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Abstract. In this article, we present the wald tc command, which computes
the maximum regret (MR) of a user-specified statistical treatment rule that uses
sample data on realized treatment response (and optionally an instrumental vari-
able) to determine a treatment choice for a population. Because the outcomes of
counterfactual treatments are not observed and treatment selection in the study
population may not be random, decision makers may be able only to partially
identify average treatment effects. wald tc allows users to compute the MR of
a proposed statistical treatment rule under a flexible specification of the data-
generating process and determines the state that generates MR.
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1 Introduction

In this article, we present the wald tc command, which computes the maximum regret
(MR) of a user-specified statistical treatment rule (STR) that uses sample data on real-
ized treatment response (and optionally an instrumental variable [IV]) to determine a
treatment choice for a population. Because the outcomes of counterfactual treatments
are not observed and treatment selection in the study population may not be random,
decision makers (DMs) may be able only to partially identify average treatment effects
(ATEs). wald tc allows the DM to compute the MR of any given STR under a flexible
specification of the data-generating process and determines the state that generates MR.
wald tc uses MR ex ante to assess the performance of a decision rule over all feasible
samples. Because this assessment is done before any actual sample data are drawn,
wald tc does not take any data as input. Readers interested in wald tc may also be in-
terested in the wald mse command, which computes the maximum mean squared error
of user-specified point predictors of real random variables (Manski and Tabord-Meehan
2017).

Section 2 covers the statistical theory motivating wald tc when a DM observes only
treatment and outcome data. Section 3 examines the theory when a DM observes an IV

in addition to treatment and outcome data. Section 4 introduces the syntax of wald tc,
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explains the available options for specifying the state space of data-generating processes,
and documents key implementation details. Section 5 illustrates the command through
examples.

2 Theoretical background

2.1 Identification problem with nonrandomized treatment

Take a large population J of observationally identical individuals who face two treatment
alternatives, a or b. Suppose that for each j ∈ J , potential treatment outcomes y(·) are
binary: {yj(a), yj(b)} ∈ (0, 1)× (0, 1). A utilitarian DM faces the problem of mandating
a single treatment δ ∈ (a, b) for the entire population. Before making this decision, the
DM samples N individuals in J , indexed by i ∈ (1, . . . , N), and observes a (treatment,
outcome) pair (ti, yi) for each individual where yi := yi(ti). Let {yj(a), yj(b)} ∼ P ,
where P is the population distribution of potential outcomes. Suppose the DM draws a
sample ψ ∼ Q of N pairs (ti, yi), where Q is the sampling distribution over the sample
space Ψ ⊆ ×N{(a, b) × (0, 1)}. We will restrict attention to the case where (ti, yi) are

independent and identically distributed so ψ ∼ ×N Q̃, (t, y) ∼ Q̃. Then, the DM chooses
an STR δ : ×N{(a, b)× (0, 1)} → (a, b), yielding expected welfare

W (δ, P,Q) = E{y(a)}Pr{δ(ψ) = a}+ E{y(b)}Pr{δ(ψ) = b} (1)

where Pr{δ(ψ) = t̃} =
∫
Ψ
1{δ(ψ) = t̃} dQ(ψ).

With binary outcomes, E{y(a)} = Pr{y(a) = 1} and E{y(b)} = Pr{y(b) = 1}.
However, the DM does not observe the counterfactual potential outcome for any in-
dividual; that is, yi(t−i). The sampling process reveals Pr(t = a) [and Pr(t = b)],
Pr{y(a) = 1|t = a}, and Pr{y(b) = 1|t = b}, but the DM is interested in

E{y(a)} = Pr{y(a) = 1|t = a}Pr(t = a) + Pr{y(a) = 1|t = b}Pr(t = b)

E{y(b)} = Pr{y(b) = 1|t = a}Pr(t = a) + Pr{y(b) = 1|t = b}Pr(t = b)

If we assume that the DM’s sampling process randomly assigns treatment t—that is,
Pr
(
y|t = t̃

)
= Pr{y

(
t̃
)
}, t̃ ∈ (a, b)—then as N → ∞, the DM can identify E{y(a)} and

E{y(b)} and unequivocally choose the best treatment. This assumption is sometimes
called unconfoundedness.

However, if we do not make this assumption and allow nonrandomized treatment,
then the DM learns nothing about Pr{y(a)|t = b} and Pr{y(b)|t = a}. The DM learns
only Pr(y|t = a) and Pr(y|t = b), which equal Pr{y(a)|t = a} and Pr{y(b)|t = b},
respectively. Manski (1990) showed that when N → ∞ and Pr(t = a) ∈ (0, 1), the DM

can partially identify the expected treatment effects

E{y(t̃)} ∈ [Pr
(
y = 1|t = t̃

)
Pr(t = t̃),Pr

(
y = 1|t = t̃

)
Pr(t = t̃) + {1− Pr(t = t̃)}],

t̃ ∈ (a, b)
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Even in the limiting case of no statistical imprecision, the DM’s optimal decision depends
on the unobserved parameters Pr{y(a) = 1|t = b} and Pr{y(b) = 1|t = a}.

2.2 Introducing minimum MR

Formalize this decision problem under uncertainty in the manner of Wald (1949), and
specify a state space S that contains all populations and sampling processes that the
DM considers possible. Each state s ∈ S is characterized by a feasible pair (Ps, Qs).

The DM can follow Bayesian decision theory and assign a prior distribution over
S. However, as discussed in Manski (2004), the DM may be unable or unwilling to
formulate a credible prior. Without a prior, the DM can use the maximin or minimax
regret (MMR) criterion to evaluate different STRs. Following Manski (2004), we use the
MMR criterion, which tries to choose an STR that yields expected welfare uniformly
close to the optimal possible expected welfare across S. For further work related to
MMR treatment choice, see Manski (2005, 2007a,b, 2019); Hirano and Porter (2019);
Stoye (2009, 2012); Tetenov (2012); Manski and Tetenov (2016, 2019); and Kitagawa
and Tetenov (2018).

To define the MMR criterion, we start by defining regret. For any STR δ and state
s ∈ S, regret is the difference in ex post facto payoff between expected welfare with δ
and expected welfare with the optimal choice

R(δ, s) := max
δ∗

W (δ∗, Ps, Qs)−W (δ, Ps, Qs)

= max[E{y(a)},E{y(b)}]−W (δ, Ps, Qs)

“max” is simply the MR that an STR δ generates over the state space:

max
s

R(δ, s)

Finally, the MMR criterion chooses an STR that minimizes max regret

δMMR := argmin
δ

max
s

R(δ, s)

2.3 Asymptotically optimal STRs

When N → ∞, Manski (2020) examines the MR of two STRs: the empirical success (ES)
rule and the novel asymptotic MMR (AMMR) rule. As the name suggests, the ES rule
chooses δ = a if

E(y|t = a) ≥ E(y|t = b)

and δ = b if the inequality is reversed. The AMMR chooses δ = a if

2{E(y|t = b) Pr(t = b)− E(y|t = a) Pr(t = a)}+ Pr(t = a)− Pr(t = b) ≤ 0
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and δ = b if the inequality is reversed. Manski (2020) shows that the AMMR (asymptot-
ically) minimizes MR for this decision problem and derives conditions when the ES rule
does so as well. However, there are no results for the sample analogs of these or any
other STRs. To fill this gap, wald tc is designed to provide numerical approximations
of MR for STRs under a flexible specification of the state space.

wald tc offers two built-in STRs for applications where only (t, y) are observable:
the ES STR and the AMMR STR, which are sample analogs of the rules described above.
There are also two built-in STRs for an IVs framework that are explained in section 3.
Denoting sample probabilities and expectations with a hat [that is, Ê(·)], the ES STR

chooses δ = a if Ê(y|t = a) ≥ Ê(y|t = b) and δ = b if the inequality is reversed. The
AMMR chooses δ = a if

2{Ê(y|t = b)P̂r(t = b)− Ê(y|t = a)P̂r(t = a)}+ P̂r(t = a)− P̂r(t = b) ≤ 0

and δ = b if the inequality is reversed.

2.4 Computing MR

Now, we go over the algorithm for numerically computing MR for an STR δ over a
feasible state space of data-generating processes. Let the s subscript of objects in step 1
denote that these are “primitives” that define state s. There are five such primitives
that wald tc allows, listed in step 1 starting with Prs(t = a), which is why the superset

S̃ in step 0 has five dimensions.

The algorithm first defines a five-dimensional cube S̃, which contains infeasible states
and then iterates across each state in S̃ to check its feasibility according to user-defined
constraints C, finally arriving at the set of feasible states S. The reason that the
algorithm iterates over nonfeasible states in S̃ is that the complexity of the constraints
C prevents wald tc from being able to explicitly define S as a function of C in one step.
Instead, the algorithm must use the two-step process of defining S̃ and then checking
each state in S̃ against C.

Outline of the algorithm

0. Let the user specify a superset of the state space S̃ ⊆ [0, 1]5, STR δ, and some set of

constraints C that implicitly define the state space S ⊆ S̃ = (s ∈ S̃ : C satisfied).

1. Fix a state [Prs(t = a), Prs{y(a) = 1|t = a}, Prs{y(b) = 1|t = b}, Prs{y(b) =

1|t = a}, Prs{y(a) = 1|t = b}], s ∈ S̃. If these parameters satisfy C, go to step 2.
If not, skip this state and proceed to step 5.

2. Given s, draw N observations (ti)
N
i=1 from a Bernoulli distribution with p =

Prs(t = a). For each i ∈ (1, . . . , N), draw yi from a Bernoulli distribution with
p = Prs{y(ti) = 1|t = ti}. Compute δ(·) using {(ti, yi)}Ni=1. Call this decision δk.

3. Repeat step 2 T times, and use the values (δk)
T
k=1 to approximate Prs{δ(ψ) = a}

by its sample average P̂r{δ(ψ) = a}.
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4. Compute approximate W (δ, Ps, Qs) using P̂r{δ(ψ) = a}:

Ŵ (δ, Ps, Qs) = E{y(a)}P̂r{δ(ψ) = a}+ E{y(b)}[1− P̂r{δ(ψ) = a}]

Compute approximate regret for δ and s:

R̂(δ, s) = max[E{y(a)},E{y(b)}]− Ŵ (δ, Ps, Qs)

5. Repeat steps 1–4 for each s ∈ S.

6. Return maxs∈S R̂(δ, s), the approximate MR.

Although the algorithm described above is simple, searching over a continuous space
such as S = [0, 1]5 is intractable. Moreover, the user’s constraints C mean that the shape
of S may be harder to explicitly describe than [0, 1]5. To enable feasible computation,
wald tc specifies the state space as a finite grid over [0, 1]5, subject to a set of flexible
constraints available to the user (that are described in section 4.2). For example, the user
may specify that Prs(t = a) ∈ [0.05, 0.9], Prs{y(a) = 1|t = a} ≥ Prs{y(b) = 1|t = a},
or |E{y(a)} − E{y(b)}| ≤ 0.5 based on knowledge about their setting.

3 Extension to the IV setting

3.1 Classic IV (CIV) approach

A common approach to the problem of identifying E{y(a)} and E{y(b)} begins by
introducing a linear model for observed y,

y = β0 + β1da + ε

where da = 1(t = a) is a dummy for treatment a and E(ε) = 0. β1 is interpreted as
the treatment effect of a versus b, common to all j ∈ J . Ideally, the planner could
impose the mean independence assumption E(ε|da) = 0, which implies E{y(t̃)|t = a} =
E{y(t̃)|t = b} and point-identifies β1. However, with nonrandomized treatment, this
equality may be violated. To overcome this difficulty, the DM could use an IV v, which
satisfies the following assumptions:

Cov(v, ε) = 0 and Cov(v, da) 6= 0 (2)

It follows that the DM can asymptotically point-identify E{y(a)} = β0 + β1 and
E{y(b)} = β0 with

β1 =
Cov(v, y)

Cov(v, da)
(3)

β0 = E(y)− β1E(da)

The DM would use this knowledge to assign everybody in J to treatment a if β1 > 0
and treatment b if β1 < 0. See Manski (2007a, chap. 7) for a textbook exposition.
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3.2 Partial identification IV (PIIV) approach

In some settings, the DM may find that the assumptions of the CIV approach are not
credible. The cases where the CIV approach fails are if treatment effects are heteroge-
neous across persons or if the instrument v is invalid [that is, Cov(v, ε) 6= 0].

Even if the CIV approach is unsuitable, the DM can still partially identify E{y(a)}
and E{y(b)} using an IV v as shown in Manski (2007a). The missing-data setting used
there is applicable here by reinterpreting y as two different observable variables y(a)
and y(b) for which data are missing when t = b or t = a, respectively. We will refer
to this method as the PIIV approach. The PIIV approach will be valid if treatment
effects are heterogeneous across persons. The PIIV approach assumes only that E{y(t̃)}
is independent of v [that is, E{y(t̃)|v} = E{y(t̃)} for t̃ ∈ (a, b)]. One example of where
the PIIV approach would be preferred over the CIV approach is if the DM does not wish
to assume a linear homogeneous model of treatment responses but still assumes that
E{y(t̃)} is independent of v. In this case, ε and therefore (2) are not well defined, while
the PIIV approach retains its IV assumption.

Suppose that v can take values in some set K. The PIIV approach begins with an
assumption that E{y(t̃)|v} = E{y(t̃)}. So we can partially identify E{y(·)|v = k} as
N → ∞,

E{y(t̃)|v = k} ∈ [ Pr(y = 1|t = t̃, v = k) Pr(t = t̃|v = k),

Pr(y = 1|t = t̃, v = k) Pr(t = t̃|v = k) + {1− Pr(t = t̃|v = k)}]

for all t̃ ∈ (a, b), k ∈ K. Applying the independence assumption, we impose that
E{y(t̃)|v = k} = E{y(t̃)|v = k′}, t̃ ∈ (a, b), k, k′ ∈ K, so

E{y(t̃)} ∈
[
max
k∈K

E(y|t = t̃, v = k) Pr(t = t̃|v = k),

min
k∈K

E(y|t = t̃, v = k) Pr(t = t̃|v = k) + {1− Pr(t = t̃|v = k)}
]

(4)

for each t̃ ∈ (a, b), where we denote each bound with [LBt̃,UBt̃]. Note that if LBa > UBa

or LBb > UBb, then the independence assumption is refuted and another identification
strategy is needed. Otherwise, the DM can map these partial identification bounds to a
decision. Using the MMR criterion, the DM would assign everybody in J treatment a if
the MR from choosing b is higher than that from choosing a:

UBa − LBb ≥ UBb − LBa

If this inequality is reversed, the DM assigns treatment b to everybody in J .

3.3 IV STRs

Similarly to the ES and AMMR rules, the finite sample performance of the CIV and
PIIV methods in terms of MR is unknown. To address this challenge with numerical
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approximation, wald tc allows the user to evaluate the finite sample MR performance
of two built-in IV STRs, one for CIV and the other for PIIV. wald tc also allows users to
evaluate arbitrary user-defined IV STRs. For computational simplicity, wald tc imposes
that v takes values in (0, 1) for both the CIV and PIIV approaches. This is done to keep
the dimensionality of the state space low and is not a fundamental requirement for the
formal problem.

The framework described in sections 2.1 and 2.2 is easily extended to allow STRs
that use an IV. The main difference is that there is an additional binary observable
variable v, so the DM draws a sample ψ ∼ Q of N triples (ti, yi, vi) with sample space
Ψ ⊆ ×N{(a, b)× (0, 1)× (0, 1)}. We will restrict attention to the case where (ti, yi, vi)

are independent and identically distributed so ψ ∼ ×N Q̃, (t, y, v) ∼ Q̃. Then, the DM

chooses an STR δ : ×N{(a, b) × (0, 1) × (0, 1)} → (a, b), with the same ex post facto
payoff as in (1).

Now, we can construct the two built-in IV STRs using the two IV approaches described
above and use MR to evaluate their performance. The CIV STR calculates the sample
analog of (3),

β̂1 =
Ĉov(v, y)

Ĉov(v, da)

choosing δ = a if β̂1 ≥ 0 and δ = b if β̂1 < 0.

For the PIIV STR, take the sample analog of (4) to get

(L̂Bt̃, ÛBt̃) =
[

max
k∈(0,1)

Ê(y|t = t̃, v = k)P̂r(t = t̃|v = k),

min
k∈(0,1)

Ê(y|t = t̃, v = k)P̂r(t = t̃|v = k) + {1− P̂r(t = t̃|v = k)}
]

for each t̃ ∈ (a, b). If L̂Ba ≤ ÛBa and L̂Bb ≤ ÛBb, then the DM assigns δ = a if
ÛBa − L̂Bb ≥ ÛBb − L̂Ba and δ = b if the inequality is reversed. If L̂Ba > ÛBa or
L̂Bb > ÛBb and the independence assumption is refuted, wald tc specifies that the DM

will ignore v and use the AMMR STR described in section 2.3.

As a general result, the MR of an STR can be evaluated on any given state space.
Specifically, the MR of the CIV and the PIIV STRs can be found for state spaces containing
states that violate the relevant IV assumptions. One feature of wald tc is that it allows
users to flexibly specify state spaces and include states that violate the IV assumptions
of an IV STR.

At first glance, it may be counterintuitive to examine a DM’s choice of an STR when
the assumptions that motivate it are violated. Manski (2020) provides some guidance
on this matter with the discussion of model choice. Although “the state space should
include all states that the planner believes feasible” (Manski 2020), such a high degree
of generality may preclude decision making in reality. To simplify the problem enough
to allow choice, a DM might select a model as a surrogate simplified reality. A DM “using
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a model acts as if the model space is the state space” (Manski 2020). Therefore, a DM

who uses the PIIV STR uses a model that takes the relevant IV assumption as true even
if the DM suspects this assumption to be wrong in some feasible states of the world. As
the statistician George Box wrote, “All models are wrong, but some are useful” (Box
1979). Therefore, wald tc allows the user to explore the settings in which IV STRs may
be useful for DMs even if the underlying models used by the DMs are wrong.

3.4 Computing MR in the IV setting

The algorithm for computing MR in the IV setting is similar to the standard algorithm
described in section 2.4, except for six additional state parameters and an additional
observable variable. The 6 additional state parameters mean that there are 11 state
primitives (which are listed in step 1), so S̃ is an 11-dimensional cube. These changes
appear only in steps 0–2:

Modified steps in IV algorithm

0. Let the user specify a superset of the state space S̃ ⊆ [0, 1]11, STR δ, and some set of

constraints C that implicitly define the state space S ⊆ S̃ = (s ∈ S̃ : C satisfied).

1. Fix a state [Prs(t = a), Prs{y(a) = 1|t = a}, Prs{y(b) = 1|t = b}, Prs{y(b) =
1|t = a},Prs{y(a) = 1|t = b}, Prs{v = 1|t = a, y(a) = 1},Prs{v = 1|t = a, y(a) =
0},Prs{v = 1|t = b, y(b) = 1}, Prs{v = 1|t = b, y(b) = 0}Prs{y(a) = 1|v = 1, t =

b}, Prs{y(b) = 1|v = 1, t = a}], s ∈ S̃. If these parameters satisfy C, go to step 2.
If not, skip this state and proceed to step 5.

2. Given s, draw N observations (ti)
N
i=1 from a Bernoulli distribution with p =

Prs(t = a). For each i ∈ (1, . . . , N), draw yi from a Bernoulli distribution with
p = Es{y(ti)|t = ti}. For each i ∈ (1, . . . , N), draw vi from a Bernoulli distribution
with p = Prs{v = 1|t = ti, y(ti) = yi}. Compute δ(·) using {(ti, yi, vi)}Ni=1. Call
this decision δk.

Qualitatively, the MR algorithm for the IV setting is the same as the algorithm for the
standard setting. However, the IV approach is more computationally intensive because
the state space now becomes a grid over [0, 1]11 as opposed to [0, 1]5 in the standard
problem. Additionally, the user can impose IV-specific constraints such as a restriction
on the distribution of v, for example, Prs{v = 1|t = k, y(a) = l} ∈ [0.01, 0.99], k ∈
(a, b), l ∈ [0, 1].

Note that although the parameters Prs{y(a) = 1|v = 1, t = b} and Prs{y(b) = 1|v =
1, t = a} are not used in the data simulation in step 2, they are used to check whether
user-defined restrictions are satisfied in step 1. Specifically, these parameters are used
to check the assumption violation restrictions described in the next section.
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3.5 Restricting the violation of identifying assumptions

The default grid search includes states that violate either the CIV assumptions of y =
β0+β1da+ε and (2) or the PIIV independence assumption of E{y(t̃)|v} = E{y(t̃)}. This
allows users to determine the MR penalty of relying on a false IV assumption, including
the CIV case where the assumption is not refutable. To allow for a more precise analysis
of the effect of using a false assumption, wald tc allows users to set an acceptable limit
on the magnitude of violation of these assumptions. Then, the program will search only
in states where these assumptions are not violated more than the limit permits.

Under PIIV, an intuitive way to quantify violation is the distance

DPIIV(s) := max
t̃∈(a,b)

|Pr{y(t̃) = 1|v = 1} − Pr{y(t̃) = 1|v = 0}| (5)

where this distance lies in [0, 1] and is 0 if the independence assumption is satisfied.
wald tc allows the user to set an upper bound on this distance, for example, only
search over states where DPIIV ≤ 0.5.

Under the CIV approach, if the model is well specified and the identifying assump-
tions of (2) are true, then the asymptotic IV estimator β1 is equal to the ATE of a versus
b: β1 = E{y(a) − y(b)}. Given a state s, wald tc can always compute the asymptotic
value of the CIV estimator β1, including when β1 = ±∞ if Cov(v, da) = 0. Then, under
CIV, an intuitive way to quantify violation of the specification and identify assumptions
is the distance

DCIV(s) := |β1 − [E{y(a)} − E{y(b)}]| (6)

where this distance lies in [0,∞) and is 0 if the IV estimator identifies the ATE.

4 The wald tc command

4.1 Syntax

The syntax for wald tc is

wald tc command name, samp size(#)
[
ta l(#) ta r(#) yata(#) ybtb(#)

yatb(#) ybta(#) eya l(#) eya r(#) eyb l(#) eyb r(#) d ey(#)

d ya(#) d yb(#) v l(#) v r(#) vtay1(#) vtay0(#) vtby1(#) vtby0(#)

d piiv(#) d civ(#) mon unconf rand tb grid(#) mc iter(#) user def

iv mode
]

command name specifies the name of the STR to be used. It must be either a built-in
STR (see section 4.3 for details) or any user-specified STR that is written as an e-class
command that returns 0 or 1 to e(b) and takes a two- or three-column vector according
to whether an IV is included (see section 4.4 for details).
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4.2 Options

samp size(#) specifies the size of the sample (that is, N in sections 2 and 3).
samp size() is required.

Options to specify restrictions to the parameter space:

ta l(#) specifies the lower bound on Pr(t = a), the probability that the DM observes
treatment a. The default is ta l(0).

ta r(#) specifies the upper bound on Pr(t = a). The default is ta r(1).

yata(#) specifies a point value for Pr{y(a) = 1|t = a}, that is, the probability of
observing y = 1 conditional on t = a. This value can be in [0, 1] or the default
yata(-1), which specifies that Pr{y(a) = 1|t = a} is not restricted to a point.

ybtb(#) specifies a point value for Pr{y(b) = 1|t = b}. This value can be in [0, 1] or
the default ybtb(-1), which specifies that Pr{y(b) = 1|t = b} is not restricted to a
point.

yatb(#) specifies a point value for Pr{y(a) = 1|t = b}. This value can be in [0, 1] or
the default yatb(-1), which specifies that Pr{y(a) = 1|t = b} is not restricted to a
point.

ybta(#) specifies a point value for Pr{y(b) = 1|t = a}. This value can be in [0, 1] or
the default ybta(-1), which specifies that Pr{y(b) = 1|t = a} is not restricted to a
point.

eya l(#) specifies the lower bound on E{y(a)}, the expected treatment effect of a.
The default is eya l(0).

eya r(#) specifies the upper bound on E{y(a)}. The default is eya r(1).

eyb l(#) specifies the lower bound on E{y(b)}. The default is eyb l(0).

eyb r(#) specifies the upper bound on E{y(b)}. The default is eyb r(1).

d ey(#) specifies the upper bound on the distance |E{y(a)} − E{y(b)}| between the
expected treatment effects of the two treatments. The default is d ey(1).

d ya(#) specifies the upper bound on the distance |E{y(a)|t = a}−E{y(a)|t = b}|, the
distance between the observed and the missing conditional expectations of E{y(a)}.
The default is d ya(1). For example, choosing d ya(0) imposes that y(a) is inde-
pendent of observed treatment t.

d yb(#) specifies the upper bound on the distance |E{y(b)|t = a} − E{y(b)|t = b}|.
The default is d yb(1).

v l(#) specifies the lower bound on each of the four probabilities in

Pr{v = 1|t = t̃, y(t̃) = k}, t̃ ∈ (a, b), k ∈ (0, 1). The default is v l(0).
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v r(#) specifies the upper bound on each of the four probabilities in

Pr{v = 1|t = t̃, y(t̃) = k}, t̃ ∈ (a, b), k ∈ (0, 1). The default is v r(1).

vtay1(#) specifies a point value for Pr(v = 1|t = a, y = 1). This value can be in [0, 1] or
the default vtay1(-1), which specifies that Pr(v = 1|t = a, y = 1) is not restricted to
a point. vtay1() overrides limits set in v l() and v r() for Pr(v = 1|t = a, y = 1).

vtay0(#) specifies a point value for Pr(v = 1|t = a, y = 0). This value can be in [0, 1] or
the default vtay0(-1), which specifies that Pr(v = 1|t = a, y = 0) is not restricted to
a point. vtay0() overrides limits set in v l() and v r() for Pr(v = 1|t = a, y = 0).

vtby1(#) specifies a point value for Pr(v = 1|t = b, y = 1). This value can be in [0, 1] or
the default vtby1(-1), which specifies that Pr(v = 1|t = b, y = 1) is not restricted to
a point. vtby1() overrides limits set in v l() and v r() for Pr(v = 1|t = b, y = 1).

vtby0(#) specifies a point value for Pr(v = 1|t = b, y = 0). This value can be in [0, 1] or
the default vtby0(-1), which specifies that Pr(v = 1|t = b, y = 0) is not restricted to
a point. vtby0() overrides limits set in v l() and v r() for Pr(v = 1|t = b, y = 0).

d piiv(#) specifies the upper bound on the distance DPIIV as defined in (5). The de-
fault is d piiv(1). Setting the option to 0 imposes the IV assumption that motivates
the use of the PIIV STR.

d civ(#) specifies the upper bound on the distance DCIV as defined in (6). The
distance is in [0,∞], and the user can set d civ(#) to any finite nonnegative real
value. The default is d civ spec(-1), which represents an “allowable” upper bound
of ∞.

mon imposes the monotone treatment selection assumption that

Pr{y(a) = 1|t = a} − Pr{y(b) = 1|t = a} ≥ 0

Pr{y(b) = 1|t = b} − Pr{y(a) = 1|t = b} ≥ 0

This could represent a setting where each sampled individual chooses t to maximize
his or her own outcome. See Manski (2007a) for a discussion of this assumption,
which weakens unconfoundedness.

unconf imposes the unconfoundedness assumption that

Pr{y(a) = 1|t = a} = Pr{y(a) = 1|t = b}
Pr{y(b) = 1|t = a} = Pr{y(b) = 1|t = b}

This could represent a setting where treatment is randomized, as discussed in sec-
tion 2.1. Note that specifying unconf is equivalent to, and a shortcut for, specifying
d ya(0) d yb(0).

rand tb imposes a randomized tiebreak rule for the chosen non-IV STR, which chooses
δ = a with probability 0.5 in cases where there is no uniquely prescribed decision.
By default, wald tc deterministically chooses δ = a in these tiebreak cases. More
specifically, the chosen tiebreak rule is applied in the following four cases: 1) with the
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ES rule, when only one treatment is observed in a sample; 2) with the AMMR rule,

when only one treatment t̂ is observed in a sample and Ê(y|t = t̂) = 0.5; 3) with the

ES rule, when both treatments are observed in a sample and Ê(y|t = a) ≥ Ê(y|t = b);
and 4) with the AMMR rule, when both treatments are observed in a sample and

2{Ê(y|t = b)P̂r(t = b)− Ê(y|t = a)P̂r(t = a)}+ P̂r(t = a)− P̂r(t = b) = 0.

Options to specify the computational details:

grid(#) specifies the number of grid points used to search over each parameter, for
nonsingleton parameters. The default is grid(10). For example, suppose the user
sets grid(5) with ta l(0.4) and ta r(0.6). This specifies that wald tc will set
Pr(t = a) to each point in the set (0.4, 0.45, 0.5, 0.55, 0.6) in its search over the
parameter space. On the other hand, if the user sets ta l(0.4) and ta r(0.4),
then wald tc will set only Pr(t = a) = 0.4 regardless of grid(#).

mc iter(#) specifies the number of Monte Carlo (MC) iterations used to compute the
regret of an STR in a state. This number corresponds to T in step 3 of the wald tc

algorithm described in section 2.4. The default is mc iter(1000).

user def specifies that the STR being used is user defined (not one of the built-in STRs
described in section 4.3).

iv mode specifies that the IV framework applies. If iv mode is enabled, the STR takes in
data with three variables: treatment, outcome, and IV [that is, (t, y, v) in section 3].
If iv mode is not enabled, the STR takes in data with the standard two variables of
treatment and outcome [that is, (t, y) in section 2].

4.3 Built-in STRs

There are two built-in STRs for the standard framework where the STR takes data in
the form (t, y) and two built-in STRs for the IV framework where the STR takes data in
the form (t, y, v). wald tc uses the standard framework by default and switches to the
IV framework if the user specifies iv mode. The built-in standard STRs are derived in
section 2.3, and the built-in IV STRs are derived in section 3.3. Finally, the hats over
parameters indicate sample values used by the STR.

Standard STRs:

ES is the Empirical Success rule, which chooses treatment δ = a when Ê(y|t = a) ≥
Ê(y|t = b). In the edge case where the ES rule observes a sample with only one
treatment, it will choose δ = a.

AMMR is the Asymptotic Minimum Maximum Regret rule, which chooses treatment δ = a
when

2{Ê(y|t = b)P̂r(t = b)− Ê(y|t = a)P̂r(t = a)}+ P̂r(t = a)− P̂r(t = b) ≤ 0
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Note that when the AMMR rule observes only one treatment t̂, it will choose δ = t̂ if
Ê(y|t = t̂) > 0.5, breaking ties at 0.5 in favor of δ = a.

IV STRs:

CIV is the Classic IV rule, which chooses treatment δ = a when

0 ≤ Ĉov(v, y)

Ĉov{v,1(t = a)}

PIIV is the Partial Identification IV rule, which computes the bounds

(L̂Bt̃, ÛBt̃) =
[

max
k∈(0,1)

Ê(y|t = t̃, v = k)P̂r(t = t̃|v = k),

min
k∈(0,1)

Ê(y|t = t̃, v = k)P̂r(t = t̃|v = k) + {1− P̂r(t = t̃|v = k)}
]

for each t̃ ∈ (a, b). If L̂Ba ≤ ÛBa and L̂Bb ≤ ÛBb, then PIIV chooses treatment δ = a
when ÛBa − L̂Bb ≥ ÛBb − L̂Ba.

If instead L̂Ba > ÛBa or L̂Bb > ÛBb, PIIV chooses treatment δ = a when

2{Ê(y|t = b)P̂r(t = b)− Ê(y|t = a)P̂r(t = a)}+ P̂r(t = a)− P̂r(t = b) ≤ 0

4.4 Implementation details

Details on user-defined STRs

wald tc allows use of a built-in STR (see section 4.3) or of any user-defined STR if it
is an e-class Stata command that returns to e(b). This command should return 1 if
the STR chooses treatment a and 0 if the STR chooses treatment b. If iv mode is not
specified, then the command should take two data columns, where the first column is
the indicator for treatment a: da := 1(t = a), and the second column is the observed
treatment outcome y := y(t). If iv mode is specified, then the command should take
three data columns, where the first is da, the second is y, and the third is v, the IV. Each
data point in the input matrix will be either 0 and 1, and there should be no missing
data (.). However, note that the missing-data problem that motivates wald tc is still
present, with y(t−i) remaining unobserved for each individual.

Details on option roles

The options of wald tc can be separated into three groups: algorithm settings, sim-
ple parameter restrictions, and compound parameter restrictions. Algorithm settings
alter the base problem and algorithm implementation and are defined by samp size(),
grid(), mc iter(), user def, and iv mode. Simple parameter restrictions bound in-
dividual primitive elements of the state space as described in step 1 of the algorithm
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overviews in sections 2.3 and 3.4. The simple restrictions are ta l(), ta r(), yata(),
ybtb(), yatb(), ybta(), v l(), v r(), vtay1(), vtay0(), vtby1(), and vtby0(). The
remaining options are compound parameter restrictions that are more complicated and
impose logical constraints on combinations of primitive state-space parameters, for ex-
ample, d ya(0.2) imposing that |Prs{y(a) = 1|t = a} − Prs{y(a) = 1|t = b}| ≤ 0.2.
Following the algorithm notation in sections 2.3 and 2.4, the simple parameter restric-
tions determine S̃ ⊆ [0, 1]5 or S̃ ⊆ [0, 1]11 (depending on iv mode), while the compound

parameter restrictions C implicitly define the state space S ⊆ S̃.

Details on grid search

By default, wald tc searches over a grid of size grid() for each parameter, with each
iteration looking at every unique 5-tuple or 11-tuple of parameters on the grid S̃. How-
ever, if a simple (parameter) restriction bounds a parameter [like Prs(t = a)] to a single
point, then to improve speed, wald tc will “search” over a one-point grid for this pa-
rameter. For example, the user may fix Prs(t = a) = 0.7 with ta l(0.7) ta r(0.7),
which will improve execution speed.

In addition, because the set of compound restrictions C imposes S ⊆ S̃ implicitly,
for each unique 5-tuple or 11-tuple on the grid S̃, wald tc checks C. As described in
step 1 in sections 2.4 and 3.4, if a restriction in C is violated, wald tc skips the state and
continues searching over S̃. If C is satisfied, wald tc proceeds with the MC simulation
and regret approximation.

To accommodate the Mata command rbinomial(), wald tc cannot simulate data
using parameters that are exactly 0 or 1. Thus, any parameter bounds that are specified
as 0 or 1 will be transformed into 10−8 and 1 − 10−8. For example, if a user imposes
grid(3) and leaves the default ta l(0) and ta r(1), wald tc will search over the grid
(10−8, 0.5, 1− 10−8) for Prs(t = a).

As a caveat, the use of grid search causes wald tc to have poor accuracy in reporting
the true MR when there are no identification issues [that is, E{y(t̃)} ≈ Pr(y = 1|t = t̃)]
and when sample sizes are large (that is, > 500 for a grid size of 10). The limitation
of grid search for this case is that the region of the parameter space on which regret is
substantially higher than zero shrinks with sample size, so a crude grid may include only
parameter values where regret is almost zero. This issue should not arise in problems
with partial identification, because the region of the parameter space with nonnegligible
regret does not shrink with sample size.

Details on execution speed

In general, STRs that take in (t, y) will be much faster than IV STRs that take in
(t, y, v), where the former do not have iv mode specified and the latter do have iv mode

specified. The reason is that without iv mode, the state space is some 5-dimensional
subset of [0, 1]5, while with iv mode, the state space is some 11-dimensional subset
of [0, 1]11. Note that if d piiv(1), which it is by default, then wald tc does not
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calculate DPIIV(s). Then, wald tc does not search over Prs{y(a) = 1|v = 1, t = b} or
Prs{y(b) = 1|v = 1, t = a}, reducing the state-space superset to [0, 1]9.

Therefore, taking the default grid(10), IV STRs will search over 10, 000 times more
states as non-IV STRs if d piiv(1). If d piiv() is set to less than 1, this ratio goes
to 1, 000, 000. Setting d piiv() to less than 1 shrinks the state space but does so in a
manner that makes the structure of the state space more complex. As wald tc iterates
over the state-space superset, it must check whether each state is feasible according to
d piiv(), requiring more computation time. Because there are mc iter() samples in
the MC simulation for each state, it is clear to see how iv mode can affect speed.

To improve the speed of both IV and non-IV STRs, the user can decrease samp size(),
grid(), and mc iter(). The user can also fix state parameters [for example, with
yata()] to decrease the number of dimensions that wald tc must search over.

Also, user-defined STRs will generally be much slower than built-in STRs because
a user-defined STR forces wald tc to call Stata in each MC iteration (that is, for each
observed sample), whereas with the built-in STRs, wald tc can generate all T samples
concurrently in Mata. To improve speed, the user can decrease the number of MC

iterations [by setting a lower mc iter()] or decrease the parameter grid fineness [by
decreasing grid()].

Advanced users can also improve the speed of custom STRs by adding them directly
to the wald tc code alongside the built-in STRs, allowing wald tc to implement the
STR directly in Mata.

Details on failure to find a solution

wald tc starts its grid search with an initial value of 0 for MR. This is the value of regret
in a state where the STR chooses the optimal decision. In the presence of uncertainty
about the unobserved parameters [for example, Prs{y(a) = 1|t = b}], the MR of any
STR will be above 0.

If the final result is an MR of 0, this means that the algorithm failed to approximate
the real MR. wald tc will alert the user of an ineffective run by throwing an error. This
result can occur if user-set constraints are so restrictive that every state in S̃ violates
C so wald tc skips every state in S̃, so that S = ∅ and MR are not evaluated at all.
Additionally, this can occur if S 6= ∅, but user-set constraints are so restrictive that
each s ∈ S leaves no uncertainty for the DM, leading to a trivial problem where MR is
0.

Either of these causes may be due to the constraints alone or due to the algorithm
implementation. The culprit is the constraints alone if, even abstracting from the grid
search or MC simulation, the “real” state space is empty or the “real” MR is 0. In this
case, the user should loosen the simple or compound parameter restrictions.
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If the culprit is the algorithm interpretation, then the “real” state space may be
nonempty, and the “real” MR may be larger than 0, but wald tc does not reach these
states or approximates them poorly. In this case, the user should increase grid(),
loosen the simple or compound parameter restrictions, or increase mc iter().

A note on sample size

Users of wald tc may notice that for STRs that do not minimize MR, MR may increase
with sample size. Although counterintuitive, this may be because for some non-MMR

STRs, larger sample sizes lead to more statistical precision and hence more uniformly
incorrect decisions, for example, choosing δ = a in 95% instead of 90% of samples. This
will yield a larger MR if δ = a is the inferior choice in the state that generates MR. An
STR that minimizes MR (at some sample size N) cannot have a lower MR for a lower
sample size. To see why, suppose that the opposite is true, and notice that the same
STR that ignores the last observation (that is, forcing a sample size of N−1) would have
a lower MR for the same sample size N , meaning the original STR does not minimize
MR.

4.5 Stored results

wald tc stores the following in r(). For convenience, denote s∗ ∈ S as the state at
which wald tc generates the MR for the STR.

Scalars
r(MR) MR of the STR
r(treata val) fraction of MC runs at s∗ where STR chose δ = a
r(ta val) Prs∗ (t = a) at s∗

r(yata val) Prs∗{y(a) = 1|t = a} at s∗

r(ybtb val) Prs∗{y(b) = 1|t = b} at s∗

r(yatb val) Prs∗{y(a) = 1|t = b} at s∗

r(ybta val) Prs∗{y(b) = 1|t = a} at s∗

r(eya val) E{y(a)} at s∗

r(eyb val) E{y(b)} at s∗

IV scalars (only shown if iv mode specified)
r(vtay1 val) Prs∗ (v = 1|t = a, y = 1) at s∗

r(vtay0 val) Prs∗ (v = 1|t = a, y = 0) at s∗

r(vtby1 val) Prs∗ (v = 1|t = b, y = 1) at s∗

r(vtby0 val) Prs∗ (v = 1|t = b, y = 0) at s∗

r(beta1 val) asymptotic β1 estimator at s∗; only shown if CIV specified as the STR

Macros
r(cmd) wald tc
r(STR) the specified STR

5 Examples and empirical illustration

In this section, we illustrate the functionality of wald tc through a series of examples.
We will show just a few of the many ways users can use the wald tc options to evaluate
the effect of different environments or STRs on the DM’s MR. We begin in section 5.1
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with a few short introductory examples showing some commonly used assumptions. We
proceed in section 5.2 with a canonical setting where the DM must choose between a
status quo treatment or an innovation. We finish in section 5.3 with a modified setting
of Bhattacharya, Shaikh, and Vytlacil (2012) where the DM must set a universal policy
on Swan–Ganz catheterization use after observing data on treatment, outcomes, and
an IV.

Note that after a successful execution, wald tc displays the time elapsed in seconds.
The examples below were run on a 4-core 1.30 GHz CPU, and the time elapsed will
reflect this processing power.

5.1 Short introductory examples

Unrestricted state-space example

To run wald tc without any restrictions to the state space, we just need to specify the
STR (and iv mode if it takes IV data) and a sample size. For example, take the following
run of the ES STR with a sample size of 50 and no restrictions on the state space:

. wald_tc ES, samp_size(50)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .99999998
Time elapsed (sec): 4.732

Without strong restrictions to the state space, the ES rule will yield an MR value close
to 1, which is the higher MR possible given the normalized outcomes used in wald tc.

Note that the parameter space specified above contains states where Pr(t = a) ≈ 0 and
Pr(t = a) ≈ 1. In this case, samples are likely to contain only t = a or t = b observations,
which might be unrealistic and force the ES rule to use deterministic tiebreaking rules.
To avoid this case, users can bound Pr(t = a) away from 0 and 1 using ta l() and
ta r(). For example, the following run bounds Pr(t = a) ∈ (0.01, 0.99):

. wald_tc ES, samp_size(50) ta_l(0.01) ta_r(0.99)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .98999998
Time elapsed (sec): 4.704

Notice that MR has not fallen much. However, suppose we use randomized tiebreaks
with option rand tb to remove the impact of the deterministic tiebreaking rules in edge
cases:

. wald_tc ES, samp_size(50) ta_l(0.01) ta_r(0.99) rand_tb
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .780860231
Time elapsed (sec): 4.75
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Now, we see that MR is still high but far lower than before. In contrast, the AMMR

rule performs better in an unrestricted state space, even with deterministic tiebreaks:

. wald_tc AMMR, samp_size(50)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .380518508
Time elapsed (sec): 4.701

Unconfoundedness example

Suppose we want to impose unconfoundedness, that is, the assumption that the ATE is
the same across groups. We can impose this by specifying unconf, either alone or with
other restrictions. One setting that satisfies this assumption is one with randomized
assignment of treatment and perfect compliance. Take the following run:

. wald_tc AMMR, samp_size(50) unconf
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .371999993
Time elapsed (sec): 4.765

The imposition of unconfoundedness has slightly decreased the MR of the AMMR STR

in this problem from 0.372 to 0.381.

Valid PIIV assumption example

Suppose we wish to impose the validity of the identifying assumption for the partial
identification approach to IV data. We can do so by setting d piiv(0), which restricts
the state space to states where DPIIV = 0, where DPIIV is defined in (5). Take the
following run, which imposes this assumption with the PIIV STR, as well as imposes
Pr(t = a) = 0.5, Pr{y(a) = 1|t = a} = 0.5, Pr{y(a) = 1|t = b} = 0.5, Pr{y(b) = 1|t =
a} = 0.6:

. wald_tc PIIV, samp_size(50) d_piiv(0) ta_l(0.5) ta_r(0.5) iv_mode
> yata(0.5) yatb(0.5) ybtb(0.6)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .151799996
Time elapsed (sec): 293.636

Monotone treatment selection example

Suppose we would like to impose monotone treatment selection, which is relevant in a
setting where individuals choose whichever treatment has a higher individual outcome.
We can impose this assumption by specifying mon. For example, take the following run
with mon specified:
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. wald_tc AMMR, samp_size(50) mon
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .377679001
Time elapsed (sec): 4.825

The imposition of monotone selection leaves the MR roughly the same.

5.2 Canonical status quo versus innovation example

Here we examine a setting where the DM must choose between a status quo treatment a
or an innovation b for the population after recording a sample of N = 50 treatments and
outcomes in an observational study. We will examine a setting where we (as the user)
know that the expected treatment effect of a is 0.5. This maps to yata(0.5) yatb(0.5).
Also, suppose we want to impose that (asymptotically) the sampling process will assign
at least 10% of the population to each treatment, giving Pr(t = a) ∈ (0.1, 0.9). This
maps to ta l(0.1) ta r(0.9). Suppose we were interested in a setting where the ATE

of b can be far worse but only somewhat better than the ATE of a. Specifically, suppose
we bound E{y(b)} ∈ (0, 0.6), which maps to eyb r(0.6). Now, we can use wald tc to
compare STRs. To evaluate the ES rule, we run

. wald_tc ES, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9) eyb_r(0.6)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .397999992
Time elapsed (sec): .515

We get an MR of 0.398. Suppose we are interested in the state that generates this regret.
We run

. return list

scalars:
r(MR) = .39799999204

r(treata_val) = .005
r(ta_val) = .9

r(yata_val) = .5
r(ybtb_val) = .9999999899999999
r(yatb_val) = .5
r(ybta_val) = 1.00000000000e-08
r(eya_val) = .5
r(eyb_val) = .100000008

macros:
r(cmd) : "wald_tc"
r(STR) : "ES"

Although E{y(a)} = 0.5 and E{y(b)} = 0.1, r(treata val)=0.005 tells us that out
of 1,000 MC runs, δ = b in 995 runs! Why does the ES rule assuredly choose the
worse treatment? The answer lies in r(ybtb val) and r(ybta val). The former shows
Prs∗{y(b)|t = b} ≈ 1, and the latter shows Prs∗{y(b)|t = a} ≈ 0. Because the former
is the sampling distribution for the DM’s observed y conditional on t = b and the DM

never observes y(b) conditional on t = a, this is a state that punishes the ES rule the
most for ignoring unobserved counterfactual outcomes.
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Now, let us evaluate the AMMR STR:

. wald_tc AMMR, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9) eyb_r(0.6)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .297599994
Time elapsed (sec): .531

We see that AMMR performs better by yielding a smaller MR of approximately 0.298.
Examining r(), we see that s∗ appears to be the same, with E{y(a)} = 0.5, E{y(b)} =
0.1, Prs∗(t = a) = 0.9, Prs∗{y(b)|t = b} ≈ 1, and Prs∗{y(b)|t = a} ≈ 0. However,
r(treata val)=0.255, meaning that in 255 out of 1,000 MC runs, the AMMR STR made
the optimal choice δ = a. This is because AMMR pays attention to missing data and
may choose δ = a even when P̂r{y(b) = 1|t = b} > P̂r{y(a) = 1|t = a}. Is this a feature
of a small number of MC simulations? We can run 100,000 MC simulations per state:

. wald_tc AMMR, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9) eyb_r(0.6)
> mc_iter(100000)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .291723994
Time elapsed (sec): 56.486

We get a similar MR of 0.292 and r(treata val)=0.27069, showing the robustness of
this result.

Suppose that the result of Prs∗{y(b)|t = b} ≈ 1 and that Prs∗{y(b)|t = a} ≈ 0 seems
extreme to us. We can impose that these values differ by no more than 0.5, which maps
to d yb(0.5). This restriction limits the magnitude by which missing data can hurt a
DM. This is especially true for the ES STR, which does not account for missing data:

. wald_tc ES, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9) eyb_r(0.6)
> d_yb(0.5)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .200122218
Time elapsed (sec): .683

Now, we get a lower MR than before. As for AMMR:

. wald_tc AMMR, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9) eyb_r(0.6)
> d_yb(0.5)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .185866663
Time elapsed (sec): .706

We also get a lower MR than before, but the gap between the MR of ES and AMMR has
narrowed to 0.014 from 0.1. This is due to the d yb(0.5) restriction, which limits the
size of the mistake the ES rule can make from ignoring missing data. This is just one
example of how wald tc allows the user to flexibly adjust the data-generating process
to quantify the effect of different restrictions on STR performance.
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Demonstrating a user-defined function

Suppose we want to evaluate the performance of a DM who uses a canonical one-sided
t test with α = 0.05 to choose a treatment. Because this STR is not a built-in function,
the user would have to specify a user-defined function to wald tc, which represents
this STR. To demonstrate this process, we have written htest.ado and included it as a
stand-alone ado-file in the wald tc package.

The t test STR takes the following null and alternate hypotheses:

H0 : Pr{y(a) = 1|t = a} = Pr{y(b) = 1|t = b}
H1 : Pr{y(a) = 1|t = a} < Pr{y(b) = 1|t = b}

If the STR rejects the null at a α = 0.05 level, it will choose δ = b; otherwise, it will
choose δ = a. Running this STR with the same parameters as before, we obtain

. wald_tc htest, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9)
> eyb_r(0.6) user_def
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .383999992
Time elapsed (sec): 460.055

We see that the MR of this STR is only marginally better than that of the ES STR.
Examining return list, we find the reason: although the MR-generating state s∗ is
the same, r(treata val)=0.04, meaning that the t test was more conservative than
the ES rule and sometimes chose δ = a.

In terms of implementation, this run is around 500 times slower than our previous
runs. This is due to the issue of having to run the STR in Stata for each MC sample
as opposed to keeping all the computation in Mata. For example, when we modify the
wald tc code to have a built-in t test STR that runs in Mata, we get the following:

. wald_tc_modified htest, samp_size(50) yata(0.5) yatb(0.5) ta_l(0.1) ta_r(0.9)
> eyb_r(0.6)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .387999992
Time elapsed (sec): 1.015

This run is clearly much faster and is comparable with the speed of other built-in STRs.
Moreover, return list shows us that it returns the same s∗ with a similar MR.

5.3 Swan–Ganz catheterization example

In this section, we will demonstrate the functionality of wald tc in settings with IVs.
We will start by briefly describing the setting of Bhattacharya, Shaikh, and Vytlacil
(2012) as motivation. The authors examine a procedure called Swan–Ganz catheteriza-
tion, which is commonly applied to severely ill patients admitted to intensive care units.
Although catheterization is associated with higher mortality, the authors find that “this
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result is due to profound differences between the catheterized and noncatheterized pa-
tients: the former are much more severely ill than the latter” (Bhattacharya, Shaikh,
and Vytlacil 2012). However, the authors do not find conclusive evidence regarding the
net benefit of catheterizations (page 237):

Our primary substantive finding is that catheterization improves mortality
outcomes only in the short run, if at all, and in most cases we cannot rule
out that it increases mortality in the long run.

To reach their findings, Bhattacharya, Shaikh, and Vytlacil (2012) use data that
record whether a patient receives a catheter (t = b) or not (t = a), whether a patient
dies within a specified time after admission (y = 0) or not (y = 1), and an IV indicating
whether the patient is admitted on a weekend or a weekday. The authors claim that
this is a valid instrument because mortality is uncorrelated with the day of admission,
while patients admitted on a weekday are about four to eight percentage points more
likely to be catheterized (Bhattacharya, Shaikh, and Vytlacil 2012).

Suppose that in this setting, a DM uses some another instrument v to try to find a
more definitive result regarding the treatment effect of catheterization for a population.
Suppose that the DM observes a sample (N = 100) and must choose between requiring
that all relevant patients receive catheters (δ = a) or none do (δ = b). We will now
demonstrate how wald tc can help us understand the properties of these estimators.

CIV STR

Suppose we know that in our population, catheterization is somewhat common but
associated with worse observable outcomes, with the following parameters:

Pr(t = a) = 0.7

Pr{y(a) = 1|t = a} = 0.4

Pr{y(b) = 1|t = b} = 0.3

Suppose that we also believe our instrument v has a nonzero population variance [con-
ditional on (t, y)]. To specify this concretely, we can tighten v l() and v r(), suppose
to v l(0.1) and v r(0.9). Then, we get

. wald_tc CIV, samp_size(100) yata(0.4) ybtb(0.3) ta_l(0.7) ta_r(0.7) iv_mode
> v_l(0.1) v_r(0.9)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .298349994
Time elapsed (sec): 474.567
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Then, analyzing the state, we get

. return list

scalars:
r(MR) = .2983499941499999

r(treata_val) = .585
r(ta_val) = .7

r(yata_val) = .4
r(ybtb_val) = .3
r(yatb_val) = 1.00000000000e-08
r(ybta_val) = .9999999899999999
r(eya_val) = .280000003
r(eyb_val) = .7899999929999999

r(vtay1_val) = .5444444444444445
r(vtay0_val) = .1888888888888889
r(vtby1_val) = .6333333333333333
r(vtby0_val) = .1
r(beta1_val) = 6.349999999999982

macros:
r(cmd) : "wald_tc"
r(STR) : "CIV"

Therefore, at s∗, we have that v is weakly correlated with t but has higher correlation
with y, giving a β1 that is much higher than the true treatment effect! Such a state is
more likely to yield samples that would call the validity and strength of v into question.
Thus, we might want to impose an upper bound on DCIV, such as 0.1. Adding this
bound, we get

. wald_tc CIV, samp_size(100) yata(0.4) ybtb(0.3) ta_l(0.7) ta_r(0.7) iv_mode
> v_l(0.1) v_r(0.9) d_civ(0.1)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .294779994
Time elapsed (sec): 376.014

. return list

scalars:
r(MR) = .29477999422

r(treata_val) = .578
r(ta_val) = .7

r(yata_val) = .4
r(ybtb_val) = .3
r(yatb_val) = 1.00000000000e-08
r(ybta_val) = .9999999899999999
r(eya_val) = .280000003
r(eyb_val) = .7899999929999999

r(vtay1_val) = .8111111111111111
r(vtay0_val) = .9
r(vtby1_val) = .5444444444444445
r(vtby0_val) = .7222222222222222
r(beta1_val) = -.5363636363636357

macros:
r(cmd) : "wald_tc"
r(STR) : "CIV"

Compared with the original run, MR is negligibly lower, r(treata val) has decreased
slightly from 0.585 to 0.578, and r(beta1 val) shows that β1 has also been moved down
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to fit within the upper bound of DPIIV ≤ 0.1. In this case, imposing that asymptotic
β1 is close to the true mean treatment response (which is around 0.28− 0.79 = −0.51)
does little to improve the MR of the CIV STR.

However, there are other interesting assumptions that can change the performance of
STRs, such as a monotone selection assumption. In addition to reporting that catheter-
ized patients tend to be more severely ill than noncatheterized patients, Bhattacharya,
Shaikh, and Vytlacil (2012) suggest that their findings may be due to a selection story:
catheterization can be lifesaving for the most severely ill patients in the short term (that
is, seven days) but cannot overcome their latent health problems in the long term.

PIIV STR

Now, let us see what happens when we run the original parameterization with the PIIV

STR:

. wald_tc PIIV, samp_size(100) yata(0.4) ybtb(0.3) ta_l(0.7) ta_r(0.7) iv_mode
> v_l(0.1) v_r(0.9)
Percent done.....10.....20.....30.....40.....50.....60.....70.....80.....90.....
> 100
Maximum Regret: .299389994
Time elapsed (sec): 508.515

. return list

scalars:
r(MR) = .29938999389

r(treata_val) = .389
r(ta_val) = .7

r(yata_val) = .4
r(ybtb_val) = .3
r(yatb_val) = .9999999899999999
r(ybta_val) = 1.00000000000e-08
r(eya_val) = .579999997
r(eyb_val) = .090000007

r(vtay1_val) = .3666666666666667
r(vtay0_val) = .8111111111111111
r(vtby1_val) = .7222222222222222
r(vtby0_val) = .2777777777777778

macros:
r(cmd) : "wald_tc"
r(STR) : "PIIV"

We have a similar regret to the CIV STR, although the state s∗ is somewhat different
and PIIV has a lower probability of choosing δ = a in its s∗.

All of these examples shown above demonstrate a small fraction of the flexible op-
tions that the user has in exploring the performance of STRs under different settings of
nonrandomized treatment.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0629 (to install program files, if available)

. net get st0629 (to install ancillary files, if available)
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