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Abstract. This article is primarily a replication study of Engle and Patton (2001,
Quantitative Finance 1: 237–245), but it also serves as a demonstration of the
time-series features introduced into Stata over the past two decades. The dataset
used in the original study is extended from the end date of the original sample on
22 August 2000 to 1 August 2017 to examine the robustness of the models.
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1 Introduction

The aim of this project is to reproduce Engle and Patton (2001) “What good is a
volatility model” 20 years after it was first published in Quantitative Finance. The data
used in the original article (hereafter referred to as EP) consisting of the Dow Jones
Industrial Average Index and the three-month U.S. Treasury Bill rate for the period
23 August 1988 to 22 August 2000 are available for download.1 The sample is later
extended to include data up to 1 August 2017. This classic article is a nice introduction
to volatility modeling for students of financial econometrics and represents a good target
for reproducible research. It is also a vehicle to demonstrate some of the time-series
features introduced in Stata over these two decades.

In a seminal article that is regarded as the starting point of the discipline of fi-
nancial econometrics, Engle (1982) introduced the concept of autoregressive conditional
heteroskedasticity (ARCH) to model a time-varying variance using a simple linear model.
A generalization of the model due to Bollerslev (1986) is known as generalized autore-
gressive conditional heteroskedasticity (GARCH). In its simplest form, the model is given
by

yt = µ+ ut

ut ∼ N(0, ht)

ht = ω + αu2t−1 + βht−1

(1)

The fundamental property of the model in (1), known as the GARCH(1,1) model, is that
the conditional variance ht is time varying with an autoregressive component, ht−1, and

1. See http://public.econ.duke.edu/∼ap172/.
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a component driven by unexpected events proxied by the squared disturbance in the
previous period, u2t−1. In this model, the parameter β, where 0 ≤ β < 1, determines
how past shocks affect the conditional variance at time t. The initial impact of the
previous shock on ht is α. It is this basic model and a few variations to it that EP

estimate in their article.

For illustrative purposes, we do not include additional terms in the mean equation for
yt other than the constant term, µ; additional variables can be easily included. Similarly,
the assumption of only one lag on both the squared error term, u2t , and the conditional
variance, ht−1, is only for ease of exposition. Additional terms in u2t−2, u

2
t−3, . . . could be

added to the variance equation as well as additional autoregressive terms ht−2, ht−3, . . .,
leading to a GARCH(p, q) model.

The rest of this article is structured as follows. In section 2, we review the data
used by EP and highlight the characteristics of financial returns that give rise to GARCH

modeling. In sections 3 to 7, we reproduce and explore the results reported by EP in
section 3 of their article. Finally, in section 8, we extend the EP dataset from 22 August
2000 to 1 August 2017. The original models stand up well to this extension of the
sample period, despite now including episodes of severe turbulence in the stock market.

2 Summary of the data

The daily data are observed only on days when the Dow Jones Index trades. Simply
using the dates provided to tsset the data will yield a time series with gaps. This means
that referring to the lag of the trading date will always use yesterday’s date (which may
be a missing value) instead of the date of the previous trading day. There are two fixes.
The first quick fix is simply to use the observation numbers as the time variable. This
device ensures no gaps in the series, but it is a stop-gap approach that does not allow
reference to calendar dates in analyzing the data and presenting results. A far better
way of dealing with the problem involves creating user-defined business dates.

Designated as %tb dates, a business-daily calendar omits all dates on which there is
no trading. In the current data, the date variable is called datevec; it is a daily date
variable with missing values for all nontrading days. It would also be possible to use
data in which the nontrading dates do not appear as observations. The code to make
a business calendar named buscal.stbcal is as follows. After creating the calendar,
Stata recognizes the new format %tbbuscal, and the Stata variable bcaldatevec is
used to tsset the data.

. use englepatton

. generate t = _n

. tsset t

. bcal create buscal, from(datevec)

. bcal load buscal

. generate bcaldatevec = bofd("buscal",datevec)

. assert !missing(bcaldatevec) if !missing(datevec)

. format %tbbuscal bcaldatevec

. tsset bcaldatevec
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. generate double ldj = 100*log(dj_ind)

. generate double djrets = D.ldj

The percentage log returns on the Dow Jones Index (djrets) are computed as

rt = 100× (log pt − log pt−1)

The summary statistics reported in EP table 1 are reproduced as follows:

. tabstat djrets, statistics(mean variance skewness kurtosis) columns(v)

stats djrets

mean .0550373
variance .8253352
skewness -.5266243
kurtosis 9.047384

As this table shows, the index had a small positive average return of about one-
twentieth of one percent per day. The daily variance was 0.8253, implying an average
annualized volatility of 14.42%. The annualized volatility is computed as

√
252σ2, where

252 is the median number of equity trading days per year in the United States and σ2

is the unconditional variance of the returns. The returns distribution is substantially
negatively skewed, and the kurtosis coefficient indicates that the returns distribution
has thicker tails than would be found in a Gaussian distribution, which has a kurtosis
coefficient of 3. These “fat tails” are commonly found in high-frequency financial time
series.

Figures 1 and 2 reproduce the daily index and returns, respectively. These figures
illustrate many of the stylized facts about volatility alluded to in section 2 of EP.
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Figure 1. The Dow Jones Industrial Index, 23 August 1988 to 22 August 2000
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Figure 2. Returns on the Dow Jones Industrial Index, 23 August 1988 to 22 August
2000
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1. From figure 1, it is apparent that the variance of the index changes over time as
its growth is accompanied by ever-increasing swings.

2. Figure 2 displays volatility clustering in which periods of turbulence and periods
of tranquility tend to cluster in time. The implication of such clustering is that
volatility shocks today will influence the expectation of volatility many periods in
the future.

3. Volatility is mean reverting. Mean reversion in volatility is generally interpreted
as implying a normal level of volatility to which volatility will eventually return.
Long-run forecasts of volatility should all converge to this same normal level of
volatility, no matter when they are made. Thus, the volatility plot in figure 2
shows no trend.

4. Many proposed volatility models impose the assumption that the conditional
volatility of the asset is affected symmetrically by positive and negative inno-
vations. In the ARCH(1) and GARCH(1,1) models, for example, the variance is
affected only by the square of the lagged innovation, disregarding the sign of that
innovation. For equity returns, it is particularly unlikely that positive and nega-
tive shocks—“good news” and “bad news”—have the same impact on volatility.
In figure 2, many negative returns are substantially larger than the largest positive
returns. Assuming that these negative innovations are linked to bad news, it is
reasonable to conjecture that bad news has a greater influence on volatility than
does good news of a similar size.

Figure 3 presents the correlograms of the returns and the squared returns series,
respectively. It is apparent from the correlogram of the returns that there is very
little linear dependence in the series. This result is one of the important predictions of
the celebrated efficient markets hypothesis (Fama 1970). Briefly, the efficient markets
hypothesis states that current stock prices incorporate all relevant information so that
all subsequent price changes represent random departures from previous prices. In an
efficient market, therefore, the series of returns should show no time dependence. This
result is in stark contrast to the correlogram of squared returns, where much stronger
dependence is evident. This plot suggests that squared returns—and volatility—may
be predictable.
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Figure 3. Correlograms of returns and squared returns

3 A volatility model

The parameters of the GARCH(1,1) model in (1) are estimated by maximum likelihood in
Stata using the arch command. EP base their estimation of the assumption of normally
distributed errors, as in (1), so that the log likelihood function for observation t is given
by

lt = −1

2
log 2π − 1

2
log ht −

1

2

u2t
ht

(2)

The starting value for the conditional variance ht−1 may be set in a few ways. The Stata
default for arch is to use the unconditional variance, and this is the method chosen
here. Given the values of the skewness and kurtosis coefficients reported previously,
the assumption of Gaussian errors is not likely to be supported by the data. The
estimates based on the normal log likelihood are therefore known as quasi–maximum
likelihood estimates. It turns out that, in the GARCH model, the parameter estimates
are still consistent but care must be taken when computing their standard errors. Most
econometric packages now routinely support estimation of GARCH models based on
different distributional assumptions. In Stata, the distribution() option of the arch
command also supports the t distribution and the generalized error distribution, which
allow estimation of the tail thickness of the error distribution.
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. arch djrets, arch(1) garch(1) vce(robust) vsquish nolog cformat(%6.4f)

ARCH family regression

Sample: 24aug1988 - 22aug2000 Number of obs = 3,130
Distribution: Gaussian Wald chi2(.) = .
Log pseudolikelihood = -3920.313 Prob > chi2 = .

Semirobust
djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

djrets
_cons 0.0596 0.0149 4.01 0.000 0.0304 0.0887

ARCH
arch
L1. 0.0371 0.0149 2.50 0.012 0.0080 0.0663

garch
L1. 0.9546 0.0192 49.64 0.000 0.9169 0.9923

_cons 0.0072 0.0047 1.53 0.126 -0.0020 0.0164

. estimates store mod1

. predict double h, var

. generate ha = sqrt(252*h)

. predict double resids, res
(1 missing value generated)

. generate stres = resids/sqrt(h)
(1 missing value generated)

. generate stres2 = stres^2
(1 missing value generated)

There are two issues of note with these results. The first is that the coefficient
estimates obtained here do not quite match those reported in table 2 of EP. The EP

estimates of α̂ = 0.0399 and β̂ = 0.9505 are quite similar to those reported here, but
this observation masks an important difference. In footnote 4 on page 242 of EP, the
authors point out that a t test rejects the null hypothesis that α̂ + β̂ ≥ 1, known
as integrated generalized autoregressive conditional heteroskedasticity (IGARCH). The
confidence interval for the current estimates provided by the Stata nlcom command
indicates that this is not the case for the estimates reported here.2 EP does not report
the value of the log-likelihood function at the optimum, thus making it difficult to
ascertain which set of estimates are to be preferred. The value of the log-likelihood
function obtained by Stata is −3920.313.

2. See section 4 for this calculation.
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The second issue of note relates to the standard errors. The standard errors reported
in table 2 of EP are significantly smaller than those reported by Stata. This observa-
tion is important and masks an issue that is sometimes glossed over. The maximum
likelihood estimates of the parameters of the GARCH model, based on the assumption
of Gaussian errors, are consistent even if the true distribution of the innovations is not
Gaussian. However, the usual standard errors of the estimators are not consistent when
the assumption of Gaussian errors is violated. If the parameters of the model are col-
lected into the vector θ, then standard errors can be estimated consistently using the
so-called sandwich estimator,

VCE(θ) = T−1H−1(θ) J(θ)H−1(θ) (3)

where H(θ) is the second derivative of the log-likelihood function and J(θ) is the outer
product of the gradients matrix, respectively given by

H(θ) =
1

T

T∑
t=1

∂2lt
∂θ∂θ′ , J(θ) =

1

T

T∑
t=1

∂lt
∂θ

∂lt
∂θ′

When using the vce(robust) option, Stata’s arch command reports standard errors
based on implementing (3), a task that requires computing both the first and the second
derivatives of the log-likelihood function. Bollerslev and Wooldridge (1992) provide a
way of expressing H(θ) in terms of first derivatives only. When implemented, the
standard errors are known as Bollerslev–Wooldridge standard errors. From (2), the
first and second derivatives of the log-likelihood function at time t are given by

gt = −1

2

1

ht

∂ht
∂θ

(
1− u2t

ht

)
ht = −1

2

{
− 1

h2t

∂ht
∂θ

∂ht
∂θ′

(
1− u2t

ht

)
+

1

ht

∂2ht
∂θ∂θ′

(
1− u2t

ht

)
+

1

h2t

∂ht
∂θ

∂ht
∂θ′

u2t
ht

}

The conditional expectation of the first derivative taken at t− 1 is

Et−1(gt) = −1

2

1

ht

∂ht
∂θ

{
1− Et−1

(
u2t
ht

)}
= 0

because the variance of standardized residual u2t/ht is 1 in expectation. The second
derivative now takes the simple form

Et−1(ht) = Et−1

(
−1

2

1

h2t

∂ht
∂θ

∂ht
∂θ′

u2t
ht

)
requiring only the first derivatives. A consistent estimate of the matrix H(θ) is

H(θ) = E {Et−1(ht)} = −1

2

1

T

T∑
t=1

1

h2t

∂ht
∂θ

∂ht
∂θ′

u2t
ht
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The discrepancy between the standard errors is then probably due to the difference
between the Bollerslev–Wooldridge approach that uses first derivatives and the full
sandwich estimator used by Stata.3

EP states that the choice of a GARCH(1,1) model is based on the Schwarz information
criterion (SIC) after fitting GARCH(p, q) models and searching over p ∈ [1, 5] and q ∈
[1, 2]. The results of a similar search in Stata suggest that a GARCH(2,2) model gives
the lowest SIC, which is then estimated.

. quietly {

. noisily display "p" _col(12) "q" _col(20) "SIC"

. noisily display _dup(30) "-"

. forvalues p = 1/5 {

. forvalues q = 1/2 {

. arch djrets, arch(1/`p´) garch(1/`q´)

. estat ic

. mat stats = r(S)

. noisily display `p´ _col(12) `q´ _col(20) stats[1,6]

. }

. }

. }
p q SIC
------------------------------
1 1 7872.822
1 2 7880.0442
2 1 7877.3055
2 2 7860.8244
3 1 7873.1162
3 2 7880.0294
4 1 7879.8376
4 2 7884.7481
5 1 7887.8475
5 2 7900.1665

. arch djrets, arch(1/2) garch(1/2) nolog vsquish cformat(%6.4f)

ARCH family regression

Sample: 24aug1988 - 22aug2000 Number of obs = 3,130
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = -3906.266 Prob > chi2 = .

OPG
djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

djrets
_cons 0.0629 0.0146 4.31 0.000 0.0343 0.0915

ARCH
arch
L1. 0.0588 0.0059 10.04 0.000 0.0473 0.0702
L2. -0.0581 0.0058 -9.96 0.000 -0.0695 -0.0466

garch
L1. 1.8664 0.0196 95.28 0.000 1.8280 1.9048
L2. -0.8671 0.0194 -44.71 0.000 -0.9052 -0.8291

_cons 0.0001 0.0000 1.53 0.126 -0.0000 0.0001

3. For further details of the Bollerslev–Wooldridge approach, see Martin, Hurn, and Harris (2013,
chap. 20).
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The use of simple information criteria in the selection of GARCH models is known to
be problematic (Brooks and Burke 2003). Without knowing exactly how EP computed
the SIC, it is not possible to further explore the reasons for the discrepancy.4 Looking
at the parameter estimates of the GARCH(2,2) model, however, it seems that although
the specification gives a better SIC it does not look particularly sensible, in that the
absolute values of the second-order terms are close in magnitude to the first-order terms.
Here, therefore, as in most empirical applications, the GARCH(1,1) specification or some
variant of a GARCH(1,1) model is a safe option. In this regard, it is also important to
consider the work of Hansen and Lunde (2005), who find that the forecasts of conditional
variance obtained from this simple model are always difficult to beat.

The final issue EP deal with in this subsection is whether or not the model has
captured all of the persistence in the squared residuals. They suggest examining the
correlogram of the standardized squared residuals. If the model’s specification is ade-
quate, the standardized squared residuals should be serially uncorrelated.

. corrgram stres2, lag(20)

-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial Autocor]

1 0.0286 0.0286 2.565 0.1093
2 0.0193 0.0185 3.7338 0.1546
3 -0.0119 -0.0130 4.1786 0.2428
4 -0.0076 -0.0073 4.3607 0.3594
5 -0.0055 -0.0046 4.4553 0.4859
6 0.0020 0.0024 4.4678 0.6136
7 -0.0058 -0.0059 4.5743 0.7118
8 0.0183 0.0184 5.6263 0.6890
9 0.0021 0.0013 5.6398 0.7754
10 -0.0071 -0.0081 5.8002 0.8318
11 -0.0107 -0.0100 6.1612 0.8624
12 -0.0064 -0.0053 6.2895 0.9008
13 -0.0148 -0.0141 6.9792 0.9032
14 0.0097 0.0103 7.2774 0.9235
15 -0.0180 -0.0182 8.2997 0.9112
16 -0.0000 -0.0002 8.2997 0.9394
17 -0.0070 -0.0064 8.452 0.9559
18 -0.0002 -0.0000 8.4521 0.9711
19 0.0075 0.0080 8.629 0.9791
20 -0.0159 -0.0168 9.4274 0.9774

The Ljung–Box Q statistic at the twentieth lag of the standardized squared resid-
uals is 9.4274, which is slightly different from the 8.9545 reported by EP. This slight
difference is to be expected given that the parameter estimates and hence the standard-
ized residuals differ slightly, but the overall conclusion holds: the standardized squared
residuals are indeed serially uncorrelated.

4. EP used an early version of EViews to produce their results. The discrepancy is most likely due
to differences in the computation of the SIC with respect to the treatment of constants in the
log-likelihood function and the number of observations.
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4 Mean reversion and persistence in volatility

The results for the GARCH(1,1) model indicate that the volatility of returns is very
persistent, with α̂ + β̂ = 0.9917. EP find that the sum of these coefficients is 0.9904.
One way of measuring the persistence of the process is in terms of the half-life (HL)
of volatility, which is defined as the time taken for the volatility to move halfway back
toward its unconditional mean following an impulse. Formally, HL is that smallest k for
which

|ht+k|t − σ2| = 1

2
|ht+1|t − σ2| (4)

where the long-run level to which volatility reverts is given by

σ2 =
ω

1− α− β
(5)

A representation of the k-step-ahead mean-adjusted forecasting equation is given by
(see, for example, Zivot [2009] for details)

ht+k|t − σ2 = (α+ β)k−1(ht+1|t − σ2) (6)

Substituting (6) into the definition of HL in (4) gives

(α+ β)k−1|ht+1|t − σ2| = 1

2
|ht+1|t − σ2|

After simplifying and taking logs, a simple expression for the HL, k, is

k ≈ log(1/2)

log(α+ β)

The EP parameter estimates indicate an HL of 73 trading days, whereas the results
reported here suggest an HL of about 84 trading days.

Notice that, from (6), it is apparent that as k → ∞, the volatility forecast tends
to σ2 provided that α + β < 1. In other words, for the conditional variance to be
stationary, the sum α̂ + β̂ must be less than 1. If the sum is 1, then the process is
known as an IGARCH process (Engle and Bollerslev 1986). Although EP find that the
sum is significantly less than 1, the same is not true of the results reported here.

. estimates restore mod1
(results mod1 are active now)

. estimates replay mod1

(output omitted )

. nlcom _b[ARCH:L.arch]+_b[ARCH:L.garch]

_nl_1: _b[ARCH:L.arch]+_b[ARCH:L.garch]

djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .9917178 .0062132 159.61 0.000 .9795401 1.003896
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. test _b[ARCH:L.arch]+_b[ARCH:L.garch] = 1

( 1) [ARCH]L.arch + [ARCH]L.garch = 1

chi2( 1) = 1.78
Prob > chi2 = 0.1825

Although the unconditional variance of an IGARCH(1,1) process does not exist, Lums-
daine (1996) shows that standard asymptotically based inference procedures are gener-
ally valid even in the presence of IGARCH effects.5

The unconditional mean of the GARCH(1,1) process in (5) when calculated for the
Dow Jones over the sample period turns out to be 0.8542, which implies that the mean
annualized volatility over the sample was 14.77%.

. nlcom sqrt(252*(_b[ARCH:_cons]/(1-_b[ARCH:L.arch]-_b[ARCH:L.garch])))

_nl_1: sqrt(252*(_b[ARCH:_cons]/(1-_b[ARCH:L.arch]-_b[ARCH:L.garch])))

djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 14.77221 2.035058 7.26 0.000 10.78356 18.76085

This estimate is slightly different from the 14.67% reported by EP, but this is to be
expected given the slight discrepancies in parameter estimates. A plot of the annual-
ized conditional volatility estimates over the sample period is given in figure 4. The
conditional volatility is very similar to that plotted by EP. In fact, to the naked eye, the
plots are identical notwithstanding the slight differences in parameter estimates.

5. Often, the apparent existence of a unit root as in the IGARCH model may be attributable to
regime shift in the level of the unconditional variance (Diebold 1986).
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Figure 4. Estimated conditional volatility using a GARCH(1,1) model, August 1988–
August 2000

The mean-reverting behavior of conditional volatility is evident in the patterns of
dynamic forecasts of volatility. Following EP, dynamic forecasts of annualized daily
volatility are produced starting at 23 August 1995 and 22 August 1997, respectively.
The first of these forecasts was made at a date with unusually low volatility, and so the
forecasts of volatility increase gradually to the unconditional level. The second forecast
was made during a period of high volatility. The forecasts of volatility decrease slowly
toward the unconditional level of volatility. Figure 5 demonstrates this pattern clearly.6

6. In their discussion, EP transpose the high and low periods. It should also be noted that 23 August
1997, mentioned as the start date of the second forecast in EP, is not actually a trading day.
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Figure 5. Forecasts of daily return volatility using the GARCH(1,1) model

An alternative way of visualizing the mean reversion of volatility is in terms of figure 6
in EP. Our figure 6 below is based on Stata estimates of the GARCH(1,1) parameters and
shows some differences with EP. In particular, the reversion to the mean in EP is not
completed even within 200 days. In our figure, the adjustment is completed by about
150 days. The respective HL estimates based on the GARCH models are 73 days (EP) and
84 days (current estimate). Given the size of these half-lives, it seems more appropriate
that the adjustment would be complete well before 200 days.
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Forecast horizon in days

23/08/1995 22/08/1997 Mean volatility

Forecasts of daily return volatility using the GARCH(1,1) model

Figure 6. Illustrating mean reversion in the forecasts of daily return volatility using the
GARCH(1,1) model
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EP suggest examining the volatility of volatility by observing the behavior of the
k-period-ahead forecast volatility for different choices of k. In figure 7 below, which
is similar to figure 7 of EP, forecasts are presented for horizons of one week (5 days),
one quarter (62 days), and one year (252 days). It is expected that the movements
in volatility forecasts will become more muted as the horizon increases. At one year
ahead, the volatility forecasts should approach the estimated mean obtained from the
GARCH(1,1) model of 14.77%. These forecasts are constructed using (6) with the appro-
priate index k.
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Figure 7. Forecast annualized volatilities for different horizons obtained from the
GARCH(1,1) model. The solid horizontal line is the unconditional estimate of annualized
volatility obtained from the fitted model of 14.77%.

Just as in the original EP article, it is immediately apparent that the movements at
shorter horizons are larger than the movements at longer horizons. This pattern is an
implication of the mean reversion in volatility.

5 An asymmetric volatility model

Based on the behavior of returns in figure 2, it was conjectured that the sign of the
“news”, represented by the prior period’s residual, might influence the magnitude of
the response in volatility. We can parameterize this concept in many ways, one of which
is the threshold GARCH (or TARCH) model. This model was proposed by Glosten,
Jagannathan, and Runkle (1993) and Zakoian (1994), motivated by the exponential
GARCH model of Nelson (1991).

In Stata, the tarch() specification for the conditional variance is

ht = ω + αu2t−1 + φu2t−1I(ut−1 > 0) + β2ht−1



310 “What good is a volatility model?” A reexamination after 20 years

where I(·) is the indicator function that takes the value 1 if (·) is true and 0 otherwise.
This implies that the coefficients on the news will differ depending on whether news is
good or bad:

effect of news on variance =

{
α+ φ ut−1 > 0 good news

α ut−1 ≤ 0 bad news

The presence of the leverage effect in Stata’s TARCH model requires that the coefficient
φ is negative so that bad news has a greater impact on volatility than good news.
Asymmetric effects will be present if the estimated φ is statistically distinguishable
from 0. This specification is the opposite of that used by EP who define the indicator
function as I(ut−1 > 0). To allow for non-Gaussian errors, we fit the model with a t
distribution.

. arch djrets, arch(1) garch(1) tarch(1) vce(robust) distribution(t) nolog
> vsquish cformat(%6.4f)
initial values not feasible
(note: default initial values infeasible; starting ARCH/ARMA estimates from 0)

ARCH family regression

Sample: 24aug1988 - 22aug2000 Number of obs = 3,130
Distribution: t Wald chi2(.) = .
Log pseudolikelihood = -3765.317 Prob > chi2 = .

Semirobust
djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

djrets
_cons 0.0652 0.0127 5.15 0.000 0.0404 0.0901

ARCH
arch
L1. 0.0637 0.0227 2.81 0.005 0.0192 0.1082

tarch
L1. -0.0455 0.0224 -2.03 0.042 -0.0895 -0.0016

garch
L1. 0.9473 0.0179 52.86 0.000 0.9122 0.9825

_cons 0.0088 0.0052 1.70 0.090 -0.0014 0.0189

/lndfm2 1.1984 0.1686 7.11 0.000 0.8680 1.5289

df 5.3149 0.5589 4.3821 6.6130

These results confirm the conclusion of EP that the sign of the news has a significant
influence on the volatility of returns. The estimate of φ is negative and significant, with
the effect on volatility summarized as follows:

effect of news on variance =

{
0.0637− 0.0455 = 0.0182 ut−1 > 0

0.0637 ut−1 ≤ 0

In other words, bad news at time t− 1 increases the volatility at time t by 3.5 times as
much as good news of the same magnitude. This is a similar effect to that found by EP
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whose reported leverage effect is about four times greater for bad news. The estimated
degrees of freedom of 5.3 strongly rejects Gaussian errors.

6 A model with exogenous volatility regressors

Exogenous regressors are dealt with in Stata by using the het(varlist) option of the
arch command. Stata adopts a slightly different approach from other econometric
packages by specifying that the constant and the exogenous regressors enter the condi-
tional variance equation in exponentiated form. For a single exogenous variable xt, the
conditional variance equation is

ht = exp(ω + γxt) + αu2t−1 + βht−1

This specification allows the xt variable to take on any values on the real line, while
ensuring that the parenthesized expression is strictly positive.

EP used the lagged level of the three-month U.S. Treasury Bill rate as an exogenous
regressor in their model of returns, arguing that the Treasury Bill rate is correlated with
the cost of borrowing to firms and thus may carry information that is relevant to the
volatility of returns. Estimation of the model yields the following results:

. arch djrets, arch(1) garch(1) het(m_tbill) vce(robust) vsquish nolog
> cformat(%6.4f)

ARCH family regression -- multiplicative heteroskedasticity

Sample: 24aug1988 - 22aug2000 Number of obs = 3,130
Distribution: Gaussian Wald chi2(.) = .
Log pseudolikelihood = -3909.176 Prob > chi2 = .

Semirobust
djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

djrets
_cons 0.0605 0.0144 4.19 0.000 0.0322 0.0888

HET
m_tbill 0.1976 0.0921 2.15 0.032 0.0171 0.3781

_cons -5.4878 0.7639 -7.18 0.000 -6.9849 -3.9907

ARCH
arch
L1. 0.0429 0.0171 2.50 0.012 0.0093 0.0765

garch
L1. 0.9420 0.0236 39.90 0.000 0.8957 0.9883

The impact of the lagged Treasury Bill rate is significant but not quite as signif-
icant as the EP results suggest. The downside of the estimation of the model in this
exponentiated form is that it makes direct comparison with EP difficult. Using the ml

command in Stata (see Gould, Pitblado, and Poi [2010] for details), the GARCH model
in the form estimated by EP is easily programmed. Using the unconditional variance as
the starting value for the conditional variance, the results obtained are as follows.
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. missings dropobs djrets, force

(output omitted )

. summarize djrets, detail

(output omitted )

. global mu0 = r(mean)

. quietly summarize djrets

. global start = r(Var)

. display $start

.82533518

. program garchx
1. args lnf omega alpha beta psi constant
2. tempvar err ht
3. quietly generate double `err´ = djrets-`constant´
4. quietly generate double `ht´= $start in 1
5. quietly replace `ht´ = `omega´ + `alpha´*L.`err´^2 + `beta´*L.`ht´

> + `psi´*L.m_tbill in 2/l
6. quietly replace `lnf´ = -0.5*log(2*_pi) - 0.5*log(`ht´) - 0.5*`err´^2/`ht´
7. end

. ml model lf garchx /omega /alpha /beta /psi /constant, vce(robust)

. ml init /constant=$mu0 /omega=0.0010 /alpha=0.03 /beta=0.9 /psi=0.0031

. ml search

(output omitted )

. ml max, nolog cformat(%6.4f)

Number of obs = 3,130
Wald chi2(5) = 186461.80

Log pseudolikelihood = -3908.2469 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/omega -0.0013 0.0058 -0.22 0.827 -0.0127 0.0101
/alpha 0.0438 0.0176 2.49 0.013 0.0094 0.0783
/beta 0.9391 0.0251 37.39 0.000 0.8899 0.9883
/psi 0.0029 0.0022 1.30 0.193 -0.0015 0.0072

/constant 0.0604 0.0144 4.18 0.000 0.0321 0.0887

The positive sign on ψ, the lagged Treasury Bill coefficient, indicates that higher
interest rates are generally associated with higher levels of volatility of equity returns.
This result is taken to confirm those reported by Glosten, Jagannathan, and Runkle
(1993), who also find that the Treasury Bill rate is positively related to equity return
volatility. The problem, however, is that the coefficient estimate of ψ is insignificant.
The problem seems to stem from the standard errors: the coefficients are similar to
those reported by EP but the robust standard errors are much larger. Reestimating
and using standard errors from the outer product of gradients matrix yields results very
similar to EP.

. ml model lf garchx /omega /alpha /beta /psi /constant, vce(opg)

. ml init /constant=$mu0 /omega=0.0010 /alpha=0.03 /beta=0.9 /psi=0.0031

. ml search

(output omitted )
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. ml max, nolog cformat(%6.4f)

Number of obs = 3,130
Wald chi2(5) = 1572040.50

Log likelihood = -3908.2469 Prob > chi2 = 0.0000

OPG
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/omega -0.0013 0.0015 -0.87 0.386 -0.0041 0.0016
/alpha 0.0438 0.0038 11.40 0.000 0.0363 0.0514
/beta 0.9391 0.0062 150.92 0.000 0.9269 0.9513
/psi 0.0029 0.0005 6.32 0.000 0.0020 0.0038

/constant 0.0604 0.0144 4.19 0.000 0.0321 0.0886

It seems, therefore, that the standard errors reported in table 5 of EP are not robust.

On reflection, to counter the argument that Stata’s convention for dealing with
exogenous variables is not as transparent as a simple linear form, there are at least two
advantages to the exponentiated form of the het() model.

1. The contribution of the exogenous regressors is constrained to be positive. There
is, therefore, no instance in which a particular combination of the value of the
exogenous variable and its coefficient can cause a negative variance to occur.

2. Imposing this restriction has teased out a significant coefficient on the exogenous
regressor when using robust standard errors, a result that is elusive if the nonex-
ponentiated form is used.

7 Aggregation of volatility models

Volatility clustering and non-Gaussian behavior in financial returns is typically seen
in weekly, daily, or intraday data. In the final subsection of their empirical example,
EP provide evidence consistent with the theoretical result that the empirical results
obtained are dependent on the sampling frequency. However, as shown in Drost and
Nijman (1993), for GARCH models there is no simple aggregation principle that links
the parameters of the model at one sampling frequency to the parameters at another
frequency. This means that if a GARCH model is correctly specified for one frequency
of data, then it will be misspecified for data with different time scales.

EP fit the simple GARCH(1,1) model on the data, sampled at different frequencies,
and compute the HL for each of the models. The results are presented in table 1. While
the results indicate that the sampling frequency affects the results in terms of coefficient
estimates and HL, they also show that the original estimates presented in EP are quite
different from those presented here.
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Table 1. Estimates of volatility models over varying horizons

Variable Daily 2-day 3-day 4-day Weekly

Constant 0.05955 0.11445 0.16660 0.21348 0.26258

ω 0.00717 0.01375 0.02312 0.02417 0.02072
α 0.03714 0.04193 0.05001 0.04260 0.04039
β 0.95458 0.94982 0.94155 0.95166 0.95733

EP HL 73 68 183 508 365
HL 84 168 246 482 1517

Clearly, these are substantial differences, and while their statistical significance has
not been assessed, there is some question as to why the original EP HL estimates are not
monotonically increasing; in theory, the persistence of conditional volatility increases
with the sampling frequency.

8 Updating the data

To examine how well the volatility models have stood the test of time, the daily dataset
for the Dow Jones Index and the U.S. Treasury Bill used in EP are updated to include
data to 1 August 2017. The summary statistics for the extended data are as follows.

. use englepatton_updated, clear

. generate t = _n

. tsset t

(output omitted )

. generate double ldj = 100*log(dj_ind)

. generate double djrets = D.ldj
(1 missing value generated)

. tabstat djrets, statistics(mean variance skewness kurtosis) columns(v)

stats djrets

mean .0317653
variance 1.075583
skewness -.2046746
kurtosis 11.8587

The small positive average return on the Dow Jones is now even smaller, and the
variance is larger. The daily variance of 1.0756 implies an average annualized volatility of
16.46%, which is substantially larger than the 14.42% recorded previously. The returns
exhibit slightly less negative skewness but substantially more kurtosis. These changes
in summary statistics are consistent with the period of dramatic turbulence experienced
during the global financial crisis of 2007–2009.
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Table 2 reports the parameter estimates of the three main volatility models fit by
EP: the GARCH(1,1), the TARCH(1,1), and the GARCH(1,1)-X with the three-month U.S.
Treasury Bill rate used as an exogenous regressor in the conditional variance equa-
tion. Robust standard errors based on the Huber/White/sandwich estimator are also
reported.

Table 2. Estimates of the GARCH(1,1) models fit by EP using
the extended data, 23 August 1988 to 1 August 2017. Robust
standard errors are in parentheses.

GARCH(1,1) TARCH(1,1) GARCH(1,1)-X

Constant 0.0548 0.0318 0.0549
(0.0091) (0.0087) (0.0091)

ω‡ 0.0147 0.0180 −4.4891
(0.0037) (0.0042) (0.2918)

α 0.0776 0.1302 0.0792
(0.0106) (0.0187) (0.0108)

β 0.9077 0.9110 0.9049
(0.0122) (0.0125) (0.0127)

φ −0.1240
(0.0188)

γ 0.0998
(0.0546)

log likelihood 73 68 183

‡ The ω coefficient in the GARCH(1,1)-X model enters the conditional
variance in exponentiated form.

Overall, the models stand up to estimation on this extended sample remarkably well.
Several points of interest evident in these estimates are worth mentioning. Turning first
to the GARCH(1,1) model, the persistence of the conditional variance is slightly reduced,
with the sum of the ARCH and GARCH coefficients now equal to 0.9854, as opposed
to 0.9917 in the original sample. This result reflects the extreme swings of volatility
experienced during the crisis period. Contrary to the results reported for the original
sample, the sum of α and β in the GARCH model is now significantly less than 1.

. estimates restore mod1
(results mod1 are active now)

. nlcom _b[ARCH:L.arch]+_b[ARCH:L.garch]

_nl_1: _b[ARCH:L.arch]+_b[ARCH:L.garch]

djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .9853579 .0045235 217.83 0.000 .976492 .9942238
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. test _b[ARCH:L.arch]+_b[ARCH:L.garch] = 1

( 1) [ARCH]L.arch + [ARCH]L.garch = 1

chi2( 1) = 10.48
Prob > chi2 = 0.0012

The unconditional mean of the GARCH(1,1) process when calculated for the updated
Dow Jones returns data is 15.89%.

. nlcom sqrt(252*(_b[ARCH:_cons]/(1-_b[ARCH:L.arch]-_b[ARCH:L.garch])))

_nl_1: sqrt(252*(_b[ARCH:_cons]/(1-_b[ARCH:L.arch]-_b[ARCH:L.garch])))

djrets Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 15.89499 1.418793 11.20 0.000 13.11421 18.67577

This increase in the value of the unconditional mean is also as expected given the effect
of the crisis on return volatility.

The second point of interest is that the leverage parameter φ is once again negative
and statistically significant. Furthermore, the size of the effect is approximately doubled
from −0.0609 to −0.1240. The preponderance of bad news during the extended sample
period appears to have magnified the leverage effect.

Finally, the estimate of the coefficient γ on the Treasury Bill rate in the GARCH(1,1)-X

model is now found to be insignificant, even in the exponentiated specification adopted
by Stata. This accords with intuition, because for a large part of this extended sample,
short-term interest rates were at or near the 0 lower bound.

A plot of the annualized conditional volatility estimates over the sample period is
given in figure 8. It is interesting to note how the peak of the conditional variance
during the global financial crisis makes the previous peaks during the earlier sample
around the dot-com bubble look rather modest.



C. F. Baum and S. Hurn 317

0

20

40

60

80

1990 1995 2000 2005 2010 2015

Annualized conditional variance

Figure 8. Estimated conditional volatility using a GARCH(1,1) model on the extended
dataset, 23 August 1988–1 August 2017

Although no forecasting exercise is undertaken, the conditional variance is strongly
mean reverting with an estimated HL of 47 days. This estimate is almost half of the
estimate for the earlier sample and is indicative of a more powerful dynamic process for
the conditional variance.

9 Conclusion

The aim of the original EP article was to characterize a volatility model in terms of
its ability to forecast volatility and also to capture the stylized empirical facts about
conditional volatility. Their article succeeds in doing this and also provides an acces-
sible and useful introduction to volatility modeling. In terms of reproducibility, the
results reported by EP stand up well to scrutiny and bring out some differences that
prompt thought, particularly with respect to computing standard errors in GARCH mod-
els. Interestingly, the GARCH(1,1) model fit on updated data is very similar in terms of
coefficient estimates, although the conditional variance process appears to be substan-
tially less persistent when estimated over the longer sample. The model performs well
in capturing the volatility around the global financial crisis and the turbulence in the
markets during that period.
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10 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-2

. net get st0637 (to install ancillary files)
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