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Abstract. In this article, we describe the mlcar command, which implements a
maximum likelihood method to simultaneously estimate the regression coefficients
of a two-regime endogenous switching model and the coefficient measuring the
correlation of outcomes between the two regimes. This coefficient, known as the
“across-regime” correlation parameter, is generally unidentified in the traditional
estimation procedures.
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1 Introduction

The two-regime switching regression models have been widely used in applied economic
analysis, such as in the estimation of the earnings equations for unionized and nonunion-
ized workers or in the estimation of wage equations of subjects employed in the private
sector and in the public sector (Lee 1978; Lee and Trost 1978). Researchers have adopted
several estimation methods to obtain estimates of the coefficients of the outcome equa-
tions in both regimes. The model is usually extended, and a further selection equation
is included. Within this framework, maximum likelihood (ML) methods (Poirier and
Ruud 1981; Maddala 1983) and two-stage procedures (Heckman 1976, 1990; Lee 1978)
provided estimated coefficients of the outcome equations and of the selection equation,
including variances of the error terms and covariances between the errors of the outcome
equations and the selection equation.! In such models, the selection equation allows one
to identify the choice of the regime (the decision of the agent of belonging to regime 1
or to regime 2) supporting the two outcome equations. The estimation of the outcome
equations in both regimes accounts for the endogenous effect of the selection by intro-
ducing, in the respective regressors set, a correction term obtained by the “generalized
residuals” of the selection equation, estimated at a first stage.

1. For example, the command movestay, provided by Lokshin and Sajaia (2004), implemented the
ML procedure to estimate simultaneously both outcome equations and the selection equation of an
endogenous switching model.
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In general, the two-stage method was recognized as consistent and computationally
feasible. The ML approach also considers the same three-equation set, simultaneously
estimating all parameters.

However, these methods did not provide the estimation of the parameter measuring
the correlation between the error terms of the two outcome equations, the so-called
across-regime correlation (or covariance). The reason is that this parameter is not
empirically identifiable because of the selection rule specifying a two-regime switching
model, in which the dependent variable referred to an observation cannot be jointly
observed in both regimes.

Despite the difficulty in identification, some “knowledge” about this parameter was
considered relevant in terms of interpretation of the agent’s behavior in an endoge-
nous switching model (see Heckman and Honoré [1990] and Vijverberg [1993]). The
across-regime correlation measures the correlation in unobserved productivity (ability)
of the subject in both regimes (or sectors). The traditional estimation methods allow
estimating the cross-correlation parameter only “indirectly”, based on the estimate of
coeflicients and variances, and applying the relationships among the errors’ second-order
moments as in Maddala (1983, 223-228) and in French and Taber (2010).

Differently from these approaches, which provide an “indirect” estimation of the
across-regime correlation parameter, Calzolari and Di Pino (2017) suggested that iden-
tification and direct ML estimation of the across-regime correlation parameter are possi-
ble if the model specification is closer to the traditional Roy model rather than its more
widely used generalized versions. The model is specified as “two equation”, implying a
sort of “rational” behavior of the agent, who simply chooses the regime with the higher
outcome. For each individual, the contribution to the likelihood is given by the proba-
bility density of the observed (larger) outcome and by the (conditional) probability that
the alternative (censored) outcome has a smaller value.

This approach allows us to obtain a reliable simultaneous point estimation of both
the outcome equations without introducing a further selection equation explaining the
choice of the subject, such as in the specification of the “generalized” Roy model (for
example, Carneiro, Hansen, and Heckman [2003]). This allows us to obtain more efficient
estimates than those provided applying two-stage estimation methods.?

In this article, we describe the mlcar command, which implements the two-equation
ML method of Calzolari and Di Pino (2017) to estimate simultaneously the coefficients of
an (endogenous switching) two-equation model including the across-regime correlation
coeflicient. This full-information approach relies on the assumption of joint normality
of the error terms of each of the two outcome equations in the respective regime.

In the next section, we briefly discuss the properties of the across-regime correlation
coefficient and its relevance for economic analysis. In section 3, we provide a brief
description of the methodology and model specification.

2. Calzolari and Di Pino (2017) checked the relative efficiency of the two-equation ML estimates,
performing several Monte Carlo experiments. In some experiments, efficiency was confirmed also
by considering distributions different from the normal.
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Because our full-information approach relies on the assumption of normality of the
error terms in each regime, we also provide a postestimation command to verify the
hypothesis of normality of the error terms in both regimes (mlcartestn). This test-
ing procedure is an extension to the two-regime endogenous switching models of the
conditional moment (CM) test, which verifies the normality assumption in the censored
regression model (tobit; see, for example, Newey [1985]; Tauchen [1985]; Skeels and
Vella [1999]). We report a brief description of this procedure in section 3.1.

In section 4, we describe the mlcar command and its options followed by general ex-
amples of application. In section 5, we report the results of some empirical applications
of the mlcar command.

To provide a comparison with the mlcar results, in the appendix, we consider the
procedure that should be applied for the indirect estimation of the cross-correlation
coefficient if the endogenous switching model is estimated in one of the traditional ways.
Appendix A briefly describes how to obtain the indirect estimate of the across-regime
correlation parameter via the two-stage Heckman procedure, and in appendix B, we
consider the same empirical applications of section 5 and report the indirect estimation
of this parameter. Finally, in appendix C, we report the results of several Monte Carlo
experiments, checking the performance of the CM test statistics by simulating data with
different distributions of the error terms.

2 Relevance and empirical content of the across-regime
correlation coefficient

In many cases, the two-regime switching models extend the Roy model of self-selection
to include the decision rule adopted for selecting into different regimes. For example,
the two-regime wage’s model of self-selection aims to explain the workers’ occupational
choice and its consequences for the distribution of earnings when individuals differ in
their endowments of specific skills (see Heckman and Honoré [1990]; Vijverberg [1993]).
In doing this, one should obtain information about the joint distribution of the po-
tential (counterfactual) outcomes. A relevant parameter of such a distribution is the
across-correlation coeflicient, p12.3

Heckman and Honoré (1990) proved that the identification of the joint distribution
of potential outcomes is essential to the empirical content of this model. As shown by
these authors, if the pio coefficient is identified, one can, by adopting a two-regime spec-
ification as in a Roy model, estimate the population distribution of potential outcomes
knowing only the outcomes of subjects observed into one of the two regimes.

The sign of the across-regime correlation, in particular, allows us to know more in
detail what criterion the agents follow to select the regime. Considering a wage model
in a public or private sector choice, for example, a positive sign of p;o signals that the
agents, supported by their own skills, manage to gain a higher-than-average level of

3. The subscripts 1 and 2 indicate the two different regimes.
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outcome in both regimes. Thus, one of the two sectors (public sector) absorbs most of
the above-average productive workers.

At the opposite, a negative sign of p;2 means that the agent has different skills in
each regime, and he or she chooses the regime in which he or she is more productive.
In this case, the workers are absorbed by the sector in which they gain a comparative
advantage in terms of productivity. This condition generally increases the segmentation
of the labor market.

An example on the use of p15 to obtain information about the skills of the agents is
provided by Calzolari and Di Pino (2017), who estimated the time devoted to domestic
work by employed and unemployed women in Italy. In this case, a positive sign of pio
indicated that common latent factors positively influence the domestic work supply of
women in both regimes. This result led to the conclusion that employed and unemployed
women do not have different skills regarding their commitment in domestic work.

Some studies showed that a knowledge of the p15 coefficient supports methods for ob-
taining the predictive distributions of outcomes and, consequently, an estimation of the
treatment parameters (average treatment effect, average treatment effect on the treated)
measuring outcome gains from program participation. Poirier and Tobias (2003), in par-
ticular, showed how the entire distribution associated with these gains can be obtained
in certain situations if the pio coefficient is, at least in part, identified.

Along this line, Fan and Wu (2010) provide sharp bounds to obtain a partial identi-
fication of the correlation coefficient of the potential outcomes, their joint distribution,
and the distribution of treatment effects.

The aforementioned studies on the use of two-regime switching models adopt partial
information on the p1o coefficient to derive predictive distributions. Instead, an impor-
tant result achieved by applying the estimator implemented by the mlcar procedure
consists in obtaining a direct point estimation of the p1o parameter, supported by the
typical inferential properties of the ML estimators.

3 Methodological issues

Calzolari and Di Pino (2017) specified an endogenous switching model with two re-
gression equations whose dependent variables (outcomes) are mutually exclusive in a
cross-sectional framework and where selection is simply based on the choice of the larger
outcome.

Y1; = X/hﬂl + u1; if observed in regime 1; otherwise latent

Y2i = Xo;32 + ug; if observed in regime 2; otherwise latent

The agent is assumed to behave rationally; thus, if y1; > yo;, then y1,; is observed and
12; is latent; otherwise, yo; is observed and yy; is latent.
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A relevant characteristic of this model is that the two dependent variables, y1; and
y2;, are explicitly factors in the choice of the regime. For each individual, y1; — yo;
represents the net gain (or net loss) from the choice between two options.

The error terms u1; and ug;, given by uy; = y1; —x},;61 and ug; = ya; — x5, 32, are as-
sumed to be normally distributed with zero mean and variances 0% and 03. Identification
and estimation of the across-regime covariance, 012, becomes possible by considering (as
in a tobit model) the probability density of the observed outcome, multiplied by the
conditional probability that the other outcome (latent) is smaller than the observed.
More in detail, the censoring rule in the model implies that

y1; observed = yo; < y1; = X5,02 + uz; < Y14
y2; observed = y1; < yoi = X1,;81 + u1i < Yo

Hence,

&(y1:) P(y2i < y1i) = d(ui) P(u2; < y1; — X5;32|y1; observed)
d(y2i) P(y1i < y2i) = d(uai)P(ur; < ya;i — x1,;81|y2: observed)

where ¢(+) is a normal probability density function.

We consider also the CMs of the error terms; namely, E(ui;|uz;) = (012/03)ug; =
(012/03) (y2i — xb;32) and Var(uy;|ug;) = 0? — (03y/03) are, respectively, the condi-
tional mean and variance of uy; given wuo;. Analogously, E(ug;|ui;) = (012/0%)uy; =
(012/0%)(y1: — x},;81 and Var(ug;|uy;) = 03 — (025/03) are, respectively, the conditional
mean and variance of ug; given wy;. Hence, o1 is the covariance between the error
terms of both regimes, known as the across-regime covariance.

Therefore, in (1) we have the probability that an agent does not belong to regime 2,
under the condition that he or she chooses regime 1:

(Y1 — X/ZiﬂQ) - %(yu - X/1i51)
: (1)

P(ug; < y1; — xb;B2|y1;0bserved) = ® { > —
03 — 019/07

Analogously, in (2) we have the probability that an agent does not belong to regime 1,
under the condition that he or she chooses regime 2:

(y2i — x1:81) — 22 (y2i — Xx5;82)
2 (2)

2 RP)
01 — 013/ 05

P(uy; < ya; — X},;81|y2i0bserved) = ® {

®(-) is the standard normal cumulative distribution function used to specify, in both
(1) and (2), the contribution to the likelihood of censoring, respectively, yo; and y;.
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Therefore, given the conditional probabilities (1) and (2), we finally obtain the fol-
lowing contribution of the ith observation to the log likelihood,

(y1i — x2;82) — %(yli —x1,01) }:|
InL(0); = R; :

2 2 ] 2
05 — iy /07

P . 2
_(yn —x15B1)” 2:2hﬁ1) — %lnaf + In® {
1

+ (1 - Ri)

2
o1 —

= x1,081) — 22 (y2i — x2:82)
2 3)

%, B2)? 1 (b
_%ﬂ_ilnag-ﬂn@ 2 o2
o2 0%2/03

with @ = (8}, 8,0%,02,012), while R; is a dummy-indicator variable equal to 1 if
y1i is observed (regime 1) and equal to O if yo; is observed (regime 2). Applying this
two-equation ML procedure, we can directly estimate the parameter o152 (or p12) under
the assumption of endogenous selection.

3.1 A CM test of normality for a two-regime switching model

The ML estimator critically relies on the assumption of normality of the error terms
of both equations. As a complement to the estimation procedure, we implement a
CM test to verify the normality assumption. The proposed test procedure extends, to
the two-equation case, the CM test available in the literature to verify the normality
assumption in the context of the tobit model (for example, Skeels and Vella [1999)]).
In particular, the test is based on the comparison of the third and fourth moments
of u1; and ug; with the theoretical values implied under the assumption of normally
distributed error terms. Absent censoring, we could write

E(uf;) =0 E(u3;) =0
E(uj; — 301) =0 E(uy; —303) =0
However, these equalities cannot be satisfied on the “observed” part of each regime,
because of censoring.
The CM test is built by considering the following observed residuals:
v3; = Ri{u}; — E(u3,|yi;0bserved)} + (1 — Ry){u3, — E(u3;|y2s0bserved)}
vy = Ri{ui; — E(uj;|yriobserved)} + (1 — R;){u3; — E(u3;|yziobserved)}

The moment conditions that we exploit to verify the normality assumption can
therefore be written as

E(U3i> =0
E(’U4i) =0

with v3; and wvy; including powers of the observed residuals in regime 1 and regime 2 as
defined before.
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For observations in regime 1, we can write
3 ra\? ~4 ) 4
Uy; = (yli - Xuﬂl) and  uy; = (yli - xli/Bl)
Analogous formulas hold for observations in regime 2:
3 ra\? ~4 ) 4
Ug; = (y2i - X2¢52) and  uy; = <y2i - X2i52)

To perform the computations related to the testing procedure, we also need to eval-
uate the following CMs:

E (u‘;’i|y1iobserved) E (u§i|y2iobserved)
E (U%i|y1i0bserved) E (u§i|y2iobserved)
Focus on the computation related to uy;; an analogous formula applies for usg;.

Under the assumption of joint normality of uy; and wus;, we note that the difference
d; = u1; — Uz, is also normally distributed. Thus, u; can be written as a linear function
of ¢; plus an independent error term,

u; = T16; + €15

with e1; normally distributed, independent of §;, and 7 = cov(d;, uy,;)/var(d;). It holds
that E(ey;) = 0, E(e3,) = 02, E(e3;) = 0, and E(e};) = 302. We therefore can write

E(u?i|y1iobserved) = E{ (Tl(sqj —+ 611)3|5l S X,1i161 — Xlziﬁg}
E(u‘fi|y1i0bserved) = E{(nd; + eh‘)4|(5l~ < x1;81 — x5,82}

The two expected values can be computed by exploiting the recursive formula that
characterizes the moments of a truncated normal distribution (see, for example, Chesher
and Irish [1987, 40]) and exploiting the independence of €1; and ¢; (see also Pfaffermayr
[2014)).

The computation in mlcartestn is based on the outer-product-gradient formula:
consider the vector w;, which includes the gradient of the log likelihood function (3)

and the residuals,
8111[41' ~ ~
Wi = W,v%w

with 8 = (81, 35,0%,03,012)". Build the matrix W with rows w;. The test is obtained
as
M = J/W(W'W)~'W',

with ¢ a column vector of ones. The test corresponds to nR? with the uncentered
coefficient of determination of the regression of ¢ on w;. Computed in this form, the
test is known to have small-sample problems in finite samples (for example, Drukker
[2002]); it is oversized in finite samples. To address this issue, we also provide a simulated
version of the CM test as in Orme (1995).
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4 The mlcar command

4.1 Syntax

mlcar fits a two-equation endogenous switching model using the procedure described
in Calzolari and Di Pino (2017). The dependent variable (depvar) is recorded across
two regimes, as identified by the selection variable specified in the (required) option
regime (varname). The generic syntax for the command is as follows:

mlcar depvar [zf] [m] [weight}, regime (varname) x1(wvarlist) [x2(varlist)

accuracy(0|1|2) olsinit level(#) mawimize,options]

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

The dependent variable depvar is recorded across two regimes, as identified by the
variable specified in the (required) option regime (varname):

y1 = depvar if varname =1

yo = depvar if varname =0

It is assumed that the individual chooses the regime with the highest outcome;
that is,

yo > vy if varname =0

yo < yp if varname =1

The variances of the error terms of the outcome equations are 0? = sl11 and o3 =
s22, and the covariance between the two error terms is o152 = s12. The across-regime
correlation can be computed as pjo = r12 = s12/sqrt(s11 x s22).

4.2 Options

regime () identifies the variable that specifies the two regimes, one coded as 0 (yo is
recorded in depvar) and the other as equal to 1 (y; is recorded in depvar). regime ()
is required.

x1 (varlist) and, optionally, x2 (varlist) specify the list of variables. When the same set
of regressors $XLIST is specified in both outcome equations, these can be specified in
the (required) option x1() as x($XLIST). However, the set of regressors in x1() and
x2() need not be the same: a different list of variables can be specified in x1 () and
in x2() to be used as independent variables for the outcome equation of regime 1
and 2, respectively. x1() is required.

4. Besides the coefficients of the equations that characterize the two regimes, the likelihood function
is written in terms of 61, 62, and 63, where s11 = exp(61), s22 = exp(62) (as to guarantee that
the variances are positive), and r12 = tanh(63) [to bound the correlation parameter in the interval

(=1, 1)].
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accuracy () defines how the gradient vector and the Hessian matrix are computed:

If accuracy(0), both gradient and Hessian are obtained in a numeric way
(method (1£0) is used with the m1 command).

If accuracy (1), the gradient vector is computed using the analytic formula
(method(1£1) is used with the m1 command; the Hessian is still computed using
numeric approximation).

If accuracy(2) (the default), both gradient and Hessian are computed using the
analytic formula (method (1£2) is used with the m1 command).

olsinit specifies to use the ordinary least-squares estimates as initial values for the m1
estimation (in this case, the starting value of r12 is set equal to 0). Alternatively, the
user can specify different initial values using the option init (ml_init_args), available
with the m1 command. If no initial value is specified, mlcar lets the m1 command
search for initial values.

level (#) specifies the confidence level. By default, the value in macro S_level is
considered. The default is level (95).

mazimize_options specifies the options of the Stata command m1 model; see [R] ml for
details.

4.3 Postestimation

The postestimation command predict can be used after mlcar. The syntax is

predict newvar [, xbl xb2 pnbl2 pnb21}

The following options are allowed to compute these conditional and unconditional
expectations:

xb1 calculates the linear prediction in regime 1 for observations in regime 1 and in
regime 2 (the default):
Y1 = x1;5
xb2 calculates the linear prediction in regime 2 for observations in regime 2 and in
regime 1: R
Y2i = X5, 02
pnbi12 calculates the probability of not being in regime 1, for units deciding to belong
to regime 2:

(y2i - X/uﬂl) - %22 <y2i - X/21‘162)

=2 _ ~2 /~2
01 — 012/
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pnb21 calculates the probability of not being in regime 2, for units deciding to belong
to regime 1:°

(yu‘ - X/21ﬂ2> - %1122 (yli - X/liﬂl)

e

o 2 ~2 /~2
03 — 012/07%

After mlcar, mlcartestn performs the CM test for joint normality of the error
terms. The default computation of the test statistics uses the outer-product-gradient
form (Skeels and Vella 1999). The syntax is

mlcartestn[, sim(#) |

sim(#) permits one to compute the simulated version of the CM test as in Orme (1995).

5 Examples

We illustrate the use of the mlcar command with four examples. The first two datasets
used are available from Wooldridge (2010) and readable within Stata (https: // www.
stata.com / texts /eacsap/); the third dataset is used by Hamermesh and Biddle (1994),
and it can be downloaded from http: //fmwww.bc.edu/ec-p / data/ wooldridge / beauty.
dta.

5. Calzolari and Di Pino apologize for some typos in their article of 2017. First of all, on the right
hand side of (10), (11), and (12), the symbol ®() is correctly used to indicate the cumulative
distribution function of the standard normal; but in all the other places between page 5 and page
7, it would have been more appropriate to replace “®(w...” with “P(u...”. Also, the explana-
tions of the “cumulative normal” that follow four lines after (8) have been erroneously interchanged.

Still on page 6, three lines before the end or the page, in the expression of the conditional
variance, 012 should be squared.

At the top of page 7, after (10), the lines 2 and 3 should be written as “Analogously, the
probability of a subject not belonging to regime 2 under the condition that he or she chooses
regime 1 is given by [equation (11) follows].”

In (10), (11), and (12) parentheses have been incorrectly applied to the denominators, that

should be, respectively, 1/(0? — 02,/02) and /(03 — 02,/0?) in place of 4/(0? — 02,)/02 and
V(03 —ots)/ot.

In appendix A, lines 5 and 6 should be rewritten as : “...v; = ui; —ug; > —(x),;81 — x5,082),
or v; = u1; — ug; < —(x),61 — x5,;82), where the random variable v; = u1; — ug; is normally

distributed with zero mean and variance o2 .”.

«

Finally, between the two lines of (12), there was the sentence “if yi; is observed (regime 1);
otherwise it is”, but the entire sentence was erroneously canceled.


https://www.stata.com/texts/eacsap/
https://www.stata.com/texts/eacsap/
http://fmwww.bc.edu/ec-p/data/wooldridge/beauty.dta
http://fmwww.bc.edu/ec-p/data/wooldridge/beauty.dta
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5.1 Example 1

In the first example, we use fringe.dta, a dataset reporting wages, hourly benefits
and demographic information on 616 workers. The dataset includes information about
the individual earning, the years of work experience, the years at school, and about
the membership of single workers to a union. This dataset allows us to estimate the
individual wage in a two-regime union or nonunion model. We start by loading the
dataset and providing some descriptive statistics:

. use https://www.stata.com/data/jwooldridge/eacsap/fringe
. generate lannhrs_noff = lannhrs

. replace lannhrs_noff = 0 if office ==
(298 real changes made)

. label variable lannhrs_noff "log(annual hours worked) if no office worker"
. generate lannhrs_off = lannhrs

. replace lannhrs_off = 0 if office ==
(318 real changes made)

. label variable lannhrs_off "log(annual hours worked) if office worker"

. describe lannearn lannhrs_off lannhrs_noff lannhrs exper expersq male annbens
> office educ union

storage display value

variable name type format label variable label

lannearn float  %9.0g log(annearn)

lannhrs_off float  %9.0g log(annual hours worked) if office
worker

lannhrs_noff float  %9.0g log(annual hours worked) if no
office worker

lannhrs float  %9.0g log(annhrs)

exper byte %9.0g years work experience

expersq int %9.0g exper”2

male byte %9.0g =1 if male

annbens float  %9.0g vacdays+sicklve+insur+pension

office byte %9.0g =1 if office worker

educ byte %9.0g years schooling

union byte %9.0g =1 if union member

. by union, sort: summarize lannearn lannhrs_off lannhrs_noff lannhrs exper male
> annbens office educ

-> union = 0

Variable Obs Mean Std. Dev. Min Max
lannearn 420 9.216772 .6507578 6.575912 11.68688
lannhrs_off 420 4.584254 3.734404 0 8.451054
lannhrs_noff 420 3.032933 3.740712 0 8.313852
lannhrs 420 7.617186 .2546784 6.436151 8.451054
exper 420 17.47381 12.24343 0 60

male 420 .5857143 .4931858 0 1
annbens 420 1613.699 1299.026 0 4780.01
office 420 .602381 .4899896 0 1

educ 420 12.86429 2.660264 6 18
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-> union = 1

Variable Obs Mean Std. Dev. Min Max
lannearn 196 9.458707 .411354 7.867565 10.30895
lannhrs_off 196 1.729401 3.177236 0 7.917172
lannhrs_noff 196 5.876007 3.219449 0 8.2623
lannhrs 196 7.605408 .1775188 7.090077 8.2623
exper 196 21.06633 12.18451 1 50

male 196 .7602041 .4280522 0 1

annbens 196 2495.977 1276.506 0 5129.13
office 196 .2295918 .4216474 0 1

educ 196 11.76531 2.743014 6 18
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The outcome of interest is lannearn, the logarithmic of the annual earnings, while
the variable that identifies the regime is union, a dummy variable that assumes a
value equal to 1 if workers have established any form of workers’ representation at the
workplace. The set of covariates, in the output above, includes the years of experience
and its square, the level of education measured in years of schooling and its square, a
dummy variable equal to 1 if the subject is a male, a dummy variable equal to 1 if the
subject is an office worker (equal to 0 if the subject performs manual work), the annual
hours worked, and the level of the annual benefits. The basic syntax for mlcar is the

following:
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. mlcar lannearn, regime(union)
> x1(lannhrs_off lannhrs_noff exper expersq male annbens)
> x2(lannhrs exper expersq office educ male)

initial: log likelihood = -26712.266
alternative: log likelihood = -14666.355
rescale: log likelihood = -1812.6506
rescale eq: log likelihood = -1176.497
Iteration 0: log likelihood = -1176.497 (not concave)
Iteration 1 log likelihood = -891.12989 (not concave)
Iteration 2 log likelihood = -652.68786 (not concave)
Iteration 3 log likelihood = -430.03486 (not concave)
Iteration 4: log likelihood = -204.32947 (not concave)
Iteration 5: log likelihood = -117.10794
Iteration 6: log likelihood = -22.215082
Iteration 7 log likelihood = -6.4281359
Iteration 8 log likelihood = 16.555086
Iteration 9: log likelihood = 18.706246
Iteration 10: 1log likelihood = 18.719583
Iteration 11: 1log likelihood = 18.719584
Number of obs = 616
Wald chi2(6) = 462.73
Log likelihood = 18.719584 Prob > chi2 = 0.0000
lannearn Coef.  Std. Err. z P>|z| [95% Conf. Intervall
Y1
lannhrs_off .3796578  .1143129 3.32  0.001 .1556086 .603707
lannhrs_noff .4202827  .1131525 3.71  0.000 .1985078 .6420576
exper .0200713  .0080979 2.48 0.013 .0041997 .0359428
expersq -.0003675  .0001712 -2.15 0.032 -.0007031 -.000032
male .1943418  .0664524 2.92  0.003 .0640974 3245862
annbens .0003687  .0000275 13.41  0.000 .0003148 .0004226
_cons 4.72104  .8388029 5.63 0.000 3.077016 6.365063
Y2
lannhrs 1.141442 .0920309 12.40 0.000 .9610652 1.32182
exper .0166853  .0058733 2.84 0.004 .0051739 .0281967
expersq -.000239  .0001266 -1.89 0.059 -.0004871 9.12e-06
office .3521486 .0474501 7.42 0.000 .2591481 .4451491
educ .0564712  .0085692 6.59 0.000 .0396759 .0732665
male .3736418  .0467833 7.99 0.000 .2819482 .4653353
_cons -.9233093 .696087 -1.33 0.185 -2.287615 .4409961
Insigmall
_cons -1.562106  .1373886 -11.37  0.000 -1.831383  -1.292829
Insigma22
_cons -1.607133  .0813521 -19.76  0.000 -1.76658  -1.447686
tanhrho
_cons -.3751207 .148885 -2.52  0.012 -.6669299  -.0833115
sigmall .209694  .0288096 .1601919 .2744931
sigma22 .2004615 .016308 .1709165 .2351137
rhol2 -.3584626  .1297539 -.5829568  -.0831193

Y1 corresponds to regime!=0
Y2 corresponds to regime==
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. mlcartestn, sim(100)
Conditional moment test for normality of residuals after mlcar

chi(2) = 863 - p-value = 0.0000

Null hypothesis of normality of the errors is rejected. In this application, the set of
regressors is not the same for both regimes, so we specify both the option x1 (varlist)
and x2 (varlist) .

The option regime () identifies the variable (union) that specified the two regimes
(unionized or nonunionized workers). The variable depvar includes observations on both
y1 and y». Observations corresponding to union that are equal to 0 identify ys in depvar;
when union is coded as 1 (or any value different from 0), y; is recorded in depvar.

The first panel of the output of mlcar provides the estimated coefficients of the
equation under regime 1 (unionized workers). The second panel provides estimated
coefficients of the equation under regime 2 (nonunionized workers). In the last part of
the output, the value of the across-regime correlation is reported.

sigmall and sigma22 are the variances of the residuals of the regression part of the
model, and 1nsigmall and 1lnsigma22 are their log.

The estimation results show that the impact of the yearly worked hours on earned
income is generally positive and stronger for nonunionized workers than unionized work-
ers. Among the latter, the effect of worked hours is strongest for those who do not per-
form office work. Education exerts a positive influence on labor income of nonunionized
workers. Finally, in both union and nonunion regimes, work experience exerts a positive
influence on labor income, albeit with decreasing rates of growth.

The across-regime correlation, rhol2, is equal to —0.358, while the covariance s12
is equal to —0.0734. The negative sign of rho12 signals how less skilled workers, who
usually gain less than average if nonunionized, have a “comparative advantage” in terms
of perceived earnings if they join the union.

We obtain a cross-correlation parameter with a negative sign (p12 = —0.18) even
if we apply the indirect procedure of the two-step Heckman estimation (appendix A).
The model’s estimation results after the two-step Heckman estimation are reported in
appendix B.

5.2 Example 2

In the second example, we use 401ksubs.dta, a cross-sectional survey on eligibility for
participation of 9,275 individuals in the U.S. 401k pension plan, including their income
data and other demographic information. We adopt the family financial assets as a
dependent variable, while we include household per capita income, age, participation
in another pension plan (individual retirement account [IRA]), and family status as ex-
planatory variables in the model. A subject belongs to regime 1 if he or she participates
in the 401k plan, while he or she belongs to regime 2 if not associated with the 401k
pension plan. In the following table, we report the descriptive statistics relative to the
variables used in our analysis:
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. use http://www.stata.com/data/jwooldridge/eacsap/401ksubs, clear
. generate inc_percap = inc/fsize

. label variable inc_percap "=inc/fsize"

. generate marr_pira=marr*pira

. label variable marr_pira "=married*IRA"

. generate nonmarr_pira = (1-marr)*pira

. label variable nonmarr_pira "=(l-married)*IRA"

. describe nettfa p40lk inc_percap age agesq marr_pira nonmarr_pira

storage display value
variable name type format label variable label
nettfa float %9.0g net total fin. assets, $1000
p40ik byte %9.0g =1 if participate in 401(k)
inc_percap float  %9.0g =inc/fsize
age byte %9.0g age”2
agesq int %9.0g age”2
marr_pira float  %9.0g =married*IRA
nonmarr_pira float  %9.0g =(1-married)*IRA

. by p401k, sort: summarize nettfa inc_percap age agesq marr_pira nonmarr_pira

-> p401k = 0
Variable Obs Mean Std. Dev. Min Max
nettfa 6,713 11.66722 55.28923 -502.302 1462.115
inc_percap 6,713 15.95789 12.69433 1.02 143.067
age 6,713 40.91494 10.53225 25 64
agesq 6,713 1784.944 916.4837 625 4096
marr_pira 6,713 .1479219 .355049 0 1
nonmarr_pira 6,713 .0652465 .2469788 0 1

-> p401k = 1
Variable Obs Mean Std. Dev. Min Max
nettfa 2,562 38.47296 79.27108 -283.356 1536.798
inc_percap 2,562 21.45778 15.25077 1.640625 102.396
age 2,562 41.51327 9.651726 25 64
agesq 2,562 1816.471 838.3487 625 4096
marr_pira 2,562 .2802498 .4492089 0 1
nonmarr_pira 2,562 .0819672 .2743683 0 1

The outcome of interest is nettfa, the net family financial assets in thousands of
dollars, and the variable that identifies the regime is p401k, which assumes value equal
to 1 if the individual is associated with the 401k pension plan (0 otherwise). The set of
covariates, in the output above, includes the income per capita, the age of the individual
and its square, and two interaction dummy variables signaling whether the subject is
both married and associated with the IRA or whether he or she is not married and
associated with the IRA.

In this second example, we used the same covariates for both regimes. Thus, the list
of variables is specified only in x1().
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As for the results of the estimates, we can observe that married people who are also
associated with an TRA pension plan are generally more willing to participate in the
401k plan. In addition, the results show that income availability and married condition
jointly affect the propensity to set aside financial assets and participate in the 401k
plan. The availability of financial assets is positively correlated with age for those who
choose to join the 401k plan; the opposite occurs for those who do not join the 401k,
whose financial assets decrease with increasing age.

. mlcar nettfa, regime(p401k) x1(inc_percap age agesq marr_pira nonmarr_pira)

initial: log likelihood = -<inf> (could not be evaluated)
feasible: log likelihood = -1679277.6
rescale: log likelihood = -53682.56
rescale eq: log likelihood = -49287.352
Iteration O: log likelihood = -49287.352
Iteration 1: log likelihood = -46651.285
Iteration 2: log likelihood = -45617.634
Iteration 3: log likelihood = -45515.138
Iteration 4: log likelihood = -45512.746
Iteration 5: log likelihood = -45512.745
Number of obs = 9,275
Wald chi2(5) = 477.54
Log likelihood = -45512.745 Prob > chi2 = 0.0000
nettfa Coef. Std. Err. z P>|z| [95% Conf. Intervall
Y1
inc_percap 1.303126 .1016447 12.82  0.000 1.103906 1.502346
age 7.94995 1.166818 6.81 0.000 5.663029 10.23687
agesq -.0882846 .0133711 -6.60 0.000 -.1144915  -.0620777
marr_pira 48.70116  3.527254 13.81  0.000 41.78787 55.61445
nonmarr_pira 13.6085 5.603566 2.43 0.015 2.625714 24.59129
_cons -272.7242 24.69672 -11.04 0.000 -321.1289  -224.3196
Y2
inc_percap .1554649 .051188 3.04 0.002 .0551383 .2557915
age -3.408809 .5127297 -6.65 0.000 -4.413741  -2.403877
agesq .046012 .0058888 7.81  0.000 .03447 .0575539
marr_pira 21.45378  1.804081 11.89  0.000 17.91785 24.98971
nonmarr_pira 18.68462  2.695435 6.93 0.000 13.40166 23.96757
_cons 43.77803  10.69928 4.09 0.000 22.80782 64.74823
Insigmall
_cons 9.319316 .0324298  287.37  0.000 9.255754 9.382877
Insigma22
_cons 8.125216 .0189222  429.40  0.000 8.088129 8.162303
tanhrho
_cons -1.056451 .0184238 -57.34 0.000 -1.092561  -1.020341
sigmall 11151.35  361.6364 10464.61 11883.15
sigma22 3378.598  63.93062 3255.591 3506.252
rhol2 -.7843016 .0070908 -.7978108 -.7700052

Y1 corresponds to regime!=0
Y2 corresponds to regime==
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. mlcartestn, sim(100)
Conditional moment test for normality of residuals after mlcar

chi(2) = 3.0e+06 - p-value = 0.0000

The null hypothesis of normality of the errors is rejected. The estimated across-
regime correlation, rhol2, is equal to —0.78, while the covariance, s12, is equal to
—4814.1. In this case, the high level of the coefficient rho12 denotes that relevant la-
tent factors, not specified in the model as covariates, influence the choice of the regime.
The negative sign of this coeflicient signals that workers with net family financial as-
sets (nettfa) lower than average and not participating in pension plans would have a
comparative advantage in nettfa by joining a 401k pension plan. If we fit the model
by performing a two-stage Heckman procedure (estimation results are reported in ap-
pendix B), the application of the indirect estimation of rho12 gives an absurd value of
—98.75, thus being absolutely inconsistent as a measure of correlation.

5.3 Example 3

In this example, we use beauty.dta. It is a dataset reporting hourly wages and de-
mographic characteristics on 1,260 U.S. workers. The dataset can be downloaded from
http: //fmwww.bc.edu/ec-p /data /wooldridge / beauty.dta, and it includes information
about the individual wage, the years of workforce experience, the years at school, gender
and race, and whether the subject works in the service industry. We start by loading the
dataset, and we provide some descriptive statistics after trimming some observations
with outliers in the dependent variable.

. use http://fmwww.bc.edu/ec-p/data/wooldridge/beauty, clear
. generate lwage2 = lwage
. summarize lwage2, det

(output omitted )

replace lwage2 = . if lwage<=r(pl)
(15 real changes made, 15 to missing)

. replace lwage2 = . if lwage>r(p99)
(12 real changes made, 12 to missing)

. generate collgrad = educ>=12

. drop if lwage2 == .
(27 observations deleted)

. describe lwage2 exper expersq collgrad female black service

storage display value
variable name type format label variable label
lwage2 float  %9.0g
exper byte %8.0g years of workforce experience
expersq int %8.0g exper”2
collgrad float  %9.0g
female byte %8.0g =1 if female
black byte %8.0g =1 if black

service byte %8.0g =1 if service industry


http://fmwww.bc.edu/ec-p/data/wooldridge/beauty.dta
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. by service, sort: summarize lwage2 exper expersq collgrad female black

-> service = 0
Variable Obs Mean Std. Dev. Min Max
lwage2 897 1.703497 .5304814 .2468601 3.208017
exper 897 18.65998 12.30306 0 48
expersq 897 499.3913 555.8697 0 2304
collgrad 897 . 7781494 .415723 0 1
female 897 .2653289 .4417545 0 1
black 897 .0691193 .2537984 0 1

-> service = 1
Variable Obs Mean Std. Dev. Min Max
lwage2 336 1.541193 .5800109 .2468601 3.149311
exper 336 17.1994 10.93231 0 46
expersq 336 414.9792 474.6492 0 2116
collgrad 336 .8928571 .3097561 0 1
female 336 .5505952 .4981754 0 1
black 336 .0803571 .2722507 0 1

In this example, the outcome of interest is lwage2, the logarithm of the hourly wage,
while the variable that identifies the regime is service, a dummy variable that assumes
value equal to 1 if the subject works in the service industry. The set of covariates, in
the output above, includes the years of experience and its square, a dummy variable
equal to 1 if the years of schooling are greater or equal to 12, a dummy variable equal
to 1 if the subject is a female, and a dummy variable equal to 1 if the subject is black.
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The basic syntax for mlcar is the following:

. mlcar lwage2, r(service) xl1(exper expersq collgrad female black)

initial: log likelihood = -1981.0794
alternative: log likelihood = -1369.8356
rescale: log likelihood = -1369.8356
rescale eq: log likelihood = -731.70649
Iteration 0: log likelihood = -731.70649 (not concave)
Iteration 1: log likelihood = -494.77166
Iteration 2: log likelihood = -357.24137
Iteration 3: log likelihood = -337.93524
Iteration 4: log likelihood = -319.37493
Iteration 5: log likelihood = -315.19668
Iteration 6: log likelihood = -315.11101
Iteration 7: log likelihood = -315.08604
Iteration 8: log likelihood = -315.08432
Iteration 9: log likelihood = -315.0843
Number of obs 1,233
Wald chi2(5) = 277.84
Log likelihood = -315.0843 Prob > chi2 0.0000
lwage2 Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
Y1
exper .0484381 .0074527 6.50 0.000 .033831 .0630451
expersq -.0008431 .0001696 -4.97 0.000 -.0011755 -.0005108
collgrad .4065657 .1018238 3.99 0.000 .2069947 .6061367
female -.2420134 .1264511 -1.91 0.056 -.4898531 .0058262
black -.0483121 .0643132 -0.75  0.453 -.1743637 .0777394
_cons .6306671 .3611614 1.75 0.081 -.0771962 1.33853
Y2
exper .0359758 .0049783 7.23 0.000 .0262184 .0457332
expersq -.0005748 .0001092 -5.26  0.000 -.0007888 -.0003607
collgrad .2234244 .0439926 5.08 0.000 .1372006 .3096483
female -.5172188 .0618616 -8.36  0.000 -.6384654  -.3959723
black -.0719072 .0543878 -1.32 0.186 -.1785053 .0346909
_cons 1.2124 .0559033 21.69 0.000 1.102831 1.321968
Insigmall
_cons -1.443819 .2134236 -6.77  0.000 -1.862122  -1.0256517
Insigma22
_cons -1.509647 .0619937 -24.35 0.000 -1.631152  -1.388141
tanhrho
_cons .9010903 .6939439 1.30 0.194 -.4590147 2.261195
sigmall .2360246 .0503732 .156563427 .3586112
sigma22 .220988 .0136999 .1957039 .2495387
rhol2 .7168284 .3373657 -.4292808 .9785074

Y1 corresponds to regime!=0
Y2 corresponds to regime==0

. mlcartestn

Conditional moment test for normality of residuals after

chi(2) =

5.586 - p-value = O.

0612

mlcar
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. mlcartestn, sim(100)
Conditional moment test for normality of residuals after mlcar

chi(2) = 9.143 - p-value = 0.0103

The null Hypothesis of normality of the errors is not rejected if we consider a nominal
test size of 0.05 when the asymptotic formula is considered and a nominal size of 0.01
when the simulated version of the test is computed.

As for the estimation results, note in particular that women’s wage is lower than
that of men in both regimes, especially if the women work outside the service industry.
We did not obtain analogous results by performing a two-stage Heckman procedure (see
appendix B).

The estimated across-regime correlation, rho12, is equal to 0.72. The positive sign
of this coeflicient signals how workers gaining more in the service industry would have
gained more also working in the other sectors. However, this parameter is not statisti-
cally different from zero.

If we fit the model by performing a two-stage Heckman procedure, the value of rho12
is equal to —110.74228, absolutely inconsistent as a measure of correlation.

6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-2
. net install st0642 (to install program files, if available)
. net get st0642 (to install ancillary files, if available)
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A Indirect identification of across-regime covariance in a
two-regime switching model

As shown above in section 3, adopting the two-equation ML method, the across-regime
covariance is identified and estimated simultaneously with the regression coefficients and
errors variances. Unlike this approach, that of previous two-regime switching models
with a selection equation, generally following a two-stage procedure (Heckman 1976,
1990; Lee 1978), provided only an indirect identification (and a “gross” estimation) of
the across-regime covariance. In the applications proposed in section 4, we compare
the estimates applying both our two-equation ML method (mlcar command) and the
traditional two-stage estimation, which requires a selection equation. In the second
case, the estimation of the across-regime correlation is obtained indirectly as in Lee and
Trost (1978) and Vijverberg (1993).

In a two-regime switching model, the error terms wuy; and wug; are assumed to be
normally distributed with zero mean and variances equal to ¢? and 3. From the
censoring rule imposed on both outcome equations, we derive that y;; and yo; can
be, respectively, observed if v; = u1; — ug; > —(x);81 — x5;82) or v; = ug; — uy; >
—(x5;82 —x/,81), where the random variable v; is normally distributed with zero mean

and variance o2,

Then, the random variable v;/c, is distributed as a standard normal. In this way,
reparameterizing as (x},81 — x5;82)/0, = 2z, we obtain the linear predictions z4 of
the choice of the regime (according to the censoring rule) by running a probit regression
on the selection equation.

Hence, we can obtain an indirect estimation of the covariance o1 estimating pre—
liminarily o2. In doing this, we use the predlcted values of the selection equation, z}7,

and of both outcome equations, xh,Bl and X2“32

To estimate om we first consider the sample composition n = nj +ng with n, obser-
vations under regime 1 and no observations under regime 2. Then, given ny row vectors
x}; in the regressors matrix of regime 1, ny row vectors x5, in the regressors matrix of
regime 2, and n row vectors z’ in the regressors matrix of the selection equation, we
have

(xé,@l — xg@) /0, = z;y where x; = [x]; xb;]

and

n 2 n

72 =3 (xiB - xiB2) /D (2A)? (4)

i=1 =1

Then, estimating 7 and o2 by the outcome equations and computing o> by (4), we
obtain, through the well-known moment relationship 02 = 0% + 03 — 2012, an estimate
of the cross-covariance 712 and of the cross-correlation parameter, p1o = 012/(0102).
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B Heckman two-stage estimation results

We show below the results of the Heckman two-stage estimation applied to the three
examples of two-regime models exposed in section 4.4. In doing this, we describe more in
detail the procedure, using the Stata command, to obtain the indirect rho12 estimation
as explained in appendix A.

B.1 Example 1

. use https://www.stata.com/data/jwooldridge/eacsap/fringe, clear
. generate lannhrs_noff = lannhrs

. replace lannhrs_noff = 0 if office ==
(298 real changes made)

. label variable lannhrs_noff "log(annual hours worked) if no office worker"
. generate lannhrs_off = lannhrs

. replace lannhrs_off = 0 if office ==
(318 real changes made)

. label variable lannhrs_off "log(annual hours worked) if office worker"

. probit union lannhrs exper expersq office educ male annbens

Iteration O: log likelihood = -385.30268
Iteration 1: log likelihood = -286.00449
Iteration 2: log likelihood = -285.21203
Iteration 3: log likelihood = -285.21175
Iteration 4: log likelihood = -285.21175
Probit regression Number of obs = 616
LR chi2(7) = 200.18
Prob > chi2 = 0.0000
Log likelihood = -285.21175 Pseudo R2 = 0.2598
union Coef.  Std. Err. z P>|z| [95% Conf. Intervall
lannhrs -1.273315 .2873008 -4.43  0.000 -1.836414 -.7102159
exper .0175563 .019202 0.91 0.361 -.0200789 .0551914
expersq -.0002715 .0004088 -0.66  0.507 -.0010728 .0005298
office -1.29563 .1505457 -8.61  0.000 -1.590694 -1.000566
educ -.060494 .0256906 -2.35 0.019 -.1108466 -.0101414
male -.1288234 .1471372 -0.88 0.381 -.4172069 .1595602
annbens .0005211 .0000575 9.06 0.000 .0004083 .0006339
_cons 9.37351  2.185413 4.29 0.000 5.09018 13.65684

. predict lin_pred, xb
. generate lin_predsq = lin_pred~2
. generate millsl = normalden(-lin_pred) / (1 - normal(-lin_pred))

. generate mills2 = -normalden(-lin_pred) / (normal(-lin_pred))
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. regress lannearn lannhrs_off lannhrs_noff exper expersq male annbens millsl if

ML estimation of an across-regime correlation parameter

> union ==
Source SS df MS Number of obs 196
F(7, 188) = 40.88
Model 19.9142816 7 2.84489738 Prob > F = 0.0000
Residual 13.0820799 188 .069585532 R-squared = 0.6035
Adj R-squared = 0.5888
Total 32.9963616 195 .169212111 Root MSE = .26379
lannearn Coef. Std. Err. t P>t [95% Conf. Intervall
lannhrs_off .3293442 .1711405 1.92 0.056 -.0082582 .6669467
lannhrs_noff .322118 .1565905 2.06 0.041 .0132178 .6310182
exper .0187162 .0069879 2.68 0.008 .0049313 .032501
expersq -.0003416 .0001414 -2.42 0.017 -.0006205 -.0000627
male .2702128 .052182 5.18 0.000 .1672754 .3731503
annbens .0002021 .0000482 4.19 0.000 .000107 .0002972
millsl .1178812 .154788 0.76  0.447 -.1874633 .4232257
_cons 5.998155 1.043655 5.75 0.000 3.939376 8.056935

. matrix b = e(b)

. generate predictl = b[1,1]*lannhrs_off + b[1,2]*lannhrs_noff + b[1,3]*exper +
> b[1,4]*expersq + b[1,5]*male + b[1,6]*annbens + b[1,8]

. generate sigmall =

e(rss)/e(df_r)

. regress lannearn lannhrs exper expersq office educ male mills2 if union

Source SS df MS Number of obs = 420
F(7, 412) = 106.70

Model 114.357123 7 16.3367319 Prob > F = 0.0000
Residual 63.0833638 412 .153114961 R-squared 0.6445
Adj R-squared = 0.6384

Total 177.440487 419 .42348565 Root MSE = .3913
lannearn Coef. Std. Err. t P>t [95% Conf. Intervall]
lannhrs 1.289579 .0848471 15.20 0.000 1.122792 1.456366
exper .0052416 .0056803 0.92 0.357 -.0059245 .0164076
expersq -.0000341 .0001204 -0.28 0.777 -.0002707 .0002026
office .5116217 .0526985 9.71 0.000 .4080302 .6152132
educ .0581582 .0082158 7.08 0.000 .0420081 .0743083
male .3288602 .0442127 7.44 0.000 .2419496 .4157707
mills2 -.8607312 .0895085 -9.62 0.000 -1.036682 -.6847808
_cons -2.258669 .6512697 -3.47 0.001 -3.538895 -.9784428

. matrix b = e(b)

. generate predict2 = b[1,1]*lannhrs + b[1,2]*exper + b[1,3]*expersq +
> b[1,4]*office + b[1,5]*educ + b[1,6]*male + b[1,8]

. generate sigma22 = e(rss)/e(df_r)

. generate diff_pred = (predictl - predict2)"2
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B.2

. total diff_pred lin_predsq

Total estimation Number of obs = 616
Total Std. Err. [95% Conf. Intervall]

diff_pred 186.4592 9.075711 168.636 204.2823
lin_predsq 714.9428 34.21549 647.7495 782.1362

. matrix b = e(b)

. generate sigma_diff = b[1,1] / b[1,2]
. generate sigmal2 = ((sigmall + sigma22) - sigma_diff) /2

. generate rhol2 = sigmal2/ sqrt(sigmall * sigma22)

. display rhol2
-.18456715

Example 2

. generate inc_percap = inc/fsize

. label variable inc_percap "=inc/fsize"

. generate marr_pira = marr*pira

. label variable marr_pira "=married*IRA"

. generate nonmarr_pira = (1-marr)#*pira

. label variable nonmarr_pira "=(l-married)*IRA"

. describe nettfa p401k inc_percap age agesq marr_pira

. use http://www.stata.com/data/jwooldridge/eacsap/401ksubs, clear

nonmarr_pira

455

storage display value
variable name type format label variable label
nettfa float  %9.0g net total fin. assets, $1000
p401k byte %9.0g =1 if participate in 401(k)
inc_percap float  %9.0g =inc/fsize
age byte %9.0g age”2
agesq int %9.0g age™2
marr_pira float  %9.0g =married*IRA
nonmarr_pira float  %9.0g =(1-married)*IRA
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. probit p401k inc_percap age agesq nonmarr_pira marr_pira

Iteration O: log likelihood = -5466.2574
Iteration 1: log likelihood = -5212.3587
Iteration 2: log likelihood = -5211.9516

Iteration 3: log likelihood = -5211.9516

Probit regression Number of obs = 9,275
LR chi2(5) = 508.61

Prob > chi2 = 0.0000

Log likelihood = -5211.9516 Pseudo R2 = 0.0465
p401k Coef. Std. Err. z P>|z| [95% Conf. Intervall
inc_percap .0155672  .0010476 14.86  0.000 .013514 .0176205
age .0946554  .0117114 8.08 0.000 .0717015 .1176094

agesq -.0011147  .0001347 -8.27  0.000 -.0013788  -.0008507
nonmarr_pira .0195348  .0576982 0.34 0.735 -.0935516 .1326212
marr_pira .4367102  .0364846 11.97  0.000 .3652017 .5082188
_cons -2.862799  .2453548 -11.67  0.000 -3.343686 -2.381913

. predict lin_pred, xb

. generate lin_predsq = lin_pred~2

. generate millsl = normalden(-lin_pred) / (1 - normal(-lin_pred))
. generate mills2 = -normalden(-lin_pred) / (normal(-lin_pred))

. regress nettfa inc_percap age agesq nonmarr_pira marr_pira millsl if p401k ==

Source SS df MS Number of obs = 2,562
F(6, 2555) = 106.93

Model 3229982.69 6 538330.449 Prob > F = 0.0000
Residual 12863094 .1 2,556 5034.47909 R-squared = 0.2007
Adj R-squared = 0.1988

Total 16093076.8 2,661 6283.90346 Root MSE = 70.954
nettfa Coef. Std. Err. t P>t [95% Conf. Intervall
inc_percap 7.150479 1.115339 6.41 0.000 4.963418 9.33754
age 41.48615 7.255142 5.72 0.000 27.25959 55.71271

agesq -.4718318 .0853272 -5.53 0.000 -.6391493 -.3045144
nonmarr_pira 24.76967 5.81559 4.26 0.000 13.36592 36.17341
marr_pira 219.646 32.53806 6.75 0.000 155.8424 283.4497
millsil 553.734 103.5124 5.35 0.000 350.7573 756.7107
_cons -1681.013 297.3186 -5.65 0.000 -2264.023 -1098.003

. matrix b = e(b)

. generate predictl = b[1,1]*inc_percap + b[1,2]*age + b[1,3]*agesq +
> b[1,4]*nonmarr_pira + b[1,5]*marr_pira + b[1,7]

. generate sigmall = e(rss)/e(df_r)
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. regress nettfa inc_percap age agesq nonmarr_pira marr_pira mills2 if p401k ==
Source SS df MS Number of obs 6,713
F(6, 6706) = 204.04
Model 3167500.94 6 527916.823 Prob > F = 0.0000
Residual 17350402.8 6,706 2587.29537 R-squared = 0.1544
Adj R-squared = 0.1536
Total 20517903.7 6,712 3056.89864 Root MSE = 50.865
nettfa Coef.  Std. Err. t P>|t] [95% Conf. Intervall
inc_percap -1.130697 .3157658 -3.58 0.000 -1.749698 -.5116952
age -11.31436 1.715672 -6.59  0.000 -14.67762  -7.951095
agesq .140205 .0201568 6.96 0.000 .1006911 .1797188
nonmarr_pira 18.78395  2.656777 7.07  0.000 13.57582 23.99208
marr_pira -10.83976 8.637384 -1.25 0.210 -27.77178 6.092255
mills2 -228.4327  37.94426 -6.02 0.000 -302.8155  -154.0499
_cons 142.4178  24.51337 5.81 0.000 94.3638 190.4718

. matrix b = e(b)

. generate predict2

> b[1,4]*nonmarr_pira + b[1,5]*marr_pira + b[1,7]

. generate sigma22 =

. generate diff_pred =

e(rss)/e(df_r)
(predictl - predict2)~2

. total diff_pred lin_predsq

Total estimation Number of obs = 9,275
Total Std. Err. [95% Conf. Interval]
diff_pred 3.21e+09 1.59e+07 3.18e+09 3.24e+09
lin_predsq 4460.02  30.90237 4399.444 4520.595

. matrix b = e(b)

. generate sigma_diff
. generate sigmal2 =

. generate rhol2 =

. display rhol2
—98 753319

B.3 Example 3

= bl1,1] / b[1,2]
((sigmall + sigma22) - sigma_diff) /2

sigmal2/ sqrt(sigmall * sigma22)

. use http://fmwww.bc.edu/ec-p/data/wooldridge/beauty, clear

. generate lwage

2 = lwage

. summarize lwage2, det

(output omitted )

replace lwage2

(15 real changes made, 15 to missing)

. replace lwage2

(12 real changes made, 12 to missing)

. generate collgrad = educ>=12

= . if lwage<=r(p1)

= . if lwage>r(p99)

= b[1,1]*inc_percap + b[1,2]*age + b[1,3]*agesq
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. drop if lwage
(27 observations deleted)

. probit service exper expersq collgrad female black

Iteration O: log likelihood = -722.21193
Iteration 1: log likelihood = -664.80736
Iteration 2: log likelihood = -664.34963
Iteration 3: log likelihood = -664.34934
Iteration 4: log likelihood = -664.34934
Probit regression Number of obs = 1,233
LR chi2(5) = 115.73
Prob > chi2 = 0.0000
Log likelihood = -664.34934 Pseudo R2 = 0.0801
service Coef . Std. Err. z P>|z| [95% Conf. Intervall
exper .037829 .0132769 2.85 0.004 .0118068 .0638512
expersq -.0007867 .0002999 -2.62 0.009 -.0013745 -.000199
collgrad .5120305 .1138821 4.50 0.000 .2888257 .7352353
female . 7676342 .0841543 9.12  0.000 .6026948 .9325736
black .0628345 .1556089 0.40 0.686 -.2421533 .3678223
_cons -1.655462 .1683095 -9.84 0.000 -1.985343  -1.325581
. predict lin_pred, xb
. generate lin_predsq = lin_pred~2
. generate millsl = normalden(-lin_pred) / (1 - normal(-lin_pred))
. generate mills2 = -normalden(-lin_pred) / (normal(-lin_pred))
. regress lwage2 exper expersq collgrad female black millsl if service ==
Source SS df MS Number of obs = 336
F(6, 329) = 14.45
Model 23.5045356 6 3.9174226 Prob > F = 0.0000
Residual 89.193708 329 .271105496 R-squared = 0.2086
Adj R-squared = 0.1941
Total 112.698244 335 .336412668 Root MSE = .52068
lwage2 Coef. Std. Err. t P>t [95% Conf. Intervall
exper .14808 .0670659 2.21  0.028 .016148 .2800121
expersq -.0029665 .0014009 -2.12  0.035 -.0057224 -.0002105
collgrad 1.833999 .941139 1.95 0.052 -.0174104 3.685408
female 1.905758  1.357603 1.40 0.161 -.7649205 4.576436
black .109329 .1554572 0.70 0.482 -.1964864 .4151444
millsl 4.024335  2.440734 1.65 0.100 -.7770794 8.825749
_cons -6.962463  4.885576 -1.43 0.155 -16.57337 2.648445

. matrix b = e(b)

. generate predictl = b[1,1]*exper + b[1,2]*expersq + b[1,3]*collgrad +

> b[1,4]*female + b[1,5]*black + b[1,7]

. generate sigmall = e(rss)/e(df_r)



G. Calzolari, M. G. Campolo, A. Di Pino, and L. Magazzini 459

. regress lwage2 exper expersq collgrad female black mills2 if service == 0
Source SS df MS Number of obs = 897
F(6, 890) = 76.72
Model 85.9561851 6 14.3260308 Prob > F = 0.0000
Residual 166.18766 890 .186727707 R-squared = 0.3409
Adj R-squared = 0.3365
Total 252.143845 896 .281410541  Root MSE = .43212
lwage2 Coef.  Std. Err. t P>t [95% Conf. Intervall
exper .0486707 .0111441 4.37 0.000 .0267988 .0705425
expersq -.0008191 .0002315 -3.54 0.000 -.0012735 -.0003648
collgrad .3733219 .1352818 2.76  0.006 .1078133 .6388305
female -.2798039 .2388327 -1.17  0.242 -.7485448 .1889369
black -.0461786 .0605579 -0.76  0.446 -.1650315 .0726743
mills2 .4667468 .6280203 0.74 0.458 -.7658266 1.69932
_cons 1.186469 .0571013 20.78  0.000 1.0744 1.298538

. matrix b = e(b)

. generate predict2 = b[1l,1]*exper + b[1,2]*expersq + b[1,3]*collgrad +
> b[1,4]*female + b[1,5]*black + b[1,7]

. generate sigma22 = e(rss)/e(df_r)
. generate diff_pred = (predictl - predict2)"2
. total diff_pred lin_predsq

Total estimation Number of obs = 1,233
Total Std. Err. [95% Conf. Intervall]

diff_pred 37957.01 458.185 37058.1 38855.92
lin_predsq 754.7499 19.83436 715.837 793.6627

. matrix b = e(b)

. generate sigma_diff = b[1,1] / b[1,2]

. generate sigmal2 = ((sigmall + sigma22) - sigma_diff) /2
. generate rhol2 = sigmal2/ sqrt(sigmall * sigma22)

. display rhol2
-110.74233

C Monte Carlo experiments on the mlcartestn procedure
to test normality

Monte Carlo simulations allow us to evaluate the performance, in finite samples, of the
proposed testing procedure (see section 3.1), implemented by the mlcartestn command.
We based the experiments on a design similar to that previously used by Calzolari and
Di Pino (2017) to check the properties of the two-equation ML estimator.
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The simulated two-regime model is specified as follows:

Y1i =2+ z1; +u (5)
y2; = 10 4+ 0.8z9; + ug; (6)

The explanatory variables, x1; and xo;, are both generated from a normal distribu-
tion with mean 50 and variance 100. The error terms, uq; and us;, are random variables
with zero mean and variance, respectively, o7 = 100 and 03 = 10. The percentage of
cases observed in each regime on the total of cases is symmetrically equal to 50%.

Then, to simulate the presence of a large cross-correlation, we set the across-regime
correlation alternatively with positive (p12 = 0.90 and o012 = 28.4605) and negative
signs (p12 = —0.90 and 012 = —28.4605). We also simulated estimation and testing
performance by setting absence of across-regime correlation (p12 = 0).

We checked the performance of the testing procedure assuming normally distributed
errors and, alternatively, accounting for some cases of misspecification given by the
violation of the assumption of normality. To this end, we simulated error terms that
deviate from the normal distribution in terms of higher kurtosis following Student ¢
distributions with 9, 30, and 100 degrees of freedom, although the errors distributed as
a Student ¢ (100) reproduce the case in which the kurtosis is closer to the normality
condition.

We also simulated the model whose error terms deviate from normality because of
the presence of asymmetry. To this purpose, we generate error terms following a Skew
Normal distribution (for example, Azzalini [1985]) with the Shape parameter, «, equal
to 5 (generally involving a level of skewness close to 0.8-0.9).

Summing up, we simulate several data-generating processes (DGPs) based on (5) and
(6) under different distributive assumptions on the errors, accounting for, respectively,
positive, negative, and null cross-correlation between the errors of the two equations:

Covariance matrix under positive cross-correlation: (p12 = 0.90):
> B 100 28.4605
Covariance matrix under negative cross-correlation: (p12 = —0.90):
> _ 100 —28.4605
(wiuze) = | —28.4605 10

Covariance matrix in absence of cross-correlation: (p12 = 0):

100 0
X urizuni) = ( 0 10)

In the following table 1, we report the simulation results, given by the means of the
empirical test sizes obtained setting several DGPs, under different assumptions of the
errors distribution.
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Table 1. Empirical test size* of CM test of normality (mlcartestn command)

Positive cross-correlation (p12 = 0.9)
Sample: n =500 n=1000 n=1500 n = 5000

DGP1_Normal 0.0506 0.0502 0.0495 0.0398
DGP2.t(9) 0.3570 0.5666 0.6613 0.9889
DGP3-t(30) 0.0872 0.1154 0.1152 0.2000
DGP4_£(100) 0.0446 0.0444 0.0401 0.0370
DGP5_Sk_Norm(a = 5) 0.7614 0.9776 0.9969 1.0000
Negative cross-correlation (p;2 = —0.9)

Sample: n =500 n=1000 n=1500 n = 5000
DGP1 _Normal 0.0481 0.0635 0.0678 0.0655
DGP2_t(9) 0.3396 0.5252 0.6289 0.9830
DGP3-t(30) 0.0951 0.1189 0.1770 0.2856
DGP4_£(100) 0.0439 0.0594 0.0403 0.0630
DGP5_Sk_Norm(« = 5) 0.0738 0.1479 0.2735 0.8658

Absence of cross-correlation (pi12 = 0)
Sample: n =500 n=1000 n=1500 n = 5000

DGP1_Normal 0.0625 0.0532 0.0544 0.0475
DGP2.t(9) 0.4976 0.7305 0.9007 1.0000
DGP3_£(30) 0.1357 0.1648 0.1772 0.4585
DGP4_£(100) 0.0638 0.0748 0.0594 0.0691
DGP5_Sk_Norm(a = 5) 0.6255 0.9406 0.9879 1.0000

NOTES: Nominal test size: 5%. No of reps = 1000
* Proportion of cases in which the null hypothesis of normality is rejected.

The results reported in table 1 show that the CM test, implemented with the com-
mand mlcartestn, with the sim(100) option, allows us to detect misspecification given
by the departure from the normality assumption because of an excess of kurtosis or
skewness. Note that as in the cases in which the null hypothesis is expected to be re-
jected because of misspecification [being the errors distributed as Student ¢(9), Student
t(30), and skew-normal(a = 5)], the share of rejections approaches 100% as the sample
dimension increases. Note also that the empirical test size performs better in the cases
in which DGPs are simulated assuming positive or null cross-correlation between the
errors.

If we simulate DGPs following normal or Student ¢(100) distributions, the results of
empirical test size are consistent to the nominal size fixed for the rejection of the null
hypothesis of normality.
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