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1 Introduction

The question of whether time-series data are independently distributed has a long his-
tory in econometrics. In Stata, runtest (see [R] runtest) is a nonparametric test of
the hypothesis that the observations of the series occur in a random order by counting
how many successive observations lie above or below a threshold such as the median of
the series. Swed and Eisenhart (1943) provide exact critical values for this test.1 The
interest in testing for independence in time series was reinvigorated in the early 1980s
by the nonlinear dynamics and chaos literature with the goal of distinguishing determin-
istic systems from random systems. Brock, Dechert, and Scheinkman (1987) and Brock
et al. (1996) introduced a test known as the Brock, Dechert, and Scheinkman (BDS) test
for detecting dependence in time-series data based on the correlation dimension of the
process. Although the popularity of the BDS test was initially derived from its link with
deterministic chaos, it has proved to be useful as a residual diagnostic test because it
can detect deviations from dependence in time-series data quite reliably. Furthermore,
its asymptotic properties as a residual diagnostic are well understood. Extensive Monte
Carlo results have proved the BDS test useful in relatively small samples (Brock, Hsieh,
and LeBaron 1991).

1. A variation on this test analyzes first differences of the series. The “runs-up-and-down” test
classifies observations not by whether they lie above or below a threshold but by whether they
are steadily increasing or decreasing. Thus, an unbroken string of increases in the variable of
interest is counted as one run, as is an unbroken string of decreases. According to Madansky
(1988), the runs test is superior to the runs-up-and-down test for detecting trends in the data, but
the runs-up-and-down test is superior for detecting autocorrelation. Edgington (1961) has compiled
a table of the small-sample distribution of the runs-up-and-down statistic, which is reprinted in
Madansky (1988).
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The idea behind the BDS is fairly simple. If the data are independently and identi-
cally distributed (i.i.d.), then for a given distance ε, the probability that the difference
between pairs of m-dimensional points is less than or equal to ε will be a constant. This
probability is denoted Cm(ε) and is known as the correlation integral (Grassberger and
Procaccia 1983). The intuition of the BDS test is that with i.i.d. data, Cm(ε) will simply
be the product of the individual pairs, so Cm(ε) = C1(ε)

m. However, the sample ana-
logues of these quantities will not satisfy this condition exactly. The BDS test provides
a formal statistical evaluation of the significance of this divergence.

Although the intuition of the BDS test is straightforward, calculating the BDS statis-
tic is not easy, and it is even more challenging to perform the computations with the
speed necessary to make bootstrap resampling feasible. To complement earlier imple-
mentations of the test, LeBaron (1997) describes a fast algorithm and provides C source
code to implement the test. The initial component of LeBaron’s approach is based on
an efficient sorting algorithm that, for a time series of length T , requires O(T log T )
operations and hence pays dividends for large values of T . The main disadvantage of
this fast algorithm is that it is not completely transparent.

By contrast, the approach to compute the BDS test described in this article offers
transparency of operation because it does not require sorting of the data to estimate
the correlation integral. Furthermore, the implementation in Mata makes the procedure
accessible on any machine running Stata. This desire to facilitate ease of use does
imply a speed penalty. Consequently, our variant is intrinsically O(T 2), which makes
it considerably slower than LeBaron’s algorithm when applied to a lengthy time series.
However, the absence of overhead costs makes the approach efficient for smaller datasets.

In addition to describing the command that implements the test, we also outline an
elegant simplification for the computation of the variance of the BDS statistic.

2 The BDS test

The correlation integral introduced by Grassberger and Procaccia (1983) is a method
for measuring the frequency with which temporal patterns are repeated in data. Given
observations of a time series xt, t = 1, . . . T , the m-history of the time series is

xmt = (xt, xt+1, xt+2, . . . , xt+m−1)

A time series expressed in this form is described as being embedded of dimension m,
with m = 1 representing the case where only the original time series is considered. The
sample correlation integral for a given ε > 0 and embedding dimension m = 1 is

Ĉ1 =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

I
(
|xj − xk| ≤ ε) (1)

where n = (T −m + 1) and I(S) is the indicator function taking the value 1 if S is a
true statement and 0 otherwise. For ease of notation, the dependence of this quantity
on ε is suppressed. Of course, if ε is chosen so that all pairs satisfy the condition, then
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Ĉ1 = 1; if ε is chosen so that no pairs satisfy the condition, then Ĉ1 = 0. Consequently,
the correlation integral has the interpretation of measuring spatial correlation. Often
in practice, ε is set in terms of standard deviations of the data.2

Strictly speaking, if there are T data points, the computation of Ĉ1 with m = 1
can use all T elements of the sample to construct the (xj , xk) pairs required in (1).
However, if higher-order embedding dimensions are to be computed, it is important to
ensure that the correlation integrals Ĉ1, . . . , Ĉm are each calculated on the same number
of (xj , xk) pairs. Consequently, the observed sample is always truncated to x1, . . . , xn
with n = (T −M + 1), where M is the maximum order of the embedding dimension.

The correlation integral Ĉm is then given by

Ĉm =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

m−1∏
r=0

I(|xj+r − xk+r| ≤ ε)

Therefore, the mth-order correlation integral computes the joint probability

Pr
(
|xj − xk| < ε, |xj+1 − xk+1| < ε, . . . , |xj+m−1 − xk+m−1| < ε

)
For a given value of ε, define Ij,k = I(|xj − xk| ≤ ε). Then, Ĉ1 and Ĉm have

simplified expressions

Ĉ1 =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

Ij,k , Ĉm =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

m−1∏
r=0

Ij+r,k+r (2)

in which occurrences of ε have been suppressed for representational simplicity.

The BDS test proceeds by noting that under the assumption of i.i.d. data, this
probability will simply be the product of the individual probabilities for each pair if the
observations are independent. Under this null hypothesis, it follows from (3) that

E(Ĉ1) =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

E(Ij,k) =
2

n(n− 1)

n∑
j=1

n∑
k=j+1

C1 = C1 ,

E(Ĉm) =
2

n(n− 1)

n−1∑
j=1

n∑
k=j+1

m−1∏
r=0

E(Ij+r,k+r) = Cm
1

The BDS test provides a formal basis for judging the size of this error. Given a value
for ε, Brock et al. (1996) defined the BDS statistic as

Wn,m(ε) =
√
n

(
Ĉm − Ĉ m

1

σn,m

)
2. Sometimes, the data are transformed to the unit interval [0, 1] before the test is performed. For

each embedding dimension i = 1 . . .m − 1, the distance ε is set as 0.9i, meaning that the test is
run over a grid of embedding dimensions and distances; see Cromwell, Labys, and Terraza (1994).
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where the standard deviation σn,m is computed from the variance

σ2
n,m = 4

βm + 2

m−1∑
j=1

βm−jα2j + (m− 1)2α2m −m2βα2m−2

 (3)

in which α and β are defined as

α =
1

n2

n∑
j=1

n∑
k=1

Ij,k , β =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

Ii,jIj,k (4)

Brock et al. (1996) demonstrate that under the null hypothesis of i.i.d. data, this statistic
converges in distribution to the standard normal

Wn,m(ε)
d→ N(0, 1)

for a given ε.

3 Simplifying the computation of the variance

It is clear from (3) that the expression for σ2
n,m can be regarded as a polynomial of

degree m in β with coefficients that are functions of α; that is,

σ2
n,m(β) = 4

βm + 2

m−1∑
j=1

βm−jα2j + (m− 1)2α2m −m2βα2m−2

 (5)

A straightforward calculation indicates that σ2
n,m(α2) = 0. The remainder theorem now

asserts that (β − α2) is a factor of (5), which when factored into the expression gives

σ2
n,m(β) =

{
4(β − α2)2 m = 2

4(β − α2)g(β) m ≥ 3

where g(β) is the polynomial of degree (m− 1) with expression

g(β) =

m−1∑
j=1

(2j − 1)βm−jα2(j−1) − (m− 1)2α2(m−1)

The simplest way to continue the analysis of σ2
n,m(β) is to replace (2j − 1) with the

algebraically identical expression j2 − (j − 1)2. With this substitution in place,

g(β) =

m−1∑
j=1

j2βm−jα2(j−1) −
m−1∑
j=1

(j − 1)2βm−jα2(j−1) − (m− 1)2α2(m−1)
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The second summation is reindexed by replacing j − 1 with j to obtain

g(β) =

m−1∑
j=1

j2βm−jα2(j−1) −
m−2∑
j=1

j2βm−j−1α2j − (m− 1)2α2(m−1)

=

m−1∑
j=1

j2βm−jα2(j−1) −
m−1∑
j=1

j2βm−j−1α2j

Both summations are now combined to give

g(β) =

m−1∑
j=1

j2
{
βm−jα2(j−1) − βm−j−1α2j

}

= (β − α2)

m−1∑
j=1

j2βm−j−1α2(j−1) (6)

The case m = 2 can be incorporated into (6) to derive the final result

σ2
n,m = 4(β − α2)2

m−1∑
j=1

j2βm−j−1α2(j−1) , m ≥ 2

4 The bds command

The bds command calculates the BDS test as described in section 5.

4.1 Syntax

Before using the bds command and other similar Stata time-series commands, one must
tsset or xtset the data so that the variable of interest is defined as a proper time series.
The command syntax is

bds varname
[
if
] [

in
] [

, m(integer) eps(numlist)
]

Note that varname may not contain gaps within the specified sample. varname can
contain time-series operators. The command can be applied to one unit of a panel.

4.2 Options

The command supports the following options:

m(integer) specifies the maximum embedding dimension, which evaluates sequences of
length 2, . . . , m. The default is m(3).

eps(numlist) provides a list of values of ε to be used in the comparison with the
differences of pairs’ values. The test evaluates the number of absolute differences that
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are less than the epsilon value. If numlist values are not provided, six defaults are
considered: the 70th percentile of the distribution of absolute differences, followed
by 0.5, 1.0, 1.5, 2.0, and 2.5 times the standard deviation of the data. If values are
provided, they must be given in ascending order.

4.3 Stored results

bds stores the following in r():

Scalars
r(N) number of observations
r(m) maximum embedding dimension

Macros
r(cmd) bds
r(varname) variable name
r(tsfmt) time-series format of the time variable

Matrices
r(bds stat) results matrix

5 The algorithm

Given ε > 0, the quantity Ij,k has value 1 if |xj − xk| ≤ ε and 0 otherwise. The first
step in the computation of the BDS statistic is to create a lookup table, which in Stata
can be visualized as an upper triangular matrix of one-byte integers with T rows and T
columns. The (j, k)th entry of this matrix is 1 if |xj − xk| ≤ ε and 0 otherwise.3 The
(k, k)th diagonal entry of this lookup matrix compares |xk − xk| with ε and therefore is
1 for all values of k.

5.1 First-order correlation integral

The sample estimate of the first-order correlation integral is the expected value of Ij,k
taken over all values of j and k satisfying j < k ≤ n, or equivalently, the fraction of
all pairs (xj , xk) for which |xj − xk| ≤ ε. Put simply, this is the total count of all the
nonzero entries in the upper triangle of the lookup matrix, excluding the main diagonal
divided by the total number of distinct pairings, namely, n(n− 1)/2.

One way to think of this total count is as a sum of row counts r1, r2, . . . , rn, in which
rj denotes the sum of the jth row of the lookup matrix, excluding the contribution from
the main diagonal. The alternative view is to think of the total count as a sum of column
counts c1, c2, . . . , cn, in which cj denotes the sum of the jth column of the lookup matrix,
excluding the contribution from the main diagonal. In the former, rn = 0, and in the
latter, c1 = 0. Both strategies will give the same total count, but each will be composed
of different partial counts. The explicit expressions for rj and cj are, respectively,

3. The fast C code provided by LeBaron (1997) stores this table more efficiently as a vector of bits,
albeit at the cost of portability and transparency.
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rj =

n∑
k=j+1

Ij,k , cj =

j−1∑
k=1

Ik,j

The total number of counts, say, C, is therefore

n∑
j=1

rj = C =

n∑
j=1

cj → 2C =

n∑
j=1

(rj + cj)

and the estimated value of the first-order correlation integral is therefore 2C/n(n− 1).

Value of α

The usual decomposition of a double summation into diagonal and off-diagonal contri-
butions allows α in the first expression in (4) to have representation

α =
1

n2

( n∑
j=1

Ij,j + 2

n∑
j=1

n∑
k=j+1

Ij,k

)
=
n+ 2C

n2

Value of β

The calculation of the value of β begins by noting that (4) may be usefully rewritten as

β =
1

n3

n∑
j=1

( n∑
i=1

n∑
k=1

Ii,jIj,k

)
This representation indicates that the value of β is constructed from a count of all
triples (xi, xj , xk) for which Ii,jIj,k = 1, including the possibilities i = j, k = j, or both.
Suppose that this counting process has reached xj . Then, the previous analysis has
demonstrated that there are m = rj + cj + 1 data points within ε of xj , including xj
itself. Clearly, the value of m will depend on j, but to maintain representational clarity,
we suppress this dependence. Furthermore, suppose that these m data (which include
xj) are xp1 , . . . , xpm , ignoring again the dependence of p1, . . . , pm on j.

Importantly, xp1 , . . . , xpm all share the property that Ij,p1 = Ip1,j · · · = Ipm,j =
Ij,pm = 1 for a fixed value of j. Consequently,

rj + cj + 1 =

m∑
k=1

Ij,pk
→

( m∑
r=1

Ij,pr

)2
= (rj + cj)

2 + 2(rj + cj) + 1

However, by construction,

( m∑
r=1

Ij,pr

)2
=

m∑
r=1

m∑
s=1

Ipr,jIj,ps
=

n∑
i=1

n∑
k=1

Ii,jIj,k
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In conclusion,

β =
1

n3

n∑
j=1

( n∑
i=1

n∑
k=1

Ii,jIj,k

)
=

1

n3


n∑

j=1

(rj + cj)
2 + 2

n∑
j=1

(rj + cj) +

n∑
j=1

1


=

1

n3


n∑

j=1

(rj + cj)
2 + 2C + n


5.2 Higher-order correlation integrals

The sample estimate of the correlation integral at embedding dimension m ≤M is the
expected value of all quantities of type

m−1∏
p=0

Ij+p,k+p (7)

taken over the n(n − 1)/2 possible values of (j, k) for which 1 ≤ j < k ≤ n, or equiva-
lently, the fraction of all pairs (xj , xk) for which expression (7) is 1, that is, Ij+p,k+p = 1
for all values of p satisfying 0 ≤ p < m. Given a pair (xj , xk), the contributions made
by that pair to the correlation integrals at each depth of embedding may be calculated
simultaneously by noting that

m−1∏
p=0

Ij+p,k+p =
(m−2∏

p=0

Ij+p,k+p

)
× Ij+m−1,k+m−1 (8)

This means that the computational penalty involved in the calculation of higher-order
correlation integrals is small, provided the contributions from each pair, say, (xj , xk),
at all requested levels of embedding are done simultaneously.

The matrix representation of the lookup table allows (8) to be computed efficiently.
Because (k+p)− (j+p) = k− j = r is independent of p (and consequently the depth of
embedding), the value of Ij+p,k+p is the entry in the matrix lookup table at row (j+ p)
and column (j + p) + r. In overview, the contributions to the estimated correlation
integral at embedding depth m can be visualized as the sum of the products of m
consecutive elements of the super diagonals of the matrix lookup table taken over the
entire upper triangle (that is, excluding the main diagonal) for values of m from m = 2
to m =M . The estimate of the correlation integral is this sum divided by n(n− 1)/2.

6 Empirical applications

6.1 Sunspots

Sunspots are regions on the surface of the sun with magnetic field strengths thousands
of times stronger than the earth’s magnetic field. They appear as dark spots on the
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surface of the sun and typically last for several days. The data, yt, which are the
annual averages of daily sunspot numbers from 1700 to 2017, were compiled by the
Solar Influences Data Analysis Center in Belgium. The series is plotted in figure 1.
This series not only is the longest directly observed index of solar activity but also has
interesting time-series properties.

0

100

200

300

M
ea

n 
an

nu
al

 s
un

sp
ot

s

1700 1800 1900 2000

Figure 1. Plot of average annual sunspots series from 1700 to 2017

The sunspot numbers have been of interest to climatologists who hypothesized a
link between sunspot activity and climate change. White and Liu (2008) provide evi-
dence that the solar cycle may be the trigger for El Niño and La Niña episodes from
1900–2005, suggesting that higher solar activity implies weaker and less frequent El Niño
events. This view is controversial, and no generally accepted statistical link has been
established. The so-called Maunder Minimum4 between 1645 and 1715 was a period
in which sunspots were scarce and the winters harsh, strongly suggesting a link be-
tween solar activity and climate change. The current view is that there has been no
significant long-term upward trend in solar activity since 1700. This implies that rising
global temperatures since the industrial revolution cannot be attributed to increased
solar activity.

A simple application of the BDS test to the annual sunspot data confirms the strong
rejection of the null hypothesis of i.i.d. data. The value of ε is set to one standard
deviation of the data, and the maximum embedding dimension is 4.

4. The Maunder Minimum is named after the solar astronomers Annie Russell Maunder (1868–1947)
and her husband, EdwardWalter Maunder (1851–1928), who studied how sunspot latitudes changed
with time.
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. bds sunspots, eps(61.985) m(4)

Brock, Dechert, Scheinkman test for independence

N(0,1] test statistics for sunspots, n (adjusted) = 315, sd = 61.98554

eps m BDSstat stderr z-value count

61.985 61.98 2 33.7834 0.0032 0.0000 19509
_ 61.98 3 35.6796 0.0039 0.0000 14438
_ 61.98 4 40.7236 0.0036 0.0000 11167

In fact, the sunspot data have given rise to many attempts to use nonlinear modeling
to capture the key features of the time series. In particular, many different self-exciting
threshold autoregressive models have been proposed in the literature and applied to the
sunspot data. Consider the following model, which is similar to those of Tong and Lim
(1980) and Battaglia and Orfei (2005):

yt =

{
α0 + α1yt−1 + α2yt−2 + v1t if yt−3 ≤ k

β0 + β1yt−1 + β2yt−2 + v2t if yt−3 > k
(9)

Fitting the model using the Stata command threshold (see [TS] threshold) yields

. threshold sunspots, threshvar(L3.sunspots) regionvars(L(1/2).sunspots) nodots
> cformat(%8.5f)

Searching for threshold: 1
(Running 252 regressions)

Threshold regression

Number of obs = 315
Full sample: 1703 - 2017 AIC = 1981.3498
Number of thresholds = 1 BIC = 2003.8652
Threshold variable: L3.sunspots HQIC = 1990.3456

Order Threshold SSR

1 60.7000 1.635e+05

sunspots Coef. Std. Err. z P>|z| [95% Conf. Interval]

Region1
sunspots

L1. 1.57704 0.06118 25.78 0.000 1.45713 1.69694
L2. -1.05771 0.09999 -10.58 0.000 -1.25369 -0.86174

_cons 32.28765 2.75804 11.71 0.000 26.88200 37.69330

Region2
sunspots

L1. 1.02593 0.06255 16.40 0.000 0.90333 1.14853
L2. -0.20113 0.06635 -3.03 0.002 -0.33116 -0.07109

_cons -3.10774 4.24440 -0.73 0.464 -11.42662 5.21114

The optimal threshold value returned by the search is k = 60.7, which is slightly
larger than the values reported by Tong and Lim (1980) and Battaglia and Orfei (2005),
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although they use annual data over a shorter sample period in their work and include a
much more complex dynamic structure. The autoregressive coefficients in both regimes
have a somewhat similar pattern in terms of sign, although the difference in their sizes
is slightly more marked in regime 2. These results suggest a rather complex dynamic
pattern, although it is possible to conjecture that the large positive first-order auto-
correlation coefficient is offset by a much smaller negative second-order autocorrelation
coefficient, which implies that the process persists a little longer in regime 2.

The residuals from the threshold regression are plotted in figure 2. The first impres-
sion is that there is less structure in the residuals than in the original series, but the
real question to be addressed is whether the residuals are now i.i.d. Application of the
BDS, again with a maximum embedding dimension of 4 specified as one of the options,
yields the following results:
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Figure 2. Residuals obtained from fitting the model in (9) using the annual sunspot
data
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. bds uhat, m(4)

Brock, Dechert, Scheinkman test for independence

N(0,1] test statistics for uhat, n (adjusted) = 313, sd = 22.83103

eps m BDSstat stderr z-value count

fp0.7 30.84 2 3.7536 0.0045 0.0002 24501
_ 30.84 3 3.7239 0.0071 0.0002 17775
_ 30.84 4 3.6170 0.0084 0.0003 12955

0.5sd 11.42 2 6.0857 0.0016 0.0000 4960
_ 11.42 3 6.3498 0.0011 0.0000 1706
_ 11.42 4 6.5673 0.0006 0.0000 599

1.0sd 22.83 2 4.3457 0.0041 0.0000 16173
_ 22.83 3 4.1801 0.0053 0.0000 9633
_ 22.83 4 4.0002 0.0050 0.0001 5768

1.5sd 34.25 2 3.4208 0.0044 0.0006 27676
_ 34.25 3 3.5086 0.0073 0.0005 21271
_ 34.25 4 3.4108 0.0092 0.0006 16399

2.0sd 45.66 2 2.1676 0.0033 0.0302 35987
_ 45.66 3 2.4953 0.0063 0.0126 31214
_ 45.66 4 2.4210 0.0090 0.0155 27080

2.5sd 57.08 2 0.5118 0.0020 0.6088 41227
_ 57.08 3 0.9191 0.0042 0.3580 38001
_ 57.08 4 0.8492 0.0065 0.3958 34992

For choices of ε up to two standard deviations, the test statistic is significant and the
null hypothesis of i.i.d. is strongly rejected. This result is a warning that the apparent
lack of structure obtained from a visual impression can be misleading. Interestingly,
at 2.5 standard deviations, the null hypothesis cannot be rejected. It may be that this
choice of ε is simply too large for these data.

6.2 U.S. equity returns

Consider the example given in Hurn et al. (2020), in which real U.S. equity returns
are to be forecast using an autoregressive [AR(1)] model based on the assumption of
normality. The model is

rt = φ0 + φ1rt−1 + vt , vt ∼ N(0, σ2
v)

If the observed values rt are indeed generated correctly according to this simple model,
then the transformed quantity

ut = Φ
( vt
σv

)
, t = 1, 2, . . . , T

takes values in the unit interval [0, 1] because of the fundamental property of Φ(·), which
is the cumulative distribution function (CDF) of the standard normal distribution. This
transformation is known as the probability integral transform (Diebold, Gunther, and
Tay 1998). Furthermore, Rosenblatt (1952) demonstrates that if the model is correctly
specified, the probability integral transform, ut, will be independent and uniformly
distributed on the unit interval. The null hypothesis that the model is correctly specified
can then be tested in terms of the BDS test applied to ut.
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Using monthly observations for the period January 1871 to September 2016 on real
equity returns, we find estimation of the model gives the following results.5

. regress re L1.re, cformat(%8.5f)

Source SS df MS Number of obs = 1,747
F(1, 1745) = 153.00

Model 2331.34477 1 2331.34477 Prob > F = 0.0000
Residual 26590.2296 1,745 15.2379539 R-squared = 0.0806

Adj R-squared = 0.0801
Total 28921.5744 1,746 16.5644756 Root MSE = 3.9036

re Coef. Std. Err. t P>|t| [95% Conf. Interval]

re
L1. 0.28392 0.02295 12.37 0.000 0.23890 0.32894

_cons 0.25270 0.09375 2.70 0.007 0.06883 0.43657

The probability integral transform is given by

ut = Φ

(
v̂t
σ̂v

)
in which σ̂v is the standard error of the regression. The BDS for independence applied
to ut with embedding dimension m = 4 gives

. bds u1, m(4)

Brock, Dechert, Scheinkman test for independence

N(0,1] test statistics for u1, n (adjusted) = 1744, sd = .2568086

eps m BDSstat stderr z-value count

fp0.7 0.39 2 5.2523 0.0011 0.0000 752008
_ 0.39 3 6.8475 0.0017 0.0000 537662
_ 0.39 4 7.9217 0.0020 0.0000 387828

0.5sd 0.13 2 7.6641 0.0002 0.0000 108847
_ 0.13 3 10.8246 0.0001 0.0000 30401
_ 0.13 4 13.3189 0.0001 0.0000 8717

1.0sd 0.26 2 6.5204 0.0008 0.0000 387647
_ 0.26 3 8.4072 0.0009 0.0000 201017
_ 0.26 4 9.7706 0.0007 0.0000 105768

1.5sd 0.39 2 5.2760 0.0011 0.0000 733400
_ 0.39 3 6.8436 0.0017 0.0000 517956
_ 0.39 4 7.9101 0.0020 0.0000 369116

2.0sd 0.51 2 5.0026 0.0009 0.0000 1055275
_ 0.51 3 6.6070 0.0017 0.0000 887570
_ 0.51 4 7.6394 0.0023 0.0000 750281

2.5sd 0.64 2 5.0064 0.0004 0.0000 1296845
_ 0.64 3 6.7856 0.0009 0.0000 1202422
_ 0.64 4 7.9056 0.0013 0.0000 1117164

The null hypothesis is rejected, and the conclusion is that the AR(1) model of equity
returns is misspecified because ut is not i.i.d. A histogram of the transformed time series,
ut, given in figure 3 suggests that the distribution of ut is also not uniform. The interior

5. The data are obtained from the website of Robert J. Shiller at http://www.econ.yale.edu/∼shiller/.

http://www.econ.yale.edu/~shiller/
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peak of the distribution of ut and also the peak at zero suggest that equity returns, rt,
are not consistent with the specification of an AR(1) model with normally distributed
errors.
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Figure 3. Probability integral transform applied to the forecast errors of the AR(1) model
of United States equity returns, January 1871 to September 2016

An interesting feature of the results is that the BDS statistic is much smaller for the
choice of ε based on the fraction of pairs rather than on the standard deviations. This
may be suggestive that the fraction of pairs method for choosing ε is more robust to
the distribution of the underlying series.

7 Conclusion

In this article, we introduced the bds command, which computes the BDS test of the null
hypothesis that the time series to which it is applied consists of i.i.d. observations. The
algorithm is adapted from LeBaron’s C codes and produces the same output as these
codes. In addition to providing the command, we also provided an elegant simplification
of the computation of the variance of the statistic.

The fact that the procedure does not use compiled code but is written in Mata to
run on all machines on which Stata is loaded means that the routine is computationally
less efficient when the sample size is large. Consequently, this routine is not suitable for
large-scale simulation studies. Two empirical examples demonstrated how the routine
is implemented in practice.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-2

. net install st0636 (to install program files, if available)

. net get st0636 (to install ancillary files, if available)
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