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Abstract. We introduce three new commands—nop, ziop2, and ziop3—for
the estimation of a three-part nested ordered probit model, the two-part zero-
inflated ordered probit models of Harris and Zhao (2007, Journal of Econometrics
141: 1073–1099) and Brooks, Harris, and Spencer (2012, Economics Letters 117:
683–686), and a three-part zero-inflated ordered probit model of Sirchenko (2020,
Studies in Nonlinear Dynamics and Econometrics 24: 1) for ordinal outcomes,
with both exogenous and endogenous switching. The three-part models allow the
probabilities of positive, neutral (zero), and negative outcomes to be generated
by distinct processes. The zero-inflated models address a preponderance of zeros
and allow them to emerge in different latent regimes. We provide postestimation
commands to compute probabilistic predictions and various measures of their ac-
curacy, to assess the goodness of fit, and to perform model comparison using the
Vuong test (Vuong, 1989, Econometrica 57: 307–333) with the corrections based
on the Akaike and Schwarz information criteria. We investigate the finite-sample
performance of the maximum likelihood estimators by Monte Carlo simulations,
discuss the relations among the models, and illustrate the new commands with an
empirical application to the U.S. federal funds rate target.

Keywords: st0625, nop, ziop2, ziop3, ordinal outcomes, zero inflation, nested or-
dered probit, zero-inflated ordered probit, endogenous switching, Vuong test, fed-
eral funds rate target

1 Introduction

We introduce the commands nop, ziop2, and ziop3, which fit the two-level nested and
zero-inflated ordered probit (OP) models for ordinal outcomes, including the zero- and
middle-inflated OP models of Harris and Zhao (2007), Bagozzi and Mukherjee (2012),
Brooks, Harris, and Spencer (2012), and Sirchenko (2020). The rationale behind the
two-level nested decision process is standard in discrete-choice modeling when the set
of alternatives faced by a decision-maker can be partitioned into subsets (or nests)
with similar alternatives correlated because of common unobserved factors. The choice
among the nests and the choice among the alternatives within each nest can be driven
by different sets of observed and unobserved factors (and common factors can have
different weights).

c© 2021 StataCorp LLC st0625
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4 Estimation of nested and zero-inflated ordered probit models

In unordered categorical data, in which choices can be grouped into the nests of
similar options, the nested logit model is a popular method. Nested models for ordinal
data are rare though the rationale behind them is similar: choosing among a negative
response (decrease), a neutral response (no change), or a positive response (increase)
is quite different from choosing the magnitude of a negative or positive response; and
choosing the magnitude of a negative response can be driven by quite different determi-
nants than choosing the magnitude of a positive response. This leads to three implicit
decisions: an upper-level regime decision (a choice among the nests) and two lower-level
outcome decisions (the choices of the magnitude of the negative and positive responses).
See the top left panel of figure 1.

Three-part Nested Ordered Probit (NOP) Model Three-part Zero-Inflated Ordered Probit (ZIOP-3) Model
(Sirchenko 2020) (Sirchenko 2020)

Two-part Zero-Inflated Ordered Probit (ZIOP-2) Model Two-part Zero-Inflated Ordered Probit (ZIOP-2) Model
(Harris and Zhao 2007) (Bagozzi and Mukherjee 2012; Brooks, Harris and Spencer 2012)

Figure 1. Decision trees of nested and zero-inflated ordered probit models.
notes: Decisionmakers are not assumed to choose sequentially. The tree diagrams
simply represent a nesting structure of the system of OP models.

Furthermore, it would be reasonable for the zero (no-change) alternative to be in
three nests: its own, one with the negative responses, and one with the positive re-
sponses. Hence, some zeros can be driven by similar factors as the negative or positive
responses. This leads to a three-part cross-nested model with the nests overlapping
at the zero response; hence, the probability of zeros is “inflated”. Because the regime
decision is not observable, the zeros are observationally equivalent—it is never known to
which of the three nests the observed zero belongs. Several types of models with over-
lapping nests for unordered categorical responses have been developed (Vovsha 1997;
Wen and Koppelman 2001). Cross-nested models for ordinal outcomes are rare (Small
1987).

The prevalence of status quo, neutral, or zero outcomes is observed in many fields,
including economics, sociology, technometrics, psychology, and biology. The hetero-
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geneity of zeros is widely recognized—see Winkelmann (2008) and Greene and Hensher
(2010) for a review. Studies identify different types of zeros, such as no visits to a doctor
due to good health, iatrophobia, or medical costs; no illness due to strong immunity
or lack of infection; no children due to infertility or choice. In the studies of survey
responses using an odd-point Likert-type scale, where the respondents must indicate
a negative, neutral, or positive attitude or opinion, the heterogeneity of indifferent re-
sponses (a true neutral option versus an undecided, or ambivalent, or uninformed one,
commonly reported as neutral) is also well recognized and sometimes labeled as the
middle category endorsement or inflation (Bagozzi and Mukherjee 2012; Hernández,
Drasgow, and Gonzáles-Romá 2004; Kulas and Stachowski 2009).

Two-part zero-inflated models, developed to address the unobserved heterogeneity
of zeros, combine a binary choice model for the probability of crossing the hurdle (to
participate or not to participate; to consume or not to consume) with a count or ordered-
choice model for nonnegative outcomes above the hurdle: the two parts are estimated
jointly, and zero observations can emerge in both parts. The two-part zero-inflated
models include the zero-inflated Poisson (Lambert 1992), negative binomial (Greene
1994), binomial (Hall 2000), and generalized Poisson (Famoye and Singh 2003) models
for count outcomes, and the zero-inflated OP model (Harris and Zhao 2007) and zero-
inflated proportional odds model (Kelley and Anderson 2008) for nonnegative ordinal
responses.1

The model of Harris and Zhao (2007) is suitable for explaining decisions such as
the levels of consumption, when the upper hurdle is naturally binary (to consume or
not to consume), the responses are nonnegative, and the inflated zeros are situated
at one end of the ordered scale (see the bottom left panel of figure 1). Bagozzi and
Mukherjee (2012) and Brooks, Harris, and Spencer (2012) modified the model of Harris
and Zhao (2007) and developed the middle-inflated OP model for an ordinal outcome,
which ranges from negative to positive responses, and where an abundant outcome is
situated in the middle of the choice spectrum (see the bottom right panel of figure 1).

The three-part zero-inflated OP model (see the top right panel of figure 1) introduced
in Sirchenko (2020) is a natural generalization of the models of Harris and Zhao (2007),
Bagozzi and Mukherjee (2012), and Brooks, Harris, and Spencer (2012). A trichotomous
regime decision is more realistic and flexible than a binary decision (change or no change)
if applied to ordinal data with negative, zero, and positive values.

1. The zero-inflated models, estimation of which is currently implemented in Stata, include the zero-
inflated Poisson model (the zip command), the negative binomial model (the zinb command), and
the binomial model (the zib command) and the beta-binomial model (the zibbin command) both
developed by Hardin and Hilbe (2014).
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2 Models

2.1 Notation and assumptions

The observed dependent variable yt, t = 1, 2, . . . , T , is assumed to take on a finite
number of ordinal values j coded as {−J−, . . . ,−1, 0, 1, . . . , J+}, where a potentially
heterogeneous (and typically predominant) response is coded as 0. The latent unob-
served (or only partially observed) variables are denoted by “∗”. Each model assumes
an ordered-choice regime decision and the ordered-choice outcome decisions conditional
on the regime. The regime decision can be correlated with each outcome decision. We
denote the following: by xt, x

−
t , x

+
t , and zt, the tth rows of the observed data matrices

(which in addition to the predetermined explanatory variables may also include the lags
of yt); by β, β−, β+, and γ, the vectors of slope parameters; by α, α−, α+, and µ,
the vectors of threshold parameters; by ρ, ρ−, and ρ+, the correlation coefficients; by
εt, ε

−
t , ε

+
t , and νt, the error terms that are independent and identically distributed

(i.i.d.) across t with normal cumulative distribution function (CDF) Φ with 0 means
and variances σ2, σ2

−, σ
2
+, and σ

2
ν , respectively; and by Φ2(g1;g2;σ

2
1 ;σ

2
2 ; ρ), the CDF of

the bivariate normal distribution of the two random variables g1 and g2 with 0 means,
variances σ2

1 and σ2
2 , and correlation coefficient ρ.

Φ2(g1;g2;σ
2
1 ;σ

2
2 ; ρ) =

1

2πσ1σ2
√

1− ρ2

g1∫
−∞

g2∫
−∞

exp

{
−u

2/σ2
1 − 2ρuw/σ1σ2 + w2/σ2

2

2(1− ρ2)

}
dudw
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2.2 Three-part nested ordered probit model

Despite the widespread use of nested logit models for unordered categorical responses,
we are aware of only one example of the nested OP model in the literature (Sirchenko
2020). The two-level nested ordered probit (NOP) model can be described as

Upper-level
decision:

r∗t = ztγ + νt, st =

 1 if µ2 < r∗t
0 if µ1 < r∗t ≤ µ2

−1 if r∗t ≤ µ1

Lower-level
decisions:

y−∗
t = x−

t β
− + ε−t , y+∗

t = x+
t β

+ + ε+t

yt =


j (j > 0) if st = 1 and α+

j−1 < y+∗
t ≤ α+

j

0 if st = 0
j (j < 0) if st = −1 and α−

j < y−∗
t ≤ α−

j+1

where −∞ = α+
0 ≤ α+

1 ≤ · · · ≤ α+
J+ = ∞

and −∞ = α−
−J− ≤ α−

−J−+1 ≤ · · · ≤ α−
0 = ∞

Correlation
among decisions:

[
νt
εit

]
i.i.d.∼ N

(
0
0
,

[
σ2
ν ρiσνσi

ρiσνσi σ2
i

])
, i ∈ {−,+}

The probabilities of the outcome j in the NOP model are given by

Pr(yt = j|zt,x−
t ,x

+
t ) = Ij<0 Pr(r

∗
t ≤ µ1 and α−

j < y−∗
t ≤ α−

j+1|zt,x
−
t )

+ Ij=0 Pr(µ1 < r∗t ≤ µ2|zt) + Ij>0 Pr(µ2 < r∗t and α+
j−1 < y+∗

t ≤ α+
j |zt,x

+
t )

= Ij<0 Pr(νt ≤ µ1 − ztγ and α−
j − x−

t β
− < ε−t ≤ α−

j+1 − x−
t β

−)

+ Ij=0 Pr(µ1 − ztγ < νt ≤ µ2 − ztγ)

+ Ij>0 Pr(µ2 − ztγ < νt and α
+
j−1 − x+

t β
+ < ε+t ≤ α+

j − x+
t β

+)

= Ij<0

{
Φ2(µ1 − ztγ;α

−
j+1 − x−

t β
−;σ2

ν ;σ
2
−; ρ

−)

−Φ2(µ1 − ztγ;α
−
j − x−

t β
−;σ2

ν ;σ
2
−; ρ

−)
}

+ Ij=0{Φ(µ2 − ztγ;σ
2
ν)− Φ(µ1 − ztγ;σ

2
ν)}

+ Ij>0{Φ2(−µ2 + ztγ;α
+
j − x+

t β
+;σ2

ν ;σ
2
+;−ρ+)

− Φ2(−µ2 + ztγ;α
+
j−1 − x+

t β
+;σ2

ν ;σ
2
+;−ρ+)} (1)

where Ij<0 is an indicator function such that Ij<0 = 1 if j < 0 and Ij<0 = 0 if j ≥ 0
(analogously for Ij=0 and Ij>0).
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In the case of exogenous switching (when ρ− = ρ+ = 0), the probabilities of the
outcome j in the NOP can be computed as

Pr(yt = j|zt,x−
t ,x

+
t , ρ

− = ρ+ = 0)

= Ij<0Φ(µ1 − ztγ;σ
2
ν){Φ(α−

j+1 − x−
t β

−;σ2
−)− Φ(α−

j − x−
t β

−;σ2
−)}

+ Ij=0{Φ(µ2 − ztγ)− Φ(µ1 − ztγ)}
+ Ij>0{1− Φ(µ2 − ztγ;σ

2
ν)}{Φ(α+

j − x+
t β

+;σ2
+)− Φ(α+

j−1 − x+
t β

+;σ2
+)}

In the case of two- or three-outcome choices, the NOP model degenerates to the
conventional single-equation OP model.

2.3 Two-part zero-inflated ordered probit model

The two-part zero-inflated ordered probit (ZIOP-2) model, which represents the zero-
inflated OP model of Brooks, Harris, and Spencer (2012) and the middle-inflated OP

model of Bagozzi and Mukherjee (2012), can be described by the following system:

Regime decision: r∗t = ztγ + νt s∗t =

{
1 if µ < r∗t
0 if r∗t ≤ µ

Outcome decision: y∗t = xtβ + εt

yt =

{
j if s∗t = 1 and αj−1 < y∗t ≤ αj

0 if s∗t = 0
where −∞ = α−J−−1 ≤ α−J− ≤ · · · ≤ αJ+ = ∞

Correlation
among decisions:

[
νt
εt

]
i.i.d.∼ N

(
0
0
,

[
σ2
ν ρσνσ

ρσνσ σ2

])

The probabilities of the outcome j in the ZIOP-2 model are given by

Pr(yt = j|zt,xt) = Ij=0 Pr(r
∗
t ≤ µ|zt) + Pr(µ < r∗t and αj−1 < y∗t ≤ αj |zt,xt)

= Ij=0 Pr(νt ≤ µ− ztγ) + Pr(µ− ztγ < νt and αj−1 − xtβ < εt ≤ αj − xtβ)

= Ij=0Φ(µ− ztγ;σ
2
ν) + Φ2(−µ+ ztγ;αj − xtβ;σ

2
ν ;σ

2;−ρ)
− Φ2(−µ+ ztγ;αj−1 − xtβ;σ

2
ν ;σ

2;−ρ) (2)

In the case of exogenous switching (when ρ = 0), these probabilities can be computed
as follows:

Pr(yt = j|zt,xt, ρ = 0) = Ij=0Φ
(
µ− ztγ;σ

2
ν

)
+
{
1− Φ

(
µ− ztγ;σ

2
ν

)}{
Φ(αj − xtβ;σ

2)− Φ
(
αj−1 − xtβ;σ

2
)}

If yt ≥ 0 for ∀t, the ZIOP-2 model becomes the model of Harris and Zhao (2007).
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2.4 Three-part zero-inflated ordered probit model

The three-part zero-inflated ordered probit (ZIOP-3) model developed by Sirchenko
(2020) is a three-part generalization of the ZIOP-2 model and can be described by the
following system:

Regime decision: r∗t = ztγ + νt, s∗t =

 1 if µ2 < r∗t
0 if µ1 < r∗t ≤ µ2

−1 if r∗t ≤ µ1

Outcome decisions: y−∗
t = x−

t β
− + ε−t , y+∗

t = x+
t β

+ + ε+t

yt =


j (j ≥ 0) if s∗t = 1 and α+

j−1 < y+∗
t ≤ α+

j

0 if s∗t = 0
j (j ≤ 0) if s∗t = −1 and α−

j < y−∗
t ≤ α−

j+1

where −∞ = α+
−1 ≤ α+

0 ≤ · · · ≤ α+
J+ = ∞

and −∞ = α−
−J− ≤ α−

−J−+1 ≤ · · · ≤ α−
1 = ∞

Correlation
among decisions:

[
νt
εit

]
i.i.d.∼ N

(
0
0
,

[
σ2
ν ρiσνσi

ρiσνσi σ2
i

])
, i ∈ {−,+}

The probabilities of the outcome j in the ZIOP-3 model are given by

Pr(yt = j|zt,x−
t ,x

+
t ) = Ij≤0 Pr(r

∗
t ≤ µ1 and α−

j < y−∗
t ≤ α−

j+1|zt,x
−
t )

+ Ij=0 Pr(µ1 < r∗t ≤ µ2|zt) + Ij≥0 Pr(µ2 < r∗t and α+
j−1 < y+∗

t ≤ α+
j |zt,x

+
t )

= Ij≤0 Pr(νt ≤ µ1 − ztγ and α−
j − x−

t β
− < ε−t ≤ α−

j+1 − x−
t β

−)

+ Ij=0 Pr(µ1 − ztγ < νt ≤ µ2 − ztγ)

+ Ij≥0 Pr(µ2 − ztγ < νt and α
+
j−1 − x+

t β
+ < ε+t ≤ α+

j − x+
t β

+)

= Ij≤0{Φ2(µ1 − ztγ;α
−
j+1 − x−

t β
−;σ2

ν ;σ
2
−; ρ

−)

− Φ2(µ1 − ztγ;α
−
j − x−

t β
−;σ2

ν ;σ
2
−; ρ

−)}
+ Ij=0{Φ(µ2 − ztγ;σ

2
ν)− Φ(µ1 − ztγ;σ

2
ν)}

+ Ij≥0{Φ2(−µ2 + ztγ;α
+
j − x+

t β
+;σ2

ν ;σ
2
+;−ρ+)

− Φ2(−µ2 + ztγ;α
+
j−1 − x+

t β
+;σ2

ν ;σ
2
+;−ρ+)} (3)

where Ij≤0 is an indicator function such that Ij≤0 = 1 if j ≤ 0 and Ij≤0 = 0 if j > 0
(analogously for Ij≥0).
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In the case of exogenous switching (when ρ− = ρ+ = 0), these probabilities can be
computed as

Pr(yt = j|zt,x−
t ,x

+
t , ρ

− = ρ+ = 0) = Ij≤0Φ(µ1 − ztγ;σ
2
ν){Φ(α−

j+1 − x−
t β

−;σ2
−)

− Φ(α−
j − x−

t β
−;σ2

−)}+ Ij=0{Φ(µ2 − ztγ;σ
2
ν)− Φ(µ1 − ztγ;σ

2
ν)}

+ Ij≥0{1− Φ(µ2 − ztγ;σ
2
ν)}{Φ(α+

j − x+
t β

+;σ2
+)− Φ(α+

j−1 − x+
t β

+;σ2
+)}

The inflated outcome does not have to be in the very middle of the ordered choices. If
it is located at the end of the ordered scale—that is, if yt ≥ 0 for ∀t—the ZIOP-3 model
reduces to the ZIOP-2 model of Harris and Zhao (2007).

2.5 Maximum likelihood estimation

The probabilities in each OP equation can be consistently estimated under fairly general
conditions by an asymptotically normal maximum likelihood (ML) estimator (Basu and
de Jong 2007). The simultaneous estimation of the OP equations in the NOP, ZIOP-2,
and ZIOP-3 models can also be performed using an ML estimator of the vector of the
parameters θ that maximizes the log-likelihood function l(θ):

max
θεΘ

l(θ) = max
θεΘ

T∑
t=1

J+∑
j=−J−

Itj ln{Pr(yt = j|xall
t ,θ)} (4)

where Itj is an indicator function such that Itj = 1 if yt = j and Itj = 0 otherwise;
θ includes γ, µ, β−, β+, α−, α+, ρ−, and ρ+ for the NOP and ZIOP-3 models, and
includes γ, µ, β, α, and ρ for the ZIOP-2 model; Θ is a parameter space; xall

t is a vector
that contains the values of all independent variables in the model; and Pr(yt = j|xall

t ,θ)

are the probabilities from either (1) or (2) or (3). The asymptotic standard errors of θ̂
can be computed from the Hessian matrix.

The intercept components of β, β−, β+, and γ are identified up to scale and location,
that is, only jointly with the corresponding threshold parameters α, α−, α+, and µ
and variances σ2, σ2

−, σ
2
+, and σ

2
ν . As is common in the identification of discrete-choice

models, the variances σ2, σ2
−, σ

2
+, and σ

2
ν are fixed to 1, and the intercept components

of β, β−, β+ and γ are fixed to 0. The probabilities in (1), (2), and (3) are invariant to
these (arbitrary) identifying assumptions: up to scale and location, we can identify all
parameters in θ because of the nonlinearity of OP equations, that is, via the functional
form (Heckman 1978; Wilde 2000). However, because the normal CDF is approximately
linear in the middle of its support, the simultaneous estimation of two or three equations
may experience a weak identification problem if the regime and outcome equations
contain the same set of independent variables. To enhance the precision of parameter
estimates, we may impose exclusion restrictions on the specification of the independent
variables in each equation.

The three regimes (nests) in the NOP model are fully observable, contrary to the
latent (only partially observed) regimes in the ZIOP-2 and ZIOP-3 models. The likeli-
hood function of the NOP model in the case of exogenous switching—again in contrast
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with the ZIOP-2 and ZIOP-3 models—is separable with respect to the parameters in the
three equations.2 In the case of endogenous switching, the likelihood function in the
ZIOP-2 and ZIOP-3 models, similar to the likelihood in mixture models, sample-selection
models, and zero-inflated negative binomial models (Olsen 1982; Silva 2017), may have
multiple local maximums. The ML estimates may depend on the starting values of the
parameters; ideally, the initial values in the neighborhood of the global maximum can
facilitate estimation.

To avoid the local maximums problem and to reduce computation costs, the follow-
ing scanning procedure is implemented. The starting values for the slope and threshold
parameters in the exogenous-switching models are obtained using the independent OP

estimations of each equation. The starting values for ρ, ρ−, and ρ+ in the endogenous-
switching models are obtained by maximizing the likelihood functions over a grid search
from −0.95 to 0.95 in increments of 0.05, holding the other parameters fixed at their
estimates in the corresponding exogenous-switching model. Olsen (1982) suggests a
scanning procedure for ρ in the context of the sample-selection model and demonstrates
that the likelihood function has a unique maximum for fixed values of ρ. To ensure that
the maximum obtained is the global one, it make sense to try several starting points.
The implemented estimators allow selecting any starting points. The Monte Carlo ex-
periments confirm that the proposed estimators converge at the global maximum.

2.6 Marginal effects

We combine the marginal effects of each independent variable on the probability of
each discrete outcome into a matrix MEt, rows of which correspond to covariates and
columns to outcomes. The marginal effects of continuous variable k (the kth element of
xall
t ) on the probability of outcome j are computed for the ZIOP-3 model as

2. In the case of exogenous switching, solving (4) for the NOP model is equivalent to maximizing
separately the likelihoods of the three OP models representing the upper- and lower-level decisions.
The data matrices in the lower-level decisions should be truncated to contain only those rows of
x−
t or x+

t for which yt < 0 or yt > 0, respectively.



12 Estimation of nested and zero-inflated ordered probit models

MEk,j,t =
∂ Pr(yt = j|θ)

∂xall
t,k

= Ij≤0

[{
Φ

(
µ1 − ztγ − ρ−

(
α−
j − x−

t β
−)√

1− (ρ−)2

)
f(α−

j − x−
t β

−)

−Φ

(
µ1 − ztγ − ρ−(α−

j+1 − x−
t β

−)√
1− (ρ−)2

)
f(α−

j+1 − x−
t β

−)

}
β−all
k

−

{
Φ

(
α−
j+1 − x−

t β
− − ρ−(µ1 − ztγ)√
1− (ρ−)2

)

−Φ

(
α−
j − x−

t β
− − ρ−(µ1 − ztγ)√
1− (ρ−)2

)}
f(µ1 − ztγ)γ

all
k

]
− Ij=0{f(µ2 − ztγ)− f(µ1 − ztγ)}γall

k

+ Ij≥0

[{
Φ

(
ztγ − µ2 + ρ+(α+

j−1 − x+
t β

+)√
1− (ρ+)2

)
f(α+

j−1 − x+
t β

+)

−Φ

(
ztγ − µ2 + ρ+

(
α+
j − x+

t β
+
)√

1− (ρ+)2

)
f(α+

j − x+
t β

+)

}
β+all
k

+

{
Φ

(
α+
j − x+

t β
+ + ρ+(ztγ − µ2)√
1− (ρ+)2

)

−Φ

(
α+
j−1 − x+

t β
+ + ρ+(ztγ − µ2)√
1− (ρ+)2

)}
f(ztγ − µ2)γ

all
k

]

where f is the probability density function of the standard normal distribution, and
γall
k , β−all

k , and β+all
k are the coefficients on the kth independent variable in xall

t in the
regime equation, the outcome equation conditional on s∗t = 1, and the outcome equation
conditional on s∗t = −1, respectively (γall

k , β−all
k , or β+all

k is 0 if the kth independent
variable in xall

t is not included in the corresponding equation). For a discrete-valued
independent variable, the ME can be computed as the change in the probabilities when
this independent variable changes by one increment and all other variables are fixed.

The MEs for the NOP model are computed by replacing Ij≥0 in the above formula
with Ij>0 and Ij≤0 with Ij<0.
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The MEs for the ZIOP-2 model are computed as

MEk,j,t =
∂ Pr(yt = j|θ)

∂xall
t,k

= −Ij=0 {f(µ− ztγ)}γall
k

+

{
Φ

(
ztγ − µ+ ρ(αj−1 − xtβ)√

1− ρ2

)
f(αj−1 − xtβ)

− Φ

(
ztγ − µ+ ρ(αj − xtβ)√

1− ρ2

)
f(αj − xtβ)

}
βall
k

+

{
Φ

(
αj − xtβ + ρ(ztγ − µ)√

1− ρ2

)

−Φ

(
αj−1 − xtβ + ρ(ztγ − µ)√

1− ρ2

)}
f(ztγ − µ)γall

k

where βall
k is the coefficient on the kth independent variable in xall

t in the outcome
equation (βall

k is 0 if the kth independent variable in xall
t is not included in the outcome

equation).

The asymptotic standard error of MEk,j,t is computed using the delta method as a

square root of ∇θ(MEk,j,t)Var(θ)∇θ(ME
′

k,j,t).

2.7 Relations among the models and their comparison

We now discuss the choice of a formal statistical test to compare the NOP, ZIOP-2,
ZIOP-3, and conventional OP models. The choice depends on whether the models are
nested in each other.

The exogenous-switching version of each model is nested in its endogenous-switching
version as its uncorrelated special case; their comparison can be performed using any
classical likelihood-based test for nested hypotheses, such as the likelihood-ratio (LR)
test.

The OP is not nested either in the NOP or ZIOP-3 model. We can compare the OP

model with them by using a likelihood-based test for nonnested models, such as the
Vuong (1989) test.3 The OP model is, however, nested in the ZIOP-2 model. The latter
reduces to the former if µ → −∞; hence, Pr(yt = 0|xt, s

∗
t = 1) → 0. Thus, the Vuong

test for nonnested hypotheses cannot be used to compare the OP and ZIOP-2 models:
for nested hypotheses, the Voung test reduces to the LR test. However, the critical
values of the classical LR test are invalid in this case because some of the standard
regularity conditions of the classical LR test fail to hold (Andrews 2001; Andrews and
Cheng 2012). In particular, the value of µ in the null hypothesis is not an interior point

3. In Monte Carlo experiments (see section 4), we studied the performance of various measures of fit,
model-selection criteria, and statistical tests in comparing the OP and ZIOP-3 models.
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of the parameter space; hence, the asymptotic distribution of the LR statistics is not
standard.4

The NOP model is nested in the ZIOP-3 model. The latter becomes the former if
α−
−1 → ∞ and α+

1 → −∞; therefore, Pr(yt = 0|x+
t , s

∗
t = 1) → 0 and Pr(yt = 0|x−

t , s
∗
t =

−1) → 0. The values of α−
−1 and α+

1 in the null hypothesis are not the interior points
of the parameter space; thus, the asymptotic distribution of the LR statistics is not
standard. The comparison of the NOP and ZIOP-3 models can also be performed using
the LR test with simulated adjusted critical values (Andrews 2001; Andrews and Cheng
2012).

Generally, the ZIOP-2 model is not a special case of the ZIOP-3 model, and vice
versa. We can compare them by using the Vuong test. A special case when the ZIOP-3

model nests the ZIOP-2 model emerges under certain restrictions on the parameters, as
explained below. In this case, the selection between the ZIOP-3 and ZIOP-2 models can
be performed using any classical likelihood-based test for nested hypotheses, such as
the LR test.

The special case emerges if yt takes on only three discrete values j ∈ {−1, 0, 1},
the regressors in x−

t and x+
t in the outcome equations of the ZIOP-3 model contain all

the regressors in the ZIOP-2 regime equation (denoted below by z2t with the parameter
vector γ2), and the regressors in the regime equation of the ZIOP-3 model (denoted
below by z3t with the parameter vector γ3) include all the regressors in the xt in the
ZIOP-2 outcome equation. According to (2), the probabilities of the outcome j in the
ZIOP-2 model are given by

Pr(yt = −1|z2t,xt) = Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ)
Pr(yt = 0|z2t,xt) = Φ(µ− z2tγ2) + Φ2(−µ+ z2tγ2;α0 − xtβ;−ρ)

− Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ) = 1− Φ2(−µ+ z2tγ2;−α0 + xtβ; ρ)

− Φ2(−µ+ z2tγ2;α−1 − xtβ;−ρ);
Pr(yt = 1|z2t,xt) = Φ(−µ+ z2tγ)− Φ2(−µ+ z2tγ2;α0 − xtβ;−ρ)

= Φ2(−µ+ z2tγ2;−α0 + xtβ; ρ) (5)

because Φ2(x; y; ρ) = Φ(x)− Φ2(x;−y;−ρ).

4. Analogously, the use of the Vuong test for nonnested hypotheses to test for zero inflation in a
Poisson or negative binomial model with a binary regime equation is inappropriate too, because
these models are actually nested in their two-part zero-inflated extensions (Wilson 2015).
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Similarly, according to (3) the probabilities of the outcome j in the ZIOP-3 model
are given by

Pr(yt = −1|z3t,x−
t ,x

+
t ) = Φ2(µ1 − z3tγ3;α

−
0 − x−

t β
−;ρ−)

Pr(yt = 0|z3t,x−
t ,x

+
t ) = Φ(µ1 − z3tγ3)− Φ2(µ1 − z3tγ3;α

−
0 − x−

t β
−;ρ−)

+ Φ(µ2 − z3tγ3)− Φ(µ1 − z3tγ3) + Φ2(−µ2 + z3tγ3;α
+
0 − x+

t β
+;−ρ+)

= Φ2(µ1 − z3tγ3;−α−
0 + x−

t β
−;−ρ−) + Φ(µ2 − z3tγ3)

− Φ(µ1 − z3tγ3) + Φ2(−µ2 + z3tγ3;α
+
0 − x+

t β
+;−ρ+)

Pr(yt = 1|z3t,x−
t ,x

+
t ) = Φ(−µ2 + z3tγ3)− Φ2(−µ2 + z3tγ3;α

+
0 − x+

t β
+;−ρ+)

= Φ2(−µ2 + z3tγ3;−α+
0 + x+

t β
+; ρ+)

Suppose the regressors in x−
t and x+

t in the ZIOP-3 outcome equations are identical
to the regressors in z2t in the ZIOP-2 regime equation, the regressors in z3t in the ZIOP-3

regime equation are identical to the regressors in the xt in the ZIOP-2 outcome equation,
and the parameters are restricted as follows: −β− = β+ = γ2, β = γ3, µ1 = α−1,
µ2 = α0, −α−

0 = α+
0 = µ, and −ρ− = ρ+ = ρ. Then, because x−

t = x+
t = z2t, z3t = xt

and Φ(−x) = 1− Φ(x), the probabilities for the ZIOP-3 model can be written as

Pr(yt = −1|xt, z2t) = Φ2(α−1 − xtβ;−µ+ z2tγ2;−ρ)
Pr(yt = 0|xt, z2t) = Φ2(α−1 − xtβ;µ− z2tγ2;ρ) + Φ(α0 − xtβ)− Φ(α−1 − xtβ)

+ Φ2(−α0 + xtβ;µ− z2tγ2;−ρ) = −Φ2(α−1 − xtβ;−µ+ z2tγ2;−ρ) + 1

− Φ2(−α0 + xtβ;−µ+ z2tγ2; ρ)

Pr(yt = 1|xt, z2t) = Φ2(−α0 + xtβ;−µ+ z2tγ2; ρ)

which are identical to the probabilities for the ZIOP-2 model in (5).

Notice that the restrictions −β− = β+ = γ2 and −α−
0 = α+

0 = µ impose a sort of
symmetry in the ZIOP-3 model, because they imply that the conditional probability of
a positive response is equal to the conditional probability of a negative response:

Pr(yt = 1|z3t,x+
t , s

∗
t = 1) = 1− Φ(α+

0 − x+
t β

+)

= Φ(−α+
0 + x+

t β
+) = Φ(α−

0 − x−
t β

−) = Pr(yt = −1|zt,x−
t , s

∗
t = −1)

In general, if x−
t and x+

t are not identical to z2t but contain all the regressors in z2t,
and if z3t is not identical to xt but contains all the regressors in xt, the ZIOP-2 model is
still nested in the ZIOP-3 model with the additional zero restrictions for the coefficients
on all the extra regressors in x−

t , x
+
t , and z3t.

3 The nop, ziop2, and ziop3 commands

The accompanying software includes the three new commands, the postestimation com-
mands, and the supporting help files.
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3.1 Syntax

The following commands fit, respectively, the NOP, ZIOP-2, and ZIOP-3 models for dis-
crete ordinal outcomes:

nop depvar indepvars
[
if
] [

in
] [

, posindepvars(varlist) negindepvars(varlist)

infcat(choice) endoswitch robust cluster(varname) vuong initial(string)

nolog
]

ziop2 depvar indepvars
[
if
] [

in
] [

, outindepvars(varlist) infcat(choice)

endoswitch robust cluster(varname) initial(string) nolog
]

ziop3 depvar indepvars
[
if
] [

in
] [

, posindepvars(varlist)

negindepvars(varlist) infcat(choice) endoswitch robust cluster(varname)

vuong initial(string) nolog
]

An ordinal dependent variable, depvar, is assumed to take on at least five discrete
ordinal values in the NOP model, at least two in the ZIOP-2 model, and at least three in
the ZIOP-3 model. A list of the independent variables in the regime equation, indepvars,
may be different from the lists of the independent variables in the outcome equations.

Options

posindepvars(varlist) specifies a list of the independent variables in the outcome equa-
tion, conditional on the regime s∗t = 1 for nonnegative outcomes in the NOP and
ZIOP-3 models. By default, it is identical to indepvars, the list of the independent
variables in the regime equation.

negindepvars(varlist) specifies a list of the independent variables in the outcome equa-
tion, conditional on the regime s∗t = −1 for nonpositive outcomes in the NOP and
ZIOP-3 models. By default, it is identical to indepvars, the list of the independent
variables in the regime equation.

outindepvars(varlist) specifies a list of the independent variables in the outcome equa-
tion of the ZIOP-2 model. By default, it is identical to indepvars, the list of the
independent variables in the regime equation.

infcat(choice) is the value of the dependent variable in the regime s∗t = 0 that should
be modeled as inflated in the ZIOP-2 and ZIOP-3 models and modeled as neutral in
the NOP model. The default is infcat(0).

endoswitch specifies that endogenous regime switching be used instead of default exoge-
nous switching. Regime switching is endogenous if the unobserved random term in
the regime equation is correlated with the unobserved random terms in the outcome
equations; it is exogenous otherwise.
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robust specifies that a robust sandwich estimator of variance be used; the default
estimator is based on the observed information matrix.

cluster(varname) specifies a clustering variable for the clustered robust sandwich es-
timator of variance.

vuong specifies that the Vuong test of the NOP (or ZIOP-3) model versus the conventional
OP model be performed. The reported Vuong test statistics5 have a standard normal
distribution with large positive values favoring the NOP (or ZIOP-3) model and large
negative values favoring the OP model.

initial(string) specifies a space-delimited list, string, of the starting values of the
parameters in the following order: γ, µ, β+, α+, β−, α−, ρ−, and ρ+ for the NOP

and ZIOP-3 models, and γ, µ, β, α, and ρ for the ZIOP-2 model.

nolog suppresses the iteration log and preliminary results.

Stored results

The descriptions of the stored results can be found in the help files.

3.2 Postestimation commands

The following postestimation commands are available after nop, ziop2, and ziop3:

The predict command

predict newvar
[
if
] [

in
] [

, zeros regimes output(string)
]

This command computes the predicted probabilities of the discrete choices (by de-
fault), the regimes and the types of zeros conditional on the regime, and the predicted
outcomes and the expected values of the dependent variable for all observed values of
the independent variables in the sample. The command creates (J− + J+ + 1) new
variables under the names with a newvar prefix. The following options are available:

zeros indicates that the probabilities of the different types of zeros (the outcomes in
the inflated category infcat(choice) in the ZIOP-2 and ZIOP-3 models), conditional
on different regimes, be predicted instead of the choice probabilities.

regimes indicates that the probabilities of the regimes st ∈ {−1, 0, 1} be predicted
instead of the choice probabilities. This option is ignored if the zeros option is
used.

5. The reported Vuong test statistics are the standard one and the two adjusted test statistics with
corrections to address the comparison of models with different numbers of parameters based on the
Akaike information criteria (AIC) and Bayesian information criteria (BIC).
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output(string) specifies the different types of predictions. The possible values of string
are as follows: choice for reporting the predicted outcome (the choice with the
largest predicted probability); mean for reporting the expected value of the dependent
variable computed as

∑
i iPr(yt = i); and cum for predicting the cumulative choice

probabilities, Pr(yt ≤ −J−), Pr(yt ≤ −J− + 1), . . . , Pr(yt ≤ J+). By default, the
usual choice probabilities, Pr(yt = −J−), Pr(yt = −J− + 1), . . . , Pr(yt = J+), are
predicted and saved into the new variables with the newvar prefix.

The ziopprobabilities command

ziopprobabilities
[
, at(string) zeros regimes

]
This command shows the predicted probabilities estimated at the specified values

of the independent variables along with the standard errors. The options zeros and
regimes are specified as in predict. The option at() is specified as follows:

at(string) specifies for which values of the independent variables to estimate the pre-
dictions. string is a list of varname=value expressions, separated by commas. If
at(string) is used, the predictions are estimated at these values and displayed with-
out saving to the dataset. If some independent variable names are not specified,
their median values are taken instead. By default, the predictions are estimated at
the median values of the independent variables.

The ziopcontrasts command

ziopcontrasts
[
, at(string) to(string) zeros regimes

]
This command shows the differences in the predicted probabilities, estimated first

at the values of the independent variables in at() and then at the values in to(), along
with the standard errors. The options zeros, regimes, and at() are specified as in
ziopprobabilities. The option to() is specified analogously to at().

The ziopmargins command

ziopmargins
[
, at(string) zeros regimes

]
This command shows the marginal effects of each independent variable on the pre-

dicted probabilities estimated at the specified values of the independent variables, along
with the standard errors. The options zeros, regimes, and at() are specified as in
ziopprobabilities.
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The ziopclassification command

ziopclassification
[
if
] [

in
]

This command shows the classification table (or confusion matrix); the percentage
of correct predictions; the two strictly proper scores—the probability, or Brier, score
(Brier 1950) and the ranked probability score (Epstein 1969); and the precisions, hit
rates (or recalls), and adjusted noise-to-signal ratios (Kaminsky and Reinhart 1999).

The classification table reports the predicted choices (the ones with the highest pre-
dicted probability) in columns, the actual choices in rows, and the number of (mis)clas-
sifications in each cell.

The Brier probability score is computed as 1/T
∑T

t=1

∑J+

j=−J−{Pr(yt = j) − Ijt}2,
where indicator Ijt = 1 if yt = j and Ijt = 0 otherwise. The ranked probability score

is computed as 1/T
∑T

t=1

∑J+

j=−J−(Qjt − Djt)
2, where Qit =

∑j
i=−J− Pr(yt = i) and

Dit =
∑j

i=−J− Ijt. The better the prediction, the smaller are both score values. Both
scores have a minimum value of 0 when all the actual outcomes are predicted with a
unit probability.

The precision, hit rate (or recall), and adjusted noise-to-signal ratios are defined
as follows. Let TP denote a true positive event, that is, the outcome was predicted
and occurred; let FP denote a false positive event, that is, the outcome was predicted
but did not occur; let FN denote a false negative event, that is, the outcome was not
predicted but did occur; and let TN denote a true negative event, that is, the outcome
was not predicted and did not occur. The desirable outcomes fall into categories TP

and TN, while the noisy ones fall into categories FP and FN. A perfect prediction has no
entries in FP and FN, while a noisy prediction has many entries in FP and FN but few
in TP and TN. The precision is defined for each choice as TP/(TP + FP); the recall is
defined as TP/(TP+ FN); and the adjusted noise-to-signal ratio is defined as {FP/(FP+
TN)}/{TP/(TP+ FN)}.

The ziopvuong command

ziopvuong modelspec1 modelspec2

This command performs the Vuong test for nonnested hypotheses, which compares
the closeness of two models to the true data distribution by using the differences in the
pointwise log likelihoods of the two models. The null hypothesis is that both models
are misspecified but equally close to the unknown true model. The test statistic is
equal to the average difference of the pointwise log likelihoods divided by the estimated
standard error of those pointwise differences. Under the null hypothesis, the Vuong test
statistic converges in distribution to a standard normal one. The arguments modelspec1
and modelspec2 are the names under which the estimation results are saved using the
estimates store command. Any model that stores the vector e(ll obs) of obser-
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vationwise log likelihood can technically be used to perform the test. The command
provides the three Vuong test statistics (z scores): the standard one and two adjusted
ones with corrections to address the comparison of models with different numbers of
parameters based on AIC and BIC. They can be used to test the hypothesis that one
of the models explains the data better than the other. A significant positive z score
indicates a preference for the first model, while a significant negative z score indicates
a preference for the second model. An insignificant z score implies no preference for
either model.

4 Monte Carlo experiments

We performed three sets of Monte Carlo simulations to illustrate the finite-sample per-
formance of the ML estimators of each model. In the first set of experiments, we studied
the performance of the ML estimators of the NOP, ZIOP-2, and ZIOP-3 models when
simulated and estimated processes are the same, using artificial explanatory variables.
The simulations demonstrate that the proposed ML estimators deliver consistent and
reliable estimates even in small samples.

In the second set of experiments, using the real-world values of explanatory variables
and the values of parameters from the empirical example, we compared the performance
of theML estimators of the OP and ZIOP-3models if the data are generated by one of them
and then fit by both models, and the performance of various measures of fit, information
criteria, and statistical tests in selecting the best model. The ZIOP-3 estimator under the
OP data-generating process (DGP) performs substantially better than the OP estimator
under the ZIOP-3 DGP, and it produces reliable inference in small samples under both
DGPs. AIC and BIC outperform the other criteria and tests in correctly selecting the
true model under both DGPs.

In the third set of experiments, we compared the performance of the asymptotic and
nonparametric bootstrap estimators of the standard errors. The simulations suggest
that, in small samples, the bootstrap estimator of the standard errors of the parameters
in the models with endogenous switching may provide substantially better coverage rates
than the asymptotic estimator, especially with regard to the correlation coefficients.
However, the bootstrap estimator of the standard errors of the choice probabilities does
not necessarily perform better than the asymptotic one at the same time.

4.1 Monte Carlo design

In the first set of experiments, we simulated six DGPs according to the NOP, ZIOP-

2, and ZIOP-3 models (each of them with both exogenous and endogenous switch-
ing) and then estimated each process by using the true model. Three independent

variables, w1, w2, and w3, were drawn in each replication as w1
i.i.d.∼ N (0, 1) + 2,

w2
i.i.d.∼ N (0, 1), and w3 = −1 if u ≤ 0.3, 0 if 0.3 < u ≤ 0.7, or 1 if u > 0.7, where

u
i.i.d.∼ U [0, 1]. The repeated samples were generated for the NOP and ZIOP-3 models
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with Z = (w1,w2), X− = (w1,w3), X+ = (w2,w3), and for the ZIOP-2 model with
Z = (w1,w3), X = (w2,w3). The dependent variable y was generated with five val-
ues: −2, −1, 0, 1, and 2. The parameters were calibrated to yield, on average, the
following frequencies of the above outcomes: 7%, 14%, 58%, 14%, and 7%, respectively.
The true values of parameters in the simulations, θtrue, are shown in table A1 in the
appendix. Ten thousand repeated samples with T = 200, 500, and 1,000 observations
were independently generated for each DGP.

In the second set of experiments, we simulated two DGPs. One is generated by the
OP model, and the other is generated by the ZIOP-3 model with exogenous switching.
For each DGP, we fit both models. We simulated data by mimicking the real-world
sample used in our empirical application in section 5. The values of four regressors
(spread, pb, houst, and gdp) were the same as in the empirical example and held fixed
in all replications. The standard normal error terms were independently drawn in each
replication. The values of the dependent variable (−2, −1, 0, 1, or 2) were generated
according to the OP and ZIOP-3 models using the same specifications and the same values
of the parameters as in the estimations reported in section 5. Ten thousand repeated
samples with 210 observations were independently generated for each DGP.

In the third set of experiments, we simulated four DGPs according to the NOP and
ZIOP-3 models (each of them with both exogenous and endogenous switching), as in
the first set of experiments, and we estimated each process using the true model and
using both the asymptotic and the bootstrap estimators of the standard errors. We
generated 3,000 replications in the case of exogenous switching and 1,000 replications
in the case of endogenous switching. To compute a nonparametric bootstrap estimator
of standard errors, we drew with replacement 200 bootstrap samples for each Monte
Carlo iteration, recalculated the statistics, and obtained the standard deviations of the
replicated statistics.

To avoid the divergence of the ML estimates due to the problem of complete sep-
aration (perfect prediction), which could happen if the actual number of observations
in any outcome category is 0 or very low, the samples with any outcome category fre-
quency lower than 6% (in the first and third sets of experiments), 4% (in the second
set), and 3% (in the bootstrap samples) were discarded. The variances of the normal
error terms in all experiments were fixed to 1.

4.2 Monte Carlo results

Table 1 reports the measures of accuracy for the ML estimates of the slope parameters β,
β−, β+, and γ and correlation coefficients ρ, ρ−, and ρ+ in the first set of experiments.
The simulations show that the estimators are consistent: as sample size increases from
200 to 1,000, the biases decrease at least fourfold and the root mean squared errors
(RMSE) decrease at least twice. The coverage rate for the slope parameters is below
90% only for the ZIOP-3 model with 200 observations; for the other sample sizes and
models, the coverage rates are between 91.1% and 95.1%; with 1,000 observations, the
biases of the standard error estimates are smaller than 5% and the coverage rates are
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between 93.4% and 95.1%. The coverage rates for the correlation coefficients are not
so good: between 68% and 79% with 200 observations and between 82% and 93% with
1,000 observations.

Table 1. The accuracy of the estimators of parameters

Sample True and NOP NOP ZIOP-2 ZIOP-2 ZIOP-3 ZIOP-3
size fit model (ρ− = ρ+ (ρ = 0) (ρ− = ρ+

= 0) = 0)

Slope coefficients β, β−, β+, and γ
200 Bias, ×100 4.5 2.5 20.2 8.4 4.9 5.0
500 1.5 1.0 3.5 2.9 2.2 3.1

1000 0.8 0.5 1.5 1.2 1.1 1.2

200 RMSE, ×10 4.6 7.9 21.6 3.8 2.6 2.6
500 1.4 1.4 1.8 1.7 1.5 1.5

1000 0.9 1.0 1.1 1.0 1.0 1.0

200 Coverage rate 95.1 92.4 91.2 91.1 92.1 88.3
500 (at 95% level), % 94.9 93.2 93.4 93.4 92.8 91.4

1000 95.1 93.9 94.6 94.8 93.5 93.4

200 Bias of 18.2 12.0 48.1 20.8 13.8 12.6
500 standard error 3.0 2.3 12.6 8.3 6.6 5.9

1000 estimates, % 1.1 1.9 3.3 2.7 4.1 2.7

Correlation coefficients ρ, ρ−, and ρ+

200 Bias 0.10 0.05 0.25
500 0.04 0.01 0.08

1000 0.02 0.01 0.03

200 RMSE, ×10 5.1 4.1 6.1
500 3.4 2.4 4.2

1000 2.5 1.6 3.1

200 Coverage rate 68.8 78.7 73.8
500 (at 95% level), % 76.8 87.0 80.3

1000 82.6 92.6 85.1

200 Bias of 16.0 18.4 6.2
500 standard error 13.7 5.6 8.2

1000 estimates, % 10.0 2.9 7.4

notes: Bias is the absolute difference between the estimated and true values (in case of standard
error estimates, divided by the true value; the true value is computed as the standard deviation of
the estimates in all replications). RMSE is the root mean squared error of the estimates. Coverage
rate is the percentage of times the estimated asymptotic 95% confidence intervals cover the true
values. The above measures are averaged across all parameters.
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Table 2 reports the measures of accuracy of the estimates of choice probabilities.
The accuracy of estimated probabilities is more interesting and informative than the
accuracy of estimated parameters. In the latent class models, the parameters are iden-
tified only up to scale and location and cannot be easily interpreted in terms of ME on
the probabilities (for example, in the OP models, the sign of the coefficient on a certain
covariate does not imply the direction of the ME of that covariate). In contrast, the
choice probabilities are absolutely estimable and invariant to the identifying assump-
tions, which are necessary to estimate the latent class models. The estimates of the
choice probabilities are the primary objectives of empirical studies. Besides, the per-
cent bias of parameter estimates in simulations depends on the chosen absolute values of
the parameters, whereas the percent bias of probability estimates is invariant to them.

Table 2. The accuracy of the estimators of choice probabilities

Sample True and NOP NOP ZIOP-2 ZIOP-2 ZIOP-3 ZIOP-3
size fit model (ρ− = ρ+ (ρ = 0) (ρ− = ρ+

= 0) = 0)

200 Bias, ×1000 1.8 1.9 4.8 6.1 4.1 4.9
500 0.8 1.0 2.4 3.4 2.0 2.8

1000 0.4 0.5 1.4 1.9 0.9 1.7

200 RMSE, ×100 2.4 2.6 2.8 2.9 2.7 2.9
500 1.5 1.6 1.7 1.8 1.6 1.8

1000 1.1 1.1 1.2 1.2 1.1 1.3

200 Coverage rate 94.4 94.4 95.3 95.3 95.1 94.8
500 (at 95% level), % 95.4 95.2 95.6 95.6 95.9 95.7

1000 95.5 95.5 95.7 95.7 95.6 95.6

200 Bias of 4.2 4.2 6.9 6.4 5.5 15.1
500 standard error 3.9 4.6 6.9 6.1 5.3 16.6

1000 estimates, % 2.6 3.4 5.7 5.9 3.7 13.9

notes: Bias is the absolute difference between the estimated and true values (in case of standard
error estimates, divided by the true value; the true value is computed as the standard deviation of
the estimates in all replications). RMSE is the root mean squared error of the estimates. Coverage
rate is the percentage of times the estimated asymptotic 95% confidence intervals cover the true
values. The above measures are averaged across all five choices.

The values of the choice probabilities, which depend on the values of the regressors,
are computed for table 2 at the population means of the simulated regressors. The
probability estimates are more accurate than the parameter estimates. The simulations
show that the ML estimates of probabilities are consistent and reliable even in samples
with only 200 observations: the biases are smaller than five percent and the asymptotic
coverage rates differ from the nominal 0.95 level by less than 1%. With 1,000 obser-
vations, the biases of choice probability estimates are around 1%. For each model, the
biases and RMSE sharply decrease as the sample size increases from 200 to 1,000. The
RMSE decreases, in most cases, faster than the asymptotic rate

√
T . This may be caused

by a small number of large deviations in the parameter estimates in small samples. For
all models and sample sizes, the biases and RMSE are, as expected, slightly higher in
more complex endogenous-switching versions. The standard error estimates, on aver-
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age, correspond to the actual standard errors; however, large deviations make standard
error estimates biased in small samples, but do not move the coverage rates from the
nominal level by more than 1% even with only 200 observations. The accuracy in the
NOP models is, as expected, higher than in the zero-inflated OP models.

Table 3 reports the results of the second set of experiments. To compare the perfor-
mance of the OP and ZIOP-3 models fit under each DGP, the two top panels of table 3
show for both fitted models the accuracy of the estimated probability of the actual
(observed) choice and the accuracy of the estimated ME of the regressor spread on the
probability of the actual choice. The probabilities and MEs are computed at the actual
values of the regressors for all observations in the repeated samples and averaged across
all observations and all samples. The OP model under the ZIOP-3 DGP performs sub-
stantially worse than the ZIOP-3 model under the OP DGP. The biases in the OP model
under the ZIOP-3 DGP are 3 times (for probability) and 18 times (for ME) as large as the
biases in the ZIOP-3 model, whereas the biases in the ZIOP-3 model under the OP DGP

are similar to the biases in the true model. The differences in the RMSE in two models
under each DGP are comparable. The ZIOP-3 model clearly outperforms the OP model
in terms of the coverage rates: the estimated asymptotic 95% confidence intervals in the
ZIOP-3 model cover the true values in about 90% of iterated samples under both DGPs,
while the coverage rate of the OP model is around 94% under its own DGP but around
54% only under the ZIOP-3 DGP.

The bottom panel of table 3 shows the fractions of times when a model is selected
under each DGP according to the following measures of fit, information criteria, and sta-
tistical tests: the percentage of correct predictions (according to a maximum probability
rule), the Brier score, the ranked probability score, the LR test, the information-based
selection criteria AIC and BIC, the Vuong tests, and the pared sign tests (Clarke 2003).
Information criteria are computed as AIC = −2l(θML)+2p and BIC = −2l(θML)+p(lnT ),
where p is the total number of estimated parameters and l(θML) is the maximized
log-likelihood function. To perform the sign test, we computed the differences of the
pointwise log likelihoods of two models and counted the number of positive differences.
Under the null hypothesis that both models are equally distant from the true model,
half of the log-likelihood ratios should be positive and half should be negative. Under
the null, the number of positive differences is distributed binomial (with 0.5 probability
of success in each of T = 210 trials). The Vuong and pared sign tests are performed in
the classical form as well as with the Akaike and Bayesian penalties [respectively, p/T
and p(lnT )/(2T )] for the pointwise log likelihoods.

The model selection results demonstrate the superiority of the ZIOP-3 model and
back the need for its zero-inflation component. Under its own DGP, the ZIOP-3 model
is selected in 95%–100% of cases by all criteria except for the Vuong test with Bayesian
penalty (54% of cases) and sign test with Bayesian penalty (41%), while the OP model
is never selected by any criteria except for the percentage of correct predictions (in
2% of cases only), BIC (5% only), and sign tests with Akaike (1% only) and Bayesian
(12% only) penalties. In contrast, under the OP DGP, the selection results are not so
overwhelmingly in favor of the true model: the OP model is preferred in 96%–100% of
cases by AIC, BIC, and the Vuong and sign tests with Bayesian penalty, but in 5% of
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cases only by the Vuong test, in 13% of cases only by the sign test, and in 84% of cases
by the sign test with Akaike penalty; the other tests and criteria select the true OP

model in 45%–56% of cases only. The ZIOP-3 model is selected under the OP DGP far
more often than the OP model under the ZIOP-3 DGP. Under the OP DGP, the ZIOP-3

model is even more often preferred by the sign test (in 26% of cases) than the true
model (in 13% of cases only).

Table 3. The performance of the OP and ZIOP-3 models under
each DGP

True model OP ZIOP-3

Fit model OP ZIOP-3 OP ZIOP-3

Estimated probability of actual choice
Bias, ×100 0.8 1.0 −4.9 1.6
RMSE, ×100 6.4 10.2 17.2 9.0
Coverage rate, % 93.6 88.2 54.0 88.7

Estimated marginal effect of spread
on probability of actual choice

Bias, ×100 −0.5 −0.4 −3.6 −0.2
RMSE, ×100 10.2 17.1 23.4 21.2
Coverage rate, % 94.6 89.1 53.9 91.3

Model selection results
(fraction of times when a model is selected

according to each criterion)
% of correct predictions 0.45 0.46 0.02 0.96
Brier score 0.50 0.50 0.00 1.00
Ranked probability score 0.55 0.45 0.00 1.00
LR test 0.53 0.47 0.00 1.00
AIC 0.96 0.04 0.00 1.00
BIC 1.00 0.00 0.05 0.95
Vuong test 0.05 0.02 0.00 1.00
Vuong test (AIC) 0.56 0.00 0.00 0.96
Vuong test (BIC) 0.99 0.00 0.00 0.54
Sign test 0.13 0.26 0.00 1.00
Sign test (AIC) 0.84 0.01 0.01 0.96
Sign test (BIC) 1.00 0.00 0.12 0.41

notes: Bias is the difference between the estimated and true values,
multiplied by 100. RMSE is the root mean squared error of the es-
timates, multiplied by 100. Coverage rate is the percentage of times
the estimated asymptotic 95% confidence intervals cover the true val-
ues. The probabilities and MEs are computed at the actual values of
regressors for all observations.
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BIC and AIC do the best job correctly selecting the true model in at least 95% of
cases under both DGPs. Under the zero-inflated DGP, when the ZIOP-3 model clearly
outperforms the OP model, most of the criteria perform well and correctly favor the
true model in at least 95% of cases except for the Vuong and sign tests with Bayesian
penalty: the former selects the true model in 54% of cases only but never selects the
OP model, while the latter selects the ZIOP-3 model in 42% of cases but prefers the OP

model in 12% of cases. Under the OP DGP, when the performance of the ZIOP-3 model
is quite close to that of the OP model, only AIC, BIC, and the Vuong and sign tests with
Bayesian penalties perform well and correctly select the true model in more than 95%
of cases. The classical LR/Vuong/sign tests select the true model only in 53%/5%/13%
of cases, prefer the wrong model in 47%/2%/26% of cases, and are indifferent between
the two alternatives in 0%/93%/61% of cases. Such criteria as the percentage of correct
predictions, the Brier score, and the ranked probability score, which are not based on
the ML approach, select each alternative in roughly one half of cases, though the ranked
probability score performs slightly better than the others, selecting the true model in
55% of cases.

Table 4 summarizes the results of the third set of experiments. As the upper panel
shows, the asymptotic estimates of the standard errors of the slope parameters are rather
slightly underestimated (by 9%–13%), whereas the bootstrap estimates are severely
overestimated (by 155%–325% for exogenous switching and by 16%–22% for endogenous
switching). The more complicated the model, the worse (the lower) are the asymptotic
coverage rates: 95% for the NOP with exogenous switching, but only 86% for the ZIOP-3

with endogenous switching. The bootstrap coverage rates are above the 95% nominal
level (in the 96.6%–98.4% interval); they are closer to the nominal level than the asymp-
totic ones for both models with endogenous switching, have the same deviation from
the nominal level (but in the opposite directions) for the ZIOP-3 model with exogenous
switching, and are further from the nominal level for the NOP model with exogenous
switching.

As the middle panel shows, the bootstrap coverage rates for the correlation coef-
ficients (89%) are substantially better than the asymptotic ones (only 71%) for both
models, and the biases of the estimates of the standard errors are below 10% for both
estimators and models. Nevertheless, as the bottom panel reports for the choice prob-
abilities, the bootstrap and asymptotic estimators have similar biases of the standard
error estimates and similar coverage rates in the NOP models, but in the ZIOP-3 models
the asymptotic estimator performs better than the bootstrap one.

The experiments suggest that there is no need to apply the bootstrap estimator of
the standard errors of the choice probabilities, even if the number of observations per
parameter is as small as 15. However, with respect to the slope parameters and especially
the correlation coefficients, the bootstrap estimator in the models with endogenous
switching in small samples may avoid the severe overestimation of the standard errors
and provide better coverage rates than the asymptotic estimator.
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Table 4. Comparison of the asymptotic and bootstrap estimators of standard errors

True and fit model NOP NOP ZIOP-3 ZIOP-3

(ρ− = ρ+ = 0) (ρ− = ρ+ = 0)

Slope coefficients β−, β+, and γ
Coverage rate Asymptotic 95.0 93.0 91.9 86.2
(at 95% level), % Bootstrap 97.9 96.6 98.1 98.4
Bias of standard Asymptotic 11.0 9.1 12.8 12.8
error estimates, % Bootstrap 324.4 16.5 155.0 22.6

Correlation coefficients ρ− and ρ+

Coverage rate Asymptotic 70.6 70.9
(at 95% level), % Bootstrap 88.5 89.4
Bias of standard Asymptotic 8.1 7.5
error estimates, % Bootstrap 4.2 10.0

Choice probabilities
Coverage rate Asymptotic 94.6 95.2 95.4 95.6
(at 95% level), % Bootstrap 94.8 95.1 95.9 97.9
Bias of standard Asymptotic 3.9 10.1 6.8 25.4
error estimates, % Bootstrap 4.9 9.6 11.2 24.3

notes: Sample size is 200. Coverage rate is the percentage of times the estimated asymptotic 95%
confidence intervals cover the true values. Bias is the absolute difference between the estimated and
true values, divided by the true value (the true value is computed as the standard deviation of the
estimates in all replications).

5 Examples

The new commands are applied to a real-world time-series sample of all decisions of the
U.S. Federal Open Market Committee (FOMC) on the federal funds rate target made at
scheduled and unscheduled meetings during the 9/1987–9/2008 period.

The dependent variable, the change to the rate target, is classified into five ordered
categories: “−0.5” (a cut of 0.5% or more), “−0.25” (a cut less than 0.5% but more
than 0.0625%), “0” (no change or change by no more than 0.0625%), “0.25” (a hike
more than 0.0625% but less than 0.5%) and “0.5” (a hike of 0.5% or more). The
FOMC decisions are aligned with the real-time values of the explanatory variables as
they were truly available to the public on the previous day before each FOMC meeting.
The explanatory variables include spread (the difference between the one-year treasury
constant maturity rate and the effective federal funds rate, five-business-day moving
average6); pb (the trichotomous indicator that we constructed from the “policy bias”
statements at the previous FOMC meeting: it equals 1 if the statement was asymmetric
toward tightening, 0 if the statement was symmetric, and −1 if the statement was

6. Data were sourced from ALFRED (ArchivaL Federal Reserve Economic Data), available at
https://alfred.stlouisfed.org/.

https://alfred.stlouisfed.org/
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asymmetric toward easing7); houst (the Greenbook projection for the current quarter of
the total number of new, privately owned housing units started8); gdp [the Greenbook
projection for the current quarter of quarterly growth in the nominal gross domestic
(before 1992: national) product, annualized percentage points9].

We start by fitting the conventional OP model with the oprobit command:

. use rate_change

. oprobit rate_change spread pb houst gdp, nolog

Ordered probit regression Number of obs = 210
LR chi2(4) = 214.54
Prob > chi2 = 0.0000

Log likelihood = -159.56242 Pseudo R2 = 0.4020

rate_change Coef. Std. Err. z P>|z| [95% Conf. Interval]

spread 1.574232 .1870759 8.41 0.000 1.20757 1.940894
pb .9262378 .1479364 6.26 0.000 .6362877 1.216188

houst 1.373179 .3459397 3.97 0.000 .6951499 2.051209
gdp .2390714 .0571926 4.18 0.000 .1269761 .3511668

/cut1 .4656819 .5382091 -.5891885 1.520552
/cut2 1.8382 .5339707 .7916362 2.884763
/cut3 4.835985 .6359847 3.589478 6.082492
/cut4 6.331172 .6875922 4.983516 7.678828

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model N ll(null) ll(model) df AIC BIC

. 210 -266.8308 -159.5624 8 335.1248 361.9017

Note: BIC uses N = number of observations. See [R] BIC note.

We now allow the negative, zero, and positive changes to the rate target to be gen-
erated by different processes, and we fit the three-part NOP model. The nop command
yields the following results:

7. Data were sourced from FOMC statements and minutes, available at
https://www.federalreserve.gov/monetarypolicy/fomc historical.htm.

8. Data were sourced from RTDSM (Real-Time Data Set for Macroeconomists), available at
https://www.philadelphiafed.org.

9. Data were sourced from RTDSM.

https://www.federalreserve.gov/monetarypolicy/fomc_historical.htm
https://www.philadelphiafed.org
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. nop rate_change spread pb houst gdp, negindepvars(spread gdp)
> posindepvars(spread pb) infcat(0) nolog vuong
Nested ordered probit regression
Regime switching: exogenous
Number of observations = 210
Log likelihood = -150.9638
McFadden pseudo R2 = 0.4342
LR chi2( 8) = 231.7341
Prob > chi2 = 0.0000
AIC = 325.9276
BIC = 366.0929

rate_change Coef. Std. Err. z P>|z| [95% Conf. Interval]

Regime equa~n
spread 1.579634 .2195074 7.20 0.000 1.149407 2.00986

pb .8769437 .1582913 5.54 0.000 .5666983 1.187189
houst 2.303497 .4324382 5.33 0.000 1.455934 3.15106

gdp .2742909 .0696122 3.94 0.000 .1378535 .4107283
/cut1 3.299825 .6832466 4.83 0.000 1.960686 4.638964
/cut2 6.496984 .8339922 7.79 0.000 4.862389 8.131578

Outcome equ~)
spread 1.627788 .6749174 2.41 0.016 .3049738 2.950602

pb 2.255519 .8805859 2.56 0.010 .5296021 3.981436
/cut1 3.13416 .951149 3.30 0.001 1.269942 4.998378

Outcome equ~)
spread .9489572 .3821965 2.48 0.013 .1998659 1.698049

gdp .1339181 .1006124 1.33 0.183 -.0632785 .3311147
/cut1 -.4720761 .4202011 -1.12 0.261 -1.295655 .351503

Vuong test versus ordered probit:
Mean difference in log likelihood 0.0409
Standard deviation of difference in log likelihood 0.2626
Number of observations 210
Vuong test statistic z = 2.2600
P-Value Pr>z = 0.0119

with AIC (Akaike) correction z = 1.2087
P-Value Pr>z = 0.1134

with BIC (Schwarz) correction z = -0.5508
P-Value Pr>z = 0.7091

The NOP model provides a substantial improvement of the likelihood and is preferred
to the standard OP model according to AIC and the Vuong test (the p-value is 0.01).
However, the Vuong tests with the corrections based on AIC and BIC are indifferent
between the two models. Endogenous switching does not significantly improve the
likelihood of the NOP model (the log likelihood with endogenous switching is −151.0,
the p-value of the LR test of the null of exogenous switching is 0.48), the correlation
coefficients ρ− and ρ+ are not significant, and both AIC and BIC favor the NOP model
with exogenous switching.
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Next we allow for an inflation of zero outcomes and fit the three-part ZIOP-3 model.
The ziop3 command with exogenous switching yields the following results:

. ziop3 rate_change spread pb houst gdp, negindepvars(spread gdp)
> posindepvars(spread pb) infcat(0) nolog vuong

(output omitted )

Zero-inflated ordered probit regression
Zero inflation: three regimes
Regime switching: exogenous
Number of observations = 210
Log likelihood = -139.5529
McFadden pseudo R2 = 0.4770
LR chi2(10) = 254.5558
Prob > chi2 = 0.0000
AIC = 307.1058
BIC = 353.9653

rate_change Coef. Std. Err. z P>|z| [95% Conf. Interval]

Regime equa~n
spread 2.106257 .364262 5.78 0.000 1.392317 2.820198

pb 1.628486 .3357 4.85 0.000 .9705262 2.286446
houst 5.311379 .9913484 5.36 0.000 3.368372 7.254386

gdp .3809605 .1085468 3.51 0.000 .1682127 .5937084
/cut1 9.10348 1.772781 5.14 0.000 5.628894 12.57807
/cut2 12.3481 1.952013 6.33 0.000 8.522226 16.17397

Outcome equ~)
spread 1.809669 .7282027 2.49 0.013 .3824182 3.23692

pb 2.62011 .9836678 2.66 0.008 .692157 4.548064
/cut1 -1.481782 1.015233 -1.46 0.144 -3.471601 .5080377
/cut2 3.509079 1.070841 3.28 0.001 1.41027 5.607889

Outcome equ~)
spread 1.072859 .2690323 3.99 0.000 .5455655 1.600153

gdp .177697 .0742318 2.39 0.017 .0322055 .3231886
/cut1 -.6373707 .3361141 -1.90 0.058 -1.296142 .0214009
/cut2 .7569744 .3460019 2.19 0.029 .0788232 1.435126

Vuong test versus ordered probit:
Mean difference in log likelihood 0.0953
Standard deviation of difference in log likelihood 0.3851
Number of observations 210
Vuong test statistic z = 3.5853
P-Value Pr>z = 0.0002

with AIC (Akaike) correction z = 2.5102
P-Value Pr>z = 0.0060

with BIC (Schwarz) correction z = 0.7110
P-Value Pr>z = 0.2385
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The empirical evidence in favor of zero inflation is convincing: with only two extra
parameters, the ZIOP-3 model has a much higher likelihood than the NOP model (−139.6
versus −151.0) and is clearly preferred by both AIC and BIC to the NOP and OP models.
The Vuong tests for zero inflation (the standard one and one with the correction based on
AIC) favor the ZIOP-3 model over the OP model at the 0.001 and 0.01 level, respectively.
Endogenous switching does not significantly improve the likelihood of the ZIOP-3 model
either (the p-value of the LR test of exogenous switching is 0.30, and both AIC and BIC

prefer the exogenous switching).

In contrast, the likelihood of the two-part ZIOP-2 model is even lower than that of
the NOP model. According to both AIC and BIC, the ZIOP-2 model is inferior to all the
above models, including the OP one. The ziop2 command yields the following results:

. ziop2 rate_change spread pb houst gdp, outindepvars(spread pb houst gdp)
> infcat(0) nolog
Zero-inflated ordered probit regression
Zero inflation: two regimes
Regime switching: exogenous
Number of observations = 210
Log likelihood = -154.3563
McFadden pseudo R2 = 0.4215
LR chi2( 9) = 224.9490
Prob > chi2 = 0.0000
AIC = 334.7126
BIC = 378.2250

rate_change Coef. Std. Err. z P>|z| [95% Conf. Interval]

Regime equa~n
spread -.5718097 .4932371 -1.16 0.246 -1.538537 .3949173

pb 2.220757 1.124943 1.97 0.048 .0159087 4.425605
houst .4317793 .9262931 0.47 0.641 -1.383722 2.24728

gdp -.3039411 .1561281 -1.95 0.052 -.6099465 .0020644
/cut1 -3.269293 2.104548 -1.55 0.120 -7.394131 .8555451

Outcome equ~n
spread 1.920514 .2407834 7.98 0.000 1.448587 2.392441

pb 1.21367 .1982338 6.12 0.000 .8251391 1.602201
houst 1.637904 .3932583 4.16 0.000 .8671318 2.408676

gdp .2358575 .0628755 3.75 0.000 .1126239 .3590911
/cut1 .5651226 .5985825 0.94 0.345 -.6080776 1.738323
/cut2 2.422641 .6270019 3.86 0.000 1.19374 3.651542
/cut3 5.397053 .7416274 7.28 0.000 3.94349 6.850616
/cut4 7.039527 .8100943 8.69 0.000 5.451771 8.627282



32 Estimation of nested and zero-inflated ordered probit models

The Vuong tests prefer the ZIOP-3 model to the ZIOP-2 model at the 0.01 significance
level using the standard test statistic and at the 0.02 and 0.03 levels using the corrected
statistics based, respectively, on AIC and BIC:

. quietly ziop3 rate_change pb spread houst gdp, negindepvars(spread gdp)
> posindepvars(pb spread) infcat(0) nolog

(output omitted )

. estimates store ziop3_model

. quietly ziop2 rate_change spread pb houst gdp,
> outindepvars(spread pb houst gdp) infcat(0)

. estimates store ziop2_model

. ziopvuong ziop3_model ziop2_model
Vuong non-nested test for ziop3_model vs ziop2_model

Mean difference in log likelihood 0.0705
Standard deviation of difference in log likelihood 0.4235
Number of observations 210
Vuong test statistic z = 2.4119
P-Value Pr>z = 0.0079

with AIC (Akaike) correction z = 2.2490
P-Value Pr>z = 0.0123

with BIC (Schwarz) correction z = 1.9763
P-Value Pr>z = 0.0241

Now we report the selected output of the postestimation commands, performed for
the ZIOP-3 model.

The predicted choice probabilities at the specified values of the independent variables
can be estimated using the ziopprobabilities command:

. ziopprobabilities, at(pb=1, spread=0.426, houst=1.6, gdp=6.8)
Evaluated at:
gdp houst pb spread

6.8000 1.6000 1.0000 0.4260

Predicted probabilities of different outcomes
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0000 0.1027 0.4908 0.4065

Standard errors of the probabilities
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0000 0.0491 0.1173 0.1154

The predicted probabilities of the three latent regimes s∗t ∈ {−1, 0, 1} or the proba-
bilities of the three types of zeros conditional on each regime can be estimated for each
sample observation by using the command predict with the option zeros or regimes,
respectively:

. predict p_zero, zeros

. predict p_reg, regimes

. tabstat p_zero* p_reg*, stat(mean)

stats p_zero_0 p_zero_n p_zero_p p_reg_n p_reg_0 p_reg_p

mean .3895957 .1453901 .0042672 .4028259 .3895957 .2075784
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The average predicted probabilities of the regimes st = −1, st = 0, and st = 1 in
the sample are 0.40, 0.39, and 0.21, respectively. However, the average probability of
zeros conditional on the regime st = −1 (0.15) is much higher than on the regime st = 1
(0.00).

The marginal effects of the independent variables on the choice probabilities at the
specified values of the independent variables can be estimated using the ziopmargins

command:

. ziopmargins, at(pb=1, spread=0.426, houst=1.6, gdp=6.8)
Evaluated at:
gdp houst pb spread

6.8000 1.6000 1.0000 0.4260

Marginal effects of all variables on the probabilities of different outcomes
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

gdp -0.0000 -0.0000 -0.0682 0.0373 0.0309
houst -0.0000 -0.0000 -0.9503 0.5198 0.4305

pb -0.0000 -0.0000 -0.2914 -0.7720 1.0634
spread -0.0000 -0.0000 -0.3769 -0.4372 0.8140

Standard errors of marginal effects
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

gdp 0.0000 0.0000 0.0244 0.0156 0.0143
houst 0.0000 0.0000 0.2840 0.1924 0.1799

pb 0.0000 0.0000 0.0772 0.4059 0.3890
spread 0.0000 0.0000 0.1115 0.3106 0.2971

The differences in the predicted choice probabilities (along with the standard er-
rors) at two different values of the independent variables can be estimated using the
ziopcontrasts command. In particular, this command may be used to compute the
MEs of the discrete ordinal independent variables, such as pb (instead of using the
ziopmargins command, which computes the derivatives of the probabilities):

. ziopcontrasts, at(pb=1, spread=0.426, houst=1.6, gdp=6.8)
> to(pb=0, spread=0.426, houst=1.6, gdp=6.8)

Evaluated between
gdp houst pb spread

from 6.8000 1.6000 1.0000 0.4260
to 6.8000 1.6000 0.0000 0.4260

Contrasts of the predicted probabilities of different outcomes
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

0.0000 0.0003 0.5427 -0.1376 -0.4054

Standard errors of the contrasts
Pr(y=-.5) Pr(y=-.25) Pr(y=0) Pr(y=.25) Pr(y=.5)

1.8052 0.9350 0.2971 0.3404 0.7325
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Finally, the different measures of model fit and the accuracy of the probabilistic
predictions can be computed using the ziopclassification command:

. quietly ziop3 rate_change pb spread houst gdp, negindepvars(spread gdp)
> posindepvars(pb spread) infcat(0)

(output omitted )

. ziopclassification
Classification table

Actual Predicted outcomes
outcomes -.5 -.25 0 .25 .5 Total

-.5 7 9 2 0 0 18
-.25 2 21 12 0 0 35

0 1 8 100 5 0 114
.25 0 0 9 25 0 34
.5 0 0 2 4 3 9

Total 10 38 125 34 3 210
Accuracy (% of correct predictions) = 0.7429
Brier score = 0.3731
Ranked probability score = 0.2160

Actual
outcomes Precision Recall Adjusted noise-to-signal ratio

-.5 0.7000 0.3889 0.0402
-.25 0.5526 0.6000 0.1619

0 0.8000 0.8772 0.2969
.25 0.7353 0.7353 0.0695
.5 1.0000 0.3333 0.0000

As table 5 reports, the ZIOP-3 model demonstrates the best fit according to all the
criteria.

Table 5. Comparison of the alternative models

Measure of fit OP NOP ZIOP-2 ZIOP-3

AIC 335.1 325.9 334.7 307.1
BIC 361.9 366.1 378.2 354.0
Percentage of correct predictions 0.66 0.70 0.70 0.74
Brier probability score 0.42 0.40 0.41 0.37
Ranked probability score 0.24 0.23 0.23 0.22
Adjusted noise-to-signal ratio for zeros 0.44 0.41 0.36 0.30

note: The NOP, ZIOP-2, and ZIOP-3 models are fitted with exogenous switching.

6 Concluding remarks

In this article, we described the ML estimation of the nested and cross-nested zero-
inflated OP models using the new commands nop, ziop2, and ziop3. Such models can
be applied to a variety of datasets in which the discrete ordinal outcomes can be di-
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vided into groups (nests) of similar choices, for example, the decisions to reduce, leave
unchanged, or increase the choice variable (monetary policy interest rates, rankings,
prices, consumption levels), or the negative, neutral, or positive attitudes to survey
questions. The choice among the nests is driven by an ordered-choice switching mech-
anism that can be either exogenous or endogenous to the outcome decisions, which are
also naturally ordered (large or small increase/decrease; disagree or strongly disagree;
etc.). The models allow the probabilities of choices from different nests (for example,
no change and an increase) to be driven by distinct mechanisms. Moreover, the cross-
nested zero-inflated models allow the often abundant no-change or neutral outcomes to
belong to all nests and be inflated by several different processes. The results of Monte
Carlo simulations indicate that the proposed ML estimators are consistent and perform
well in small samples.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0625 (to install program files, if available)

. net get st0625 (to install ancillary files, if available)
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