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Abstract. Stata’s gsem command provides the ability to fit multilevel structural
equation models (SEM) and related multilevel models. A motivating example is
provided by multilevel mediation analyses (MA) conducted on patient data from
Methadone Maintenance Treatment clinics in China. Multilevel MA conducted
through the gsem command examined the mediating effects of patients’ treatment
progression and rapport with counselors on their treatment satisfaction. Multilevel
models accounted for the clustering of patient observations within clinics. SEM

fit indices, such as the comparative fit index and the root mean squared error of
approximation, are commonly used in the SEM model selection process. Multilevel
models present challenges in constructing fit indices because there are multiple
levels of hierarchy to account for in establishing goodness of fit. Level-specific
fit indices have been proposed in the literature but have not been incorporated
into the gsem command. I created the gsemgof command to fill this role. Model
results from the gsem command are used to calculate the level-specific comparative
fit index and root mean squared error of approximation fit indices. I illustrate
the gsemgof command through multilevel MA applied to two-level Methadone
Maintenance Treatment data.

Keywords: st0633, gsemgof, gsem, sem, multilevel, structural equation model,
mediation analysis, fit index

1 Introduction

Stata’s generalized structural equation model (SEM) command (gsem) extends the ca-
pabilities of the SEM command (sem) to fit multilevel SEM (Goldstein and McDonald
1988; Longford and Muthén 1992; Muthén 1994; Muthén and Satorra 1995) and related
models to observations that are clustered across two or more levels of hierarchy. A
motivating example is provided by Li et al. (2017) in their mediation analysis (MA) of
baseline data from a randomized controlled trial. The trial evaluated an intervention de-
signed to improve patient care provided by Methadone Maintenance Treatment (MMT)
clinics in China. Patients at the first level were nested within clinics at the second level.
Multilevel MA (MMA) examined the mediating effects of patients’ treatment progression
and rapport with counselors on their treatment satisfaction. The gsem command was
used to conduct MMA that accounted for patient observations at the first level clustered
within clinics at the second level.
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The sem command produces many popular fit indices to aid the model selection
process, such as the comparative fit index (CFI; Bentler and Bonett 1980; Bentler 1990)
and the root mean squared error of approximation (RMSEA; Browne and Cudeck 1993;
Steiger 1990). Multilevel models present challenges in constructing fit indices because
there are multiple levels of hierarchy to account for in establishing goodness of fit. A lack
of fit, especially at higher levels, can be masked if the levels are combined to produce a
fit index. As a result, there is a lack of consensus on suitable fit indices for multilevel
models. Two main approaches have been proposed in the literature, including the
segregating procedure by Yuan and Bentler (2007) and level-specific model fit evaluation
by Ryu and West (2009). At present, fit indices are not produced by the gsem command.
No fit indices are presented by Li et al. (2017).

In this article, I show how the gsemgof command, a new command that uses re-
sults from models fit through the gsem command, can be used to produce level-specific
CFI and RMSEA fit indices. Both the level-specific and segregation procedures require
additional computations to produce fit indices. The level-specific evaluation method is
favored because it requires fewer programming steps and is less computationally inten-
sive than the segregation procedure. We first review common fit indices in section 2.
The level-specific evaluation method is discussed in section 3. Syntax for the gsemgof

command is given in section 4. I then illustrate the level-specific evaluation method and
the gsem command on MMA applied to the MMT data in section 5. Discussion follows
in section 6.

2 Standard SEM fit indices

The likelihood-ratio (LR) test serves as a basic fit index. The log likelihood (log `) for
a hypothesized model with a given set of parameters θ is compared with the log ` for a
saturated model with parameters θS . The saturated model has the maximum number
of parameters allowed by the data so that the model is not overidentified. Examples of
hypothesized and saturated models are given in section 5. Under model assumptions,
such as multivariate normality and a large sample size, the LR test follows a central χ2

distribution and is expressed as

χ2
Hypothesized = −2×

{
log `

(
θ̂
)
− log `

(
θ̂S

)}
(1)

When the hypothesized model provides an exact fit in line with the saturated model,
the χ2

Hypothesized test statistic will take on a value of 0 in the population. Therefore,

large χ2
Hypothesized values with a p-value ≤ 0.05 indicate poor model fit. A problem with

the LR test is sample-size sensitivity. For example, the LR test may yield larger p-values
in smaller samples, even though the hypothesized model does not provide adequate fit.
Numerous fit indices have been developed to scale the LR test so that the fit indices are
less sample-size dependent. This article discusses the CFI and RMSEA as two popular fit
indices. Level-specific evaluation methods discussed in section 3 are applicable for the
construction of other fit indices too.
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The CFI incorporates both the χ2
Hypothesized test statistic and a χ2

Baseline statistic that
compares the log ` for a baseline model with the log ` for a saturated model. The baseline
model fits means and variances for all variables and covariances between exogenous
(independent) variables. No additional parameters are estimated, such as paths from
exogenous variables to an outcome. The degrees of freedom (d.f.) for the hypothesized
(d.f.Hypothesized) and baseline models (d.f.Baseline) are also incorporated into the CFI

calculation. The CFI is expressed as

CFI = 1−
Max{(χ2

Hypothesized − d.f.Hypothesized), 0}
Max{(χ2

Baseline − d.f.Baseline), 0}
(2)

Larger CFI values indicate better model fit. As a rule of thumb, CFI values ≥ 0.90
indicate good model fit.

The RMSEA is sometimes referred to as a “parsimony-adjusted” index because it
adjusts the χ2

Hypothesized test statistic by both the d.f. and the total sample size (N).
The RMSEA is expressed as

RMSEA =

√√√√Max

{(
χ2
Hypothesized − d.f.Hypothesized

d.f.Hypothesized(N − 1)

)
, 0

}
(3)

Similar to the chi-squared test statistic, RMSEA values closer to 0 indicate better fit.
RMSEA values < 0.08 indicate good model fit.

3 Level-specific fit indices for multilevel models

For the sake of brevity, indices are discussed in terms of two-level models, but the
method is applicable to multilevel models with additional levels. Chi-squared statistics
for level-specific indices are formulated in a similar manner as the chi-squared test
statistic shown in (1). Let χ2

Hypothesized,1 represent a chi-squared test statistic for a
level-1 hypothesis, such as a hypothesized path between observed variables. Level-2
hypotheses correspond to random effects or latent variables, such as a hypothesized
covariance between random effects.

Let θ1 and θ2 represent sets of parameters that correspond to level-1 and level-2
hypotheses, respectively. Let θ1,S and θ2,S represent sets of parameters for models that
are saturated at levels 1 and 2, respectively. The χ2

Hypothesized,1 test statistic for a level-1
evaluation is

χ2
Hypothesized,1 = −2×

{
log `

(
θ̂1, θ̂2,S

)
− log `

(
θ̂1,S , θ̂2,S

)}
(4)

The chi-squared test statistic for a level-2 evaluation is expressed as

χ2
Hypothesized,2 = −2×

{
log `

(
θ̂1,S , θ̂2

)
− log `

(
θ̂1,S , θ̂2,S

)}
The chi-squared test statistic for the baseline model that is used to calculate the level-
specific CFI also incorporates a partially saturated model. For example, the log like-
lihood for a level-1 baseline model, log `(θ̂1, θ̂2,S), incorporates baseline parameters at
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level 1 (θ1) and parameters for a model that is saturated at level 2 (θ2,S). Level-specific
CFI and RMSEA formulas are similar to their standard formula counterparts in (2) and
(3), respectively, except that level-specific chi-squared test statistics and d.f. replace the
chi-squared statistics and d.f. for models that are not multilevel. The sample size is also
adjusted in the level-specific RMSEA formula. For level-1 and level-2 evaluations, N − 1
is replaced by N − J and J , respectively, where J is the number of level-2 clusters.

4 Syntax of gsemgof

The gsemgof command is run after an MMA is fit to two-level data by using the gsem

command. The MMA should include an equation for a primary outcome and an equation
for each mediator. Random effects need to be specified for the outcome in each equation.
Importantly, level-1 fit indices require that level 2 is saturated, and vice versa for level-2
fit indices. The gsemgof command syntax is

gsemgof level
[
df
]

where level is specified as 1 or 2 to request level-1 or level-2 fit indices, respectively. If
level-2 fit indices are requested, df is specified to indicate the d.f. for the hypothesized
model. Otherwise, df is left blank. The d.f. is automatically calculated by the gsemgof
command for level-1 fit indices. Sample syntax for an MMA with a single outcome and
two mediators is shown in section 5.

The gsemgof command works by modifying gsem command-line text for the hypoth-
esized model to create command lines for additional models that are needed to calculate
fit indices, such as a model that is saturated at levels 1 and 2. Additional models are
run using the gsem and sem commands. Stored results in e() and r(), such as log like-
lihoods, are extracted, saved as scalar quantities, and plugged into fit index formulas.
The following steps occur when level-1 fit indices are requested (that is, when level is
set to 1).

1. Three numbers are extracted from e() and saved for later calculations: The to-
tal sample size (N); the total number of dependent variables, including the pri-
mary outcome and mediators; and the log likelihood for the hypothesized model
[log `(θ̂1, θ̂2,S)].

2. The name of the cluster variable is identified in the gsem command-line text and
is used to calculate the number of clusters in the dataset (J).

3. The gsem command fits an MMA model that is saturated at levels 1 and 2. The

log likelihood [log `(θ̂1,S , θ̂2,S)] that is stored in e() is extracted and saved for
later calculations.

4. The gsem command fits a level-1 baseline model that is saturated at level 2. The
log ` is saved for later calculations.
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5. The d.f. for chi-squared test statistics is not produced by the gsem command.
Appropriate d.f. can be obtained by first fitting the hypothesized model without
level-2 random effects through the sem command. Afterward, fit statistics are
requested using estat gof, and the d.f. for the hypothesized and baseline model
evaluations are extracted from r(). Level 2 can be ignored in the calculation of
the d.f. for level-1 tests because level 2 is saturated.

6. Chi-squared statistics are calculated from log likelihoods by using (4).

7. Finally, fit indices are calculated using stored chi-squared statistics, d.f., N , and
J .

Calculations for level-2 fit indices follow the same steps except that the d.f. in step 5
cannot be retrieved through the sem command. The d.f. for the level-2 baseline chi-
squared statistic is calculated by the gsemgof command. The level-2 baseline d.f. is
equal to the number of random-effects covariance parameters because they are not esti-
mated and are assumed to be 0. Level-2 baseline model parameters that get estimated
are the random-effects variances. Level 1 is saturated and does not factor into the d.f.
calculations. If m is the number of random-effects variance parameters, then the level-2
baseline d.f. is m(m − 1)/2. The d.f. for the hypothesized model is specified in the
gsemgof command by the user.

5 Level-specific fit index examples using the MMT data

The gsemgof command is illustrated through MMA applied to the MMT data. There
are 2,427 patient observations and 68 clusters in the dataset. Analyses modeled the
mediating effects of both treatment progression and counselor rapport on treatment
satisfaction. This section focuses on the relationship between treatment progression
and satisfaction at levels 1 and 2. Figure 1 presents diagrams for MMA that are eval-
uated. Diagrams were produced through Stata’s SEM Builder visualization tool. Two
level-1 evaluations are conducted. Figure 1a represents the model presented in Li et al.
(2017). A path from treatment progression to satisfaction is modeled at level 1 through
progression (progress) and satisfaction variables measured at the patient level. A
path is also included from counselor rapport (rapport) to satisfaction at level 1.

The relationship between treatment progression and satisfaction is modeled at level 2
through the covariance between clinic-level random effects for treatment progression and
satisfaction. Level 2 is saturated. The model includes random effects for both mediators
and the outcome and three covariances between all possible pairs of random effects.
There are six exogenous variables in the model: age, a yes-no indicator for male gender,
a yes-no indicator for being married, the duration of MMT treatment (mmt duration), a
depressive symptoms score (depression), and a social and environmental support score
(env support). Figure 1b excludes the path from treatment progression to satisfaction.

A single level-2 evaluation is conducted. As shown in figure 1c, level 1 is saturated,
and the covariance between random effects for treatment progression and satisfaction
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is fixed at 0. Models represented by figures 1a, 1b, and 1c are compared with a model
that is fully saturated at levels 1 and 2 (figure 1d). Models are fit using Stata/SE 16.
Syntax for level-1 and level-2 fit indices is presented in sections 5.1 and 5.2, respectively.
Results are presented in section 5.3.

(a) Level 2: Saturated, level 1: p-s path (b) Level 2: Saturated, level 1: No p-s path

(c) Level 2: r.e. cov(p,s) = 0, level 1: Saturated (d) Level 2: Saturated, level 1: Saturated

Figure 1. MMA diagrams for predictors of treatment satisfaction mediated by treatment
progression and counseling rapport. Diagram 1a represents the hypothesized model in
Li et al. (2017). Diagram 1b represents an MMA that excludes the path from treatment
progression to satisfaction (p-s); diagram 1c represents an MMA that sets the random-
effects covariance (r.e. cov) between treatment progression and satisfaction to 0; and
diagram 1d represents an MMA that fits a saturated model where all possible r.e. covari-
ances at level 2 and paths at level 1 are modeled. In line with standard SEM diagram
representation, covariances between exogenous variables (for example, between age and
male gender) are modeled but not represented in the diagrams.
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5.1 Level-1 fit indices

In this section, we view the syntax for level-1 evaluations of models represented by
diagrams 1a and 1b in figure 1. I first read in a dataset containing the MMT data.

. use mmt

I then fit the hypothesized model in diagram 1a by using the gsem command. A grouping
variable (clinic) is used to index random effects by clinic. The gsemgof command
follows each gsem command with level set to 1.

. // Model (a): Hypothesized model

. gsem (satisfaction <- progress rapport age male married depression
> env_support Rs[clinic])
> (progress <- age male mmt_duration env_support Rp[clinic])
> (rapport <- age male depression env_support Rr[clinic]),
> cov(e.progress*e.rapport)

(output omitted )

. gsemgof 1

(output omitted )

. // Model (b): Hypothesized model without path from progress to satisfaction

. gsem (satisfaction <- rapport age male married depression
> env_support Rs[clinic])
> (progress <- age male mmt_duration env_support Rp[clinic])
> (rapport <- age male depression env_support Rr[clinic]),
> cov(e.progress*e.rapport)

(output omitted )

. gsemgof 1

(output omitted )

5.2 Level-2 fit indices

In this section, we view syntax for a level-2 evaluation of the model represented in
diagram 1c of figure 1. The random-effects covariance structure for the hypothesized
model is specified through covariance matrix Vre and incorporated into the gsem model
specification. The gsemgof command follows with level set to 2. In contrast to requests
for level-1 tests, the user specifies the d.f. for the χ2

Hypothesized,2 test statistic. Referring
to the level-2 hypothesized model in diagram 1c and the fully saturated model in dia-
gram 1d, the hypothesized model has one fewer parameter. Therefore, the d.f. is set to 1.
The gsemgof command automatically sets the d.f. for the χ2

Baseline,2 test statistic to 3,
the number of random-effects covariance parameters [that is, m(m−1)/2 = 3(2)/2 = 3].
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. // Model (c): Level 2 hypothesis, no random-effects covariance between
> progress and satisfaction
. matrix Vre = (., 0, . \ 0, ., . \ ., ., .)

. gsem (satisfaction <- progress rapport age male married mmt_duration
> depression env_support Rs[clinic])
> (progress <- age male married mmt_duration depression env_support
> Rp[clinic])
> (rapport <- age male married mmt_duration depression env_support
> Rr[clinic]), covstr(Rs[clinic] Rp[clinic] Rr[clinic],
> fixed(Vre)) cov(e.progress*e.rapport)

(output omitted )

. gsemgof 2 1

(output omitted )

5.3 Results

Table 1 shows fit indices based on models fit to the MMT data. Indices in the left-hand
column are based on MA that ignore clustering at level 2. Models are fit through the
sem command. Indices in the right-hand column are based on MMA conducted through
the gsem command. Fit indices are calculated by the gsemgof command.

Table 1. Model fit indices obtained from MA and
MMA conducted on MMT study data. Level-1 indices
evaluate fit for models with and without paths from
treatment progression to satisfaction (p-s). Level-2
indices evaluate fit for a multilevel model where the
random-effects covariance between treatment pro-
gression and satisfaction is fixed at 0.

MA MMA

Level 2: Saturated
Level 1: p-s path
χ2(5) 8.524 10.308
CFI 0.999 0.999
RMSEA 0.017 0.021
Level 1: No p-s path
χ2(6) 229.650∗∗ 152.144∗∗

CFI 0.931 0.998
RMSEA 0.124 0.102
Level 1: Saturated
Level 2: r.e. cov(p,s) = 0
χ2(1) 4.334∗

CFI 0.846
RMSEA 0.221

note: ∗p < 0.05; ∗∗p < 0.01
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Overall, standard and level-1 fit index values are similar. For level-1 evaluations,
both the standard fit indices in the left-hand column and the level-1 fit indices in the
right-hand column indicate that the model fitting a path from treatment progression
to satisfaction provides a better fit than the model where the path is fixed at 0. The
chi-squared test statistics and RMSEA are smaller for the model with the path. The CFI

is larger for the model with the path, but neither the standard CFI nor the level-1 CFI

values are small enough to indicate a lack of fit for the model without the path.

Table 1 highlights a key feature of the level-specific evaluation method in its ability
to evaluate level-2 fit. Level-2 fit indices indicate that the covariance between random
effects for treatment progression and satisfaction should be modeled. A model fixing
the covariance at 0 results in a statistically significant chi-squared test at level 2. The
CFI value of 0.846 and the RMSEA value of 0.221 are also outside the ranges of values
that indicate good model fit.

6 Discussion

In this article, I showed how the gsemgof command can be used to calculate level-specific
CFI and RMSEA fit indices. I illustrated calculations on MMA applied to the MMT data.
Standard fit indices obtained from MA that did not include random effects and level-1 fit
indices obtained from MMA produced similar values. This is not completely surprising.
Simulation studies by Ryu and West (2009) showed that level 1 tends to dominate in
determining fit index values. However, it should not be assumed that the standard and
level-specific approaches will always lead to similar conclusions for level-1 evaluations.
Moreover, level-2 evaluations cannot be conducted using standard fit indices. In regard
to the MMT data, level-specific indices indicated that relationships between treatment
progression and satisfaction should be captured at both the patient (level 1) and clinic
(level 2) levels.

Given the benefits of the level-specific evaluation method, a few caveats are in order.
The d.f. is an important component of the fit index calculations and may need to be
calculated by hand for more-complex models than the MMA that were presented in this
article. We refer to d.f. for level-1 tests shown in table 1 to illustrate hand calculations.
The χ2

Hypothesized,1 test statistic based on diagram 1a of figure 1 has 5 d.f. for five possible
paths from exogenous variables to mediators and the outcome that are excluded from
figure 1a. The level-1 evaluation for diagram 1b excludes an additional path from
treatment progression to satisfaction and has 6 d.f.

The d.f. for the χ2
Baseline,1 test (not shown in table 1) is the difference in the number

of parameters between the partially saturated baseline model and the fully saturated
model in diagram 1d. The partially saturated baseline model excludes 18 paths from
exogenous variables to mediators and the outcome, two paths from mediators to the
outcome, and a covariance between the two mediators. The d.f. is 21. An alternative
method to count d.f. is outlined in Acock (2013). Between the six exogenous variables,
two mediators, and an outcome, there are nine variables contributing to the variance–
covariance matrix for the fully saturated model. The variance–covariance matrix has
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9(10)/2 = 45 parameters. The baseline model has 24 variance and covariance pa-
rameters, including 21 parameters for the six exogenous variables, a variance for each
mediator, and an outcome variance. The χ2

Baseline test has 45 − 24 = 21 d.f. General
guidelines for calculating the d.f. for SEM can be found in Rigdon (1994) and Acock
(2013).

The RMSEA formula also incorporates the sample size that is set to N −J for level-1
evaluations and J for level-2 evaluations. Balance in the number of observations per
cluster is implied by the formula. I was fortunate in that the MMT study design aimed
to sample the same number of patients per clinic. Moreover, missing data was minimal.
As a result, there was a large degree of balance in the number of patients per clinic.
More complex RMSEA formulas may be needed to adequately assess model fit in the
presence of large imbalances in the number of observations per cluster.
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8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 21-1

. net install st0633 (to install program files, if available)

. net get st0633 (to install ancillary files, if available)
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