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Abstract. In this article, we describe kmr, a command to estimate a microcompli-
ance function using groups’ nonresponse rates (Korinek, Mistiaen, and Ravallion,
2007, Journal of Econometrics 136: 213–235), which can be used to correct sur-
vey weights for unit nonresponse. We illustrate the use of kmr with an empirical
example using the current population survey and state-level nonresponse rates.
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1 Introduction

Unit nonresponse rates in household socioeconomic surveys have been increasing over
the last decades (Meyer, Mok, and Sullivan 2015). Unit nonresponse is problematic
for the measurement of inequality and poverty when response is not random, especially
when it is related to the variable of interest.

There is evidence that household income systematically affects survey response. Us-
ing the current population survey (CPS) of the United States, Bollinger et al. (2019)
show that nonresponse increases in the tails of the income distribution. This empirical
evidence rejects the ignorability assumption (the fact that nonresponse is random within
some arbitrary subgroup of the population). Moreover, they show that approximately
one-third to one-half of the difference in inequality measures between the survey and
administrative data (tax records) is accounted for by nonresponse.

Korinek, Mistiaen, and Ravallion (2007, 2006) show how the latent income effect on
compliance can be consistently estimated with the available data on average response
rates by groups (for example, geographic areas) and the measured distribution of income
across them. This strategy has been recently used with data of several countries (see
Hlasny and Verme [2018a,b] and Hlasny [2020]). In this article, we present kmr, a
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new command in Stata to implement this method. We also illustrate its use with an
empirical example using the 2018 CPS data and state-level response rates.

This article is organized as follows. In section 2, we describe the methodology. In
section 3, we describe the kmr command. In section 4, we illustrate the use of the
command with an empirical example, and in section 5 we conclude.

2 Methodology

As described in Korinek, Mistiaen, and Ravallion (2006, 2007), the proposed method
has two main advantages: First, it does not assume that within the smallest subgroup
the decision to respond is independent of income (ignorability assumption). Second, it
relies only on the survey data and does not require any external information.

Here we sketch how the estimator is derived. We start by assuming that the proba-
bility of response denoted by P (Dε = 1), where Dε is an indicator function equal to 1
when the household ε responds, depends on aK-vectorXε [that is, P (Dε = 1) = f(Xε)].
We observe the response rate for J groups together with the values of X for all the re-
spondents, and the respondents can be divided into I patterns according to the observed
values of X indexed by i ∈ I.

For a given group j ∈ J , the mass of respondents with a given value of X belonging
to pattern i denoted by m1

ij can be defined as

m1
ij =

∫ mij

0

Dijεdε

where mij is the total (unobserved) number of households with a value of X belonging
to pattern i in group j. The expected value of m1

ij is given by

E(m1
ij) = mijP (Dij = 1) = mijPi

where the last equality comes from the fact that the probability of response for a given
value of X is the same across the J groups. Then, we can construct a moment condition
for group j as

E

(∑
i

m1
ij

Pi

)
=
∑
i

mij = mj

where the right-hand side corresponds to the observed total mass of sampled households
in group j. To complete the moment condition, we need to assume a functional form
for Pi, which we assume to be a logistic function such that

Pi = P (Dijε = 1|Xi,θ) =
eX

′
iθ

1 + eX
′
iθ

where θ is a K-vector of parameters. Having set up the population moment condition
for group j, we can define its respective sample moment condition as

ψj(θ) =
∑
i

m1
ij

Pi
−mj
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Finally, the estimator is constructed by stacking the J sample moment conditions into
Ψ(θ) to get an estimator for θ of the form

θ̂ = argminθΨ(θ)′W−1Ψ(θ)

where W is a positive-definite weighting matrix. The J × J weighting matrix has
off-diagonal elements equal to zero because of the assumption of independence of the
response decisions of all households between the J groups. It is assumed that the
variance of ψj(θ) for each group j is proportional to the mass of the sampled household
populationmj , with a factor of proportionality σ2 that can be ignored for the estimation.

The variance of the estimator θ̂ can be computed as

V̂ar
(
θ̂
)
= σ̂2

(
∂Ψ(θ)′

∂θ
W−1 ∂Ψ(θ)

∂θ

)−1

with
∂ψj(θ)

∂θ
= −

∑
i

m1
ij

P 2
i

∂Pi

∂θ
= −

∑
i

m1
ijXi

eX
′
iθ

Alternatively, the variance can be computed using a bootstrap by randomly sampling
J groups with replacement and applying the estimator to each sample. After a given
number of repetitions, the bootstrapped variance is computed as the average squared
deviation of the bootstrapped estimates from the original estimate. This method is
computationally intensive because it needs to solve the minimization problem again for
each bootstrapped sample. Nevertheless, it can be easily implemented by using the
commands bsample and simulate, as shown in the empirical example.

3 The kmr command

3.1 Syntax

The syntax of the kmr command is

kmr
[
varlist

] [
if
] [

in
]
, groups(varname) interview(varname)

nonresponse(varname)
[
noconstant sweights(varname) generate(newvar)

graph(varname) technique(string) delta(#) start(matrix) difficult

maxiter(#)
]

varlist includes the determinants of the response rate.

3.2 Options

groups(varname) is required and specifies a categorical variable representing the group
identifiers (these are state identifiers in Korinek, Mistiaen, and Ravallion [2006;
2007]). This variable can be a numeric or string variable.
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interview(varname) is required and specifies the number of interviews obtained for
each group.

nonresponse(varname) is required and specifies the number of nonresponses obtained
for each group.

nonconstant suppresses the constant term.

sweights(varname) specifies the survey weights to be corrected and generates a new
variable with the subscript c. The new variable contains corrected survey weights
that are generated by multiplying the weights provided by the user to the inverse of
the estimated probability of response. Ideally, the user would use weights before any
unit nonresponse correction only. Unfortunately, these are not generally available in
the public use files of standard survey data. Hence, users should be aware that the
corrected weights will likely overestimate the total population if the weights used in
the sweights() option already have a form of unit nonresponse correction. To avoid
this problem, users can easily construct and use a new set of uncorrected weights, as
done in Korinek, Mistiaen, and Ravallion (2006, 2007) and as shown in the empirical
example below.

generate(newvar) specifies the name of a new variable to be created containing the
predicted probability of response. In addition, two other variables with the same
name plus the subscripts upper and lower are created. They contain, respectively,
the upper and lower bounds of a 95% confidence interval for the predicted value.

graph(varname) generates a line graph of the predicted probability of response against
varname.

technique(string) specifies the algorithm to use in the minimization problem. The
default is technique(nr) (modified Newton–Raphson). The alternatives are dfp

(Davidon–Fletcher–Powell), bfgs (Broyden–Fletcher–Golfarb–Shanno), bhhh
(Berndt–Hall–Hall–Hausman), and nm (Nelder–Mead1).

delta(#) specifies the value of the delta to be used for building the simplex required
by technique(nm). The default is delta(0.1).

start(matrix) specifies the row vector with initial values for the parameters to start
the algorithm. The default initial values are set to a vector of zeros.

difficult specifies that the criterion function is likely to be difficult to maximize
because of nonconcave regions. The option difficult specifies that a different
stepping algorithm be used in nonconcave regions (a mixture of steepest descent
and Newton).

maxiter(#) sets the maximum number of iterations to be performed before the maxi-
mization is stopped. The default is maxiter(100).

1. This is the only nongradient algorithm among the options. It is the algorithm used by MATLAB’s
fminsearch command, which Korinek, Mistiaen, and Ravallion (2007) applies in the code made
available from the authors.
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3.3 Stored results

kmr stores the following in e():

Scalars
e(n) number of observations
e(ngroups) number of groups
e(aic) Akaike information criteria
e(schwarz) Schwarz information criteria
e(value) value of the function
e(sigmavalue) value of sigma

Macros
e(cmd) kmr
e(cmdline) command as typed
e(title) title in estimation output
e(algorithm) algorithm used
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance matrix of the estimates

Functions
e(sample) marks estimation sample

In addition, the command optionally generates four new variables: the predicted
probability of compliance, the upper and lower values of its 95% confidence interval,
and corrected survey weights.

3.4 Dependency of kmr

kmr depends on the Mata function mm collapse(), which is part of the moremata pack-
age (Jann 2005). If it is not already installed, you can install it by typing ssc install

moremata.

4 Empirical example

To illustrate the use of kmr, we use the 2018 CPS data downloaded from IPUMS (Flood
et al. 2018) merged to the number of interviews and type A nonresponses (interviewer
finds the household’s address but obtains no interviews) obtained from the NBER CPS

Supplements website.2 We estimate the compliance function using the specification

Pi =
eθ0+θ1log(yi)

1 + eθ0+θ1log(yi)

where yi corresponds to log of total household gross income per capita in current dollars.3

We begin by loading the dataset and looking at the state-level geographical variation
in nonresponse rates in the United States. We can use the community-contributed
command maptile (Stepner 2015) to show these rates in a map:

2. https://www.nber.org/data/current-population-survey-data.html.
3. Gross income is factor income plus all public and private monetary transfers.

https://www.nber.org/data/current-population-survey-data.html
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. use cps2018

. preserve

. generate nonresponse = 100*typea/(typea+interview)

. collapse nonresponse, by(statefip)

. rename statefip statefips

. maptile nonresponse, geo(state) geoid(statefips) fcolor(Greys2)
> legdecimals(1) nquantiles(10)

. restore

20.1 − 24.9
17.9 − 20.1
16.9 − 17.9
15.5 − 16.9
13.5 − 15.5
12.8 − 13.5
12.1 − 12.8
11.2 − 12.1
10.2 − 11.2
7.2 − 10.2

Figure 1. Nonresponse rates

Now, we can create the regressors and two sets of weights that have no correction for
nonresponse. The first set corresponds to using the raw data (in other words, no weights
or weights equal 1). The second set assumes equal weights within states (“grossed-up”
weights by state), in which weights are constructed by dividing the population of each
state (as derived by summing the official CPS weights) by the number of respondents:4

. generate ly = log(hhincome_pc)

. generate ly2 = ly^2

. by statefip: egen state_population = sum(asecwth)

. generate weights_1 = 1

. generate weights_2 = state_population/interview

4. Alternatively, we can construct uncorrected weights by dividing the sum of respondents and non-
respondents by the number of respondents, but this would make little difference.
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We can estimate the probability of response as a function of the log of total household
gross income per capita, produce a line graph of it together with its 95% confidence
interval, and generate a set of corrected weights called weights 1 c:5

. matrix init = -.9,12

. kmr ly, groups(statefip) interview(interview) nonresponse(typea) generate(P)
> sweights(weights_1) start(init)
Iteration 0: f(p) = 636.90409 (not concave)
Iteration 1: f(p) = 242.52283 (not concave)
Iteration 2: f(p) = 155.56547 (not concave)
Iteration 3: f(p) = 151.69864
Iteration 4: f(p) = 151.41533
Iteration 5: f(p) = 151.23525 (not concave)
Iteration 6: f(p) = 151.23214 (not concave)
Iteration 7: f(p) = 151.23182
Iteration 8: f(p) = 151.23105
Iteration 9: f(p) = 151.23105

Compliance function Number of obs = 66899
AIC = 59.44

Number of groups = 51 Schwarz = 56.8224

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ly -.9866157 .2845149 -3.47 0.001 -1.544255 -.4289768
_cons 12.16841 3.11691 3.90 0.000 6.05938 18.27744

. ereturn list

scalars:
e(value) = 151.2310513467116

e(sigmavalue) = 4.8230144407221
e(aic) = 59.43614197528939

e(schwarz) = 56.82243633640928
e(n) = 66899

e(ngroups) = 51

macros:
e(cmdline) : "kmr ly, groups(statefip) i(interview) n(typea) gen.."

e(title) : "Compliance function estimate using group´s respons.."
e(cmd) : "kmr"

e(technique) : "nr"
e(properties) : "b V"

matrices:
e(b) : 1 x 2
e(V) : 2 x 2

functions:
e(sample)

. sort ly

5. Note that we correct the unitary weights. To compute total population or total income, we should
multiply the corrected weights by the ratio between the country population and the sampled house-
holds (interviews + nonresponses).
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. line P P_upper P_lower ly, ytitle("Probability of response")
> xtitle("Log(income per capita)") lpattern("1" "-" "-")
> lcolor("black" "black" "black")
> legend(order(1 "Point estimate" 2 "95% CI")) scheme(s1color)
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Figure 2. Compliance function

Now, we try a different specification that adds the squared log of income per capita
as a second regressor. This will help to capture the fact that high nonresponse rates
may occur in both tails of the income distribution, not just among rich households, as
documented in Bollinger et al. (2019).

The inclusion of the log of income squared does capture some nonlinearity of com-
pliance with respect to income. However, the estimates appear to be less precisely
estimated (two of the coefficient’s p-values are below 5% confidence level). Moreover,
the Akaike criterion suggests that the linear specification is preferable.
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. kmr ly ly2, groups(statefip) interview(interview) nonresponse(typea)
> generate(P2) difficult
Iteration 0: f(p) = 39738.763
Iteration 1: f(p) = 386.1303 (not concave)
Iteration 2: f(p) = 181.12184
Iteration 3: f(p) = 168.3632 (not concave)
Iteration 4: f(p) = 164.02531
Iteration 5: f(p) = 162.20711
Iteration 6: f(p) = 160.9006 (not concave)
Iteration 7: f(p) = 154.5554 (not concave)
Iteration 8: f(p) = 153.88426
Iteration 9: f(p) = 151.28687
Iteration 10: f(p) = 150.52936
Iteration 11: f(p) = 150.34972
Iteration 12: f(p) = 150.34425
Iteration 13: f(p) = 149.57514 (not concave)
Iteration 14: f(p) = 149.41316 (not concave)
Iteration 15: f(p) = 149.29277 (not concave)
Iteration 16: f(p) = 149.29043
Iteration 17: f(p) = 149.24785
Iteration 18: f(p) = 149.24672
Iteration 19: f(p) = 149.24614
Iteration 20: f(p) = 149.24614

Compliance function Number of obs = 66899
AIC = 60.76

Number of groups = 51 Schwarz = 58.0582

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ly 1.65373 .9866 1.68 0.094 -.2799707 3.58743
ly2 -.1191812 .0467899 -2.55 0.011 -.2108877 -.0274747

_cons -2.320068 5.306235 -0.44 0.662 -12.7201 8.079962

. generate weights_1_c2 = weights_1/P2

. ereturn list

scalars:
e(value) = 149.2461430060583

e(sigmavalue) = 4.84797679101055
e(aic) = 60.76233511215851

e(schwarz) = 58.05817197816284
e(n) = 66899

e(ngroups) = 51

macros:
e(cmdline) : "kmr ly ly2, groups(statefip) i(interview) n(typea).."

e(title) : "Compliance function estimate using group´s respons.."
e(cmd) : "kmr"

e(technique) : "nr"
e(properties) : "b V"

matrices:
e(b) : 1 x 3
e(V) : 3 x 3

functions:
e(sample)
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. line P2 P2_upper P2_lower ly, ytitle("Probability of response")
> xtitle("Log(income per capita)") lpattern("1" "-" "-")
> lcolor("black" "black" "black")
> legend(order(1 "Point estimate" 2 "95% CI")) scheme(s1color)
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Figure 3. Compliance function quadratic on log(income)

As we mention at the end of section 2, we can also compute the standard errors
using bootstrap. We do so by defining a small program called kmrboot that resamples
states with replacement and estimates the compliance function for each new sample.
This program is then called 1,000 times by the command simulate, which stores the
estimated coefficients in each repetition.

. * Estimating the compliance function and storing the coefficients

. matrix init = -.9,12

. quietly kmr ly, groups(statefip) interview(interview) nonresponse(typea)
> start(init)

. matrix b = e(b)
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. * Resampling clusters with replacement

. capture program drop kmrboot

. program define kmrboot, rclass
1. preserve
2. bsample, cluster(statefip) idcluster(newstatefip)
3. quietly kmr ly, groups(newstatefip) interview(interview)

> nonresponse(typea) start(b)
4. return scalar ly = e(b)[1,1]
5. return scalar _cons = e(b)[1,2]
6. restore
7. end

. * Repeat the resampling 1,000 times

. preserve

. simulate ly = r(ly) _cons = r(_cons), reps(1000) seed(1) nodots: kmrboot

command: kmrboot
ly: r(ly)

_cons: r(_cons)

. * Analyze the results

. bstat, stat(b) n(1000)

Bootstrap results Number of obs = 1,000
Replications = 1,000

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

ly -.9866154 .3232632 -3.05 0.002 -1.6202 -.3530312
_cons 12.16841 3.450381 3.53 0.000 5.405785 18.93103

. * Store confidence intervals

. matrix lb = r(table)[5,1..2]

. matrix ub = r(table)[6,1..2]

. restore

From the results of the bootstrap exercise, we find a level of uncertainty surround-
ing the parameter estimates that is similar to the standard errors previously reported,
although the confidence interval is slightly wider.

Finally, we can use the community-contributed command fastgini (Sajaia 2007) to
compute the Gini coefficients using the following alternatives: CPS sample weights, raw
data, “grossed-up” by state, and the kmr corrected weights according to the specification
that uses log of income:

. matrix ginis = J(5,3,.)

. quietly fastgini hhincome_pc [w = asecwth]

. matrix ginis[1,1] = r(gini)

. quietly fastgini hhincome_pc [w = weights_1]

. matrix ginis[2,1] = r(gini)

. quietly fastgini hhincome_pc [w = weights_2]

. matrix ginis[3,1] = r(gini)

. quietly fastgini hhincome_pc [w = weights_1_c]

. matrix ginis[4,1] = r(gini)
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. quietly fastgini hhincome_pc [w = 1/P_lower]

. matrix ginis[4,2] = r(gini)

. quietly fastgini hhincome_pc [w = 1/P_upper]

. matrix ginis[4,3] = r(gini)

. * Create probability of response according to bootstrap results

. generate p_boot_upper = invlogit(ly*ub[1,1]+ub[1,2])

. generate p_boot_lower = invlogit(ly*lb[1,1]+lb[1,2])

. matrix ginis[5,1] = ginis[4,1]

. quietly fastgini hhincome_pc [w = 1/p_boot_lower]

. matrix ginis[5,2] = r(gini)

. quietly fastgini hhincome_pc [w = 1/p_boot_upper]

. matrix ginis[5,3] = r(gini)

. matrix colnames ginis = "Point" "Lower" "Upper"

. matrix rownames ginis = "ASEC" "Raw" "Grossed-up" "kmr" "kmrboot"

. matlist ginis

Point Lower Upper

ASEC .4652877 . .
Raw .4652385 . .

Grossed-up .4645361 . .
kmr .5051071 .5988177 .4799021

kmrboot .5051071 .5779054 .4652385

In our exercise, we derive a range of values for our corrected Gini coefficient using
the point estimates of the compliance function and its upper and lower bounds derived
from the 95% confidence interval (row kmr and columns Point, Lower, and Upper,
respectively). We then do the same for the range of values of the compliance function
derived from the bootstrap exercise (row kmrboot). We prefer this “range of values”
approach to the use of standard errors obtained via the fastgini command alone
because the latter would leave out a substantial source of uncertainty originating from
the adjustments of the original weights.6

We can summarize the results as follows. The use of sample weights does not signifi-
cantly change the Gini coefficient compared with the use of unweighted data (comparing
the two rows, ASEC and Raw); the proposed method of weight adjustment increases the
estimated Gini coefficient by at least 8.6%, going from an uncorrected Gini of 0.465 to
0.505 (comparing the two rows, ASEC and kmr). The uncertainty associated with the
estimation of the compliance function is nonnegligible, and it does not change signifi-
cantly when the standard errors are computed using the bootstrap method (comparing
the two columns Lower and Upper).

6. For instance, using the jackknife procedure without considering the uncertainty associated with the
estimated weights, we get a much narrower confidence interval for the Gini coefficient (0.496; 0.514).
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5 Conclusion

Unit nonresponse in household surveys could lead to biases in inequality and poverty
measurement. The typical methods to correct survey weights for unit nonresponse
assume ignorability within some arbitrary subgroup of the population, which recent
empirical evidence suggests may not hold in the case of household survey data.

In this article, we presented the kmr command, which is designed to implement the
econometric method introduced by Korinek, Mistiaen, and Ravallion (2007) to estimate
a survey compliance function using group level nonresponse rates, allowing us to relax
the ignorability assumption.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0634 (to install program files, if available)

. net get st0634 (to install ancillary files, if available)
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