 0.119
exp 10.899 . -6.726
exp2 0.232 . -0.122
Intercept 0.000 . 0.000
Total 25.195 . -24.088

For an explanation of this change decomposition, please see:
Kröger, H., & Hartmann, J. (2020). xtoaxaca - Extending the Kitagawa-Oaxaca-Blinder
> Decomposition Approach to Panel Data. https://doi.org/10.31235/osf.io/egj79

The first difference from the previous examples is the additional output that is
generated by using the detail option. It provides not only the components of the de-
composition but also the estimates for the endowments and coefficients for each variable
and group. Note that for the interpretation of each variable and its contribution, sepa-
rate assumptions about the reference category or value have to be made (see section 3.2
or Yun [2005]; Jann [2008]).

The second difference is that this example shows interactions of two continuous
decomposition variables. If interactions of decomposition variables are used, note that
the individual contribution of each interacted variable is now conditional on the value
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of the other variable. This means that in our example, we interacted experience with
itself to get a squared term in the regression equation. The contribution of labor market
experience (exp) now varies along the values of labor market experience.

For this particular example, we could state that the difference in change between
groups A and B and time points 4 and 2 is explained about 20% by the difference in
change in coefficients in the experience variable at the 15 years of experience in the
sample (value of 0). If labor market experience is not centered at a meaningful value,
this might not be a particular useful result.

Categorical-continuous interactions

The strategy described in section 7.5 for continuous-continuous interactions technically
also works for categorical-continuous interactions. There are two limitations, however.
First, normalization (3.2) for the categorical variable is not possible. This also implies
that we cannot interpret the results for the decomposition by Kim (2010) as originally
intended, because this decomposition relies on normalization. Second, we believe that it
is overall very difficult to interpret the detailed output for such a decomposition. Users
might consider performing the decomposition separately for the categorical variable they
wish to interact with the continuous variable to ease interpretation.

8 Limitations

We focus on continuous outcomes and linear models but believe that the general ap-
proach can be generalized to nonlinear models as well, as it has been for the cross-
sectional KOB decomposition (Bauer and Sinning 2008; Jann 2008). Furthermore, ap-
plying regression with recentered influence functions in the modeling step might also
be a way to circumvent the current restrictions to linear models of xtoaxaca (Essama-
Nssah and Lambert 2012; Firpo, Fortin, and Lemieux 2018), as exemplified in the
community-contributed command oaxaca rif (Rios-Avila 2020).

Our decomposition approach is further limited to mean decompositions. Longitudi-
nal decompositions of or using other distributional statistics (for example, percentiles,
variances) might also be useful as user-friendly programs (Fortin, Lemieux, and Firpo
2011; Blau and Kahn 1992; Juhn, Murphy, and Pierce 1993).

9 Conclusion

We provided a systematic extension of the KOB decomposition to longitudinal (and
multilevel) data. We reviewed five central approaches to the decomposition of change.
We noted that none of them are directly useful for the evaluation of an intervention,
policy changes, or natural experiments. We proposed an extension of the Wellington
(1993) decomposition of change over time from an interventionist perspective. We
introduced the xtoaxaca command, which implements the decomposition of levels and
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change (all six variants) over time in a user-friendly postestimation command for Stata.
We are open to suggestions from users of xtoaxaca concerning new functions and other
improvements so that we can update and improve it regularly.
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11 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-2

. net install st0640 (to install program files, if available)

. net get st0640 (to install ancillary files, if available)

To install the current version of the software files, type

. net install xtoaxaca, from(https://gitlab.com/jhart/xtoaxaca/-/raw/master)
> replace
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A Appendix

A.1 Twofold decomposition of change

We can also derive an analogue to the twofold KOB within the interventionist per-
spective. This is based on a model that assumes a valuation of the endowments at a
nondiscriminatory coefficient vector.

∆Y l
2 = E(Yl

t)− E(Yl
s)

= E(Xl
t)βt − E(Xl

s)βs

βt =WβA
t + (I −W )βB

t

The common coefficient is defined as a weighted average of the two group-specific
coefficients. Weights can be defined similarly to the implementation of the original KOB

twofold decomposition, as described by Jann (2008, 455–457).
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In our adaption of the twofold decomposition for change, we have two components.
The first relates to the differences in change in endowments given the same coefficients
at time s ∆YE2. The second component is the remaining unexplained part ∆YU .

∆YE2 =
[{
E(XA

t )− E(XA
s )
}
−
{
E(XB

t )− E(XB
s )
}]

βs

= E(XA
t )βs − E(XA

s )βs − E(XB
t )βs + E(XB

s )βs

= E(XA
t )WβA

s + E(XA
t )(I −W )βB

s − E(XA
s )WβA

s − E(XA
s )(I −W )βB

s

− E(XB
t )WβA

s − E(XB
t )(I −W )βB

s + E(XB
s )WβA

s + E(XB
s )(I −W )βB

s

∆YU = E(XA
t )β

A
t − E(XB

t )β
B
t + E(XB

s )WβB
s − E(XA

s )(I −W )βA
s

+
{
E(XB

t )− E(XB
s )− E(XA

s )
}
WβA

s

+
{
E(XA

s ) + E(XB
t )− E(XA

t )
}
(I −W )βB

t

The first component mirrors the cross-sectional endowment component of the twofold
decomposition. We immediately see, however, that it violates the formal condition that
no term is to be restricted across groups (coefficient βs). It therefore imagines a situation
in which there would not have been differences in the coefficients at time s, something
that is beyond a potential intervention occurring after s. Still, for specific purposes,
researchers might find this decomposition useful as well if change is to be decomposed
twofold, similar to the twofold level decomposition in the original KOB approach.

We can also show that together the two components add to the total change over
time.

Proof.

∆YE2 +∆YU = E(XA
t )WβA

s + E(XA
t )(I −W )βB

s − E(XA
s )WβA

s

− E(XA
s )(I −W )βB

s − E(XB
t )WβA

s − E(XB
t )(I −W )βB

s

+ E(XB
s )WβA

s + E(XB
s )(I −W )βB

s

+ E(XA
t )β

A
t − E(XB

t )β
B
t + E(XB

s )WβB
s − E(XA

s )(I −W )βA
s

+
{
E(XB

t )− E(XB
s )− E(XA

s )
}
WβA

s

+
{
E(XA

s ) + E(XB
t )− E(XA

t )
}
(I −W )βB

t

= E(XA
t )β

A
t − E(XB

t )β
B
t − E(XA

s )WβA
s + E(XB

s )(I −W )βB
t

− E(XA
s )(I −W )βA

s + E(XB
s )WβB

s

=
{
E(XA

t )β
A
t − E(XA

s )β
A
s

}
−
{
E(XB

t )β
B
t − E(XB

s )β
B
s

}
= ∆Y A −∆Y B

= ∆Y
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B Relations between change decompositions and KOB

In this section are the proofs that all decompositions of change presented in section 4
are derivatives of the difference between two KOB decomposition at two time points.10

B.1 Smith and Welch (1989)

Together, the four components fully decompose changes in group differences over time.

Proof.

∆Y = i + ii + iii + iv

=
[{

E(XA
t )− E(XB

t )
}
−
{
E(XA

s )− E(XB
s )
}]

βB
s
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s )
}(
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s

)
+
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t )− E(XB
t )
}(

βB
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s

)
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t )
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βA
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t

)
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(
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s

)}
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= ∆Y A +∆Y B

10. For the SSM, this is directly shown in section 4.1.
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B.2 Wellington (1993)

As can be shown, WL1 and WL2 fully decompose changes in group differences over time.

Proof.

∆Y = WL1+WL2

=
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B.3 Interventionist

Finally, we can show that the three components added up to give the total difference in
change between the two groups:

∆Y = ∆E +∆C +∆I

Proof.
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B.4 Makepeace et al. (1999)

Together, the components fully decompose the change in group differences over time.

Proof.

∆Y = ∆Epure +∆Eprice +∆Upure +∆Uprice
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B.5 Kim (2010)

We can show that the KIM decomposition fully decomposes changes in group differences
over time.

Proof.

∆Y = D1 + D2 + D3 + D4 + D5

=
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βA
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