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Abstract. In this article, we describe the implementation of fitting partially linear
functional-coefficient panel models with fixed effects proposed by An, Hsiao, and Li
[2016, Semiparametric estimation of partially linear varying coefficient panel data
models in Essays in Honor of Aman Ullah (Advances in Econometrics, Volume 36)]
and Zhang and Zhou (Forthcoming, Econometric Reviews). Three new commands
xtplfc, ivxtplfc, and xtdplfc are introduced and illustrated through Monte
Carlo simulations to exemplify the effectiveness of these estimators.
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1 Introduction

A partially linear functional-coefficient regression model allows for linearity in some re-
gressors and nonlinearity in other regressors, where the effects of these covariates on the
dependent variable vary according to a set of low-dimensional variables nonparametri-
cally (Cai et al. 2017), thereby showing distinct advantages in capturing nonlinearity
and heterogeneity. Through the seminal work of Chen and Tsay (1993), the functional-
coefficient models have drawn much attention in the literature. To name a few, Cai, Fan,
and Yao (2000), Cai, Fan, and Li (2000), and Cai, Li, and Park (2009) study functional-
coefficient models under the time-series framework. Huang, Wu, and Zhou (2004) fit
a functional-coefficient panel-data model without fixed effects via the series method.
Cai and Li (2008) study functional-coefficient dynamic panel-data models without fixed
effects based on the kernel method. Sun, Carroll, and Li (2009) consider functional-
coefficient panel-data models with fixed effects that are removed via the least-square
dummy variable approach. Alternatively, An, Hsiao, and Li (2016) deal with the fixed
effects via the first time difference and fit the models using the series method. Zhang
and Zhou (Forthcoming) propose to use a sieve two-step least square (2SLS) procedure
to fit functional-coefficient panel dynamic models with fixed effects and develop a model
specification test for the constancy of slopes.

In empirical studies, functional-coefficient models have been widely used. For ex-
ample, they are applied to explore whether working experience matters to the impact
of education on wage (Su, Murtazashvili, and Ullah 2013; Cai et al. 2017); to analyze
the heterogeneous effect of foreign direct investment on economic growth (Delgado, Mc-
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Cloud, and Kumbhakar 2014; Cai et al. 2017); to examine the nonlinear relationship
between income level and democracy (Lundberg, Huynh, and Jacho-Chávez 2017; Zhang
and Zhou Forthcoming); to compare the returns to scale of the U.S. commercial banks
across different regimes (Feng et al. 2017); and to investigate the role of marketization
in China’s energy rebound effect (Li, Liu, and Du 2019).

The objective of this article is to present new commands to fit partially linear
functional-coefficient panel-data models with fixed effects. The remainder of the ar-
ticle is organized as follows. Section 2 briefly describes the model and the estimation
procedure. Sections 3–5 explain the syntax and options of the new commands. Section 6
provides some Monte Carlo simulations. Section 7 concludes the article.

2 The model

Consider a partially linear functional-coefficient panel-data model of the form

Yit = Z′
itg(Uit) +X′

itβ + ai + εit i = 1, . . . , N, t = 1, . . . , T (1)

where the subscript i and t denote individual i and time t, respectively; Yit is the
scalar dependent variable; Uit = (U1,it, . . . , Ul,it)

′ is a vector of continuous variables;
Zit = (Z1,it, . . . , Zl,it)

′ is a vector of covariates with functional coefficients g(Uit) =
{g1(U1,it), . . . , gl(Ul,it)}′; Xit is a k× 1 vector of covariates with constant slopes β; and
ai is the individual fixed effects that might be correlated with Zit, Uit, and Xit. εit
represents the idiosyncratic error. Moreover, part of the elements in Zit and Xit are
allowed to be endogenous variables that are correlated with εit, and they could also
include lagged dependent variables as in Zhang and Zhou (Forthcoming).1 In the latter
case, (1) becomes a dynamic panel model with functional coefficients.

Recently, An, Hsiao, and Li (2016) and Zhang and Zhou (Forthcoming) propose
using the series method to fit (1). The estimation procedure is sketched as follows.

First, one can use a linear combination of sieve basis functions to approximate the
unknown functional coefficients in (1). Let hp(·) = {hp,1(·), . . . , hp,Lp

(·)}′ be a Lp × 1
sequence of basis functions where the number of sieve basis functions Lp ≡ LNL increases
as either N or T increases. We have gp(·) ≈ hp(·)′γp for p = 1, . . . , l, where γp =
(γp1, . . . , γpLp). Then, (1) can be rewritten as

Yit = H′
itΓ+X′

itβ + ai + vit (2)

where Hit ≡ {Z1,ith
1(U1,it)

′, . . . , Zl,ith
l(Ul,it)

′}′, Γ ≡ (γ′
1, . . . ,γ

′
l)
′, and vit = εit + rit,

rit = Z′
itg(Uit)−H′

itΓ

denoting the sieve approximation error that becomes asymptotic negligible as Lp → ∞
for p = 1, . . . , l when (N,T ) → ∞.

1. In this article, we restrict that all elements in Uit are exogenous. Thus, for the case of dynamic
panel-data models, the first lagged dependent variable should not enter Uit.
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Then, taking the first time difference of (2) to eliminate the fixed effects yields

∆Yit = ∆H′
itΓ+∆X′

itβ +∆vit (3)

where ∆ represents a first-difference operator; that is, ∆At ≡ At −At−1.

If all the variables are exogenous, (3) can be estimated through the least-squares
method as in An, Hsiao, and Li (2016),(

Γ̂
′
, β̂

′)′
=
(
∆X̃′∆X̃

)− (
∆X̃′∆Y

)
where X̃ = (X,H); X = (X′

1, . . . ,X
′
N )′, Xi = (Xi1, . . . , XiT )

′; H = (H1, . . . ,HN )′,
Hi = (Hi1, . . . , HiT )

′; and − denotes the generalized inverse.

If part of the variables in Zit and Xit are endogenous, (3) can be estimated via the
2SLS method as in Zhang and Zhou (Forthcoming). Suppose we have a d× 1 vector of

instrumental variables (IVs) with d ≥ (
∑l

p=1 Lp + k). The 2SLS estimator is given by(
Γ̂
′
, β̂

′)′
=
(
∆X̃′PW∆X̃

)− (
∆X̃′PW∆Y

)
where PW = W(W′W)−W′ is a projection matrix with W being the IVs matrix.

Once Γ̂ is obtained, the functional coefficients g(Uit) can be estimated by

ĝp(Up,it) = hp(Up,it)
′γ̂p p = 1, . . . , l

Under certain regular assumptions, Zhang and Zhou (Forthcoming) establish the
consistency and asymptotic normality of the above estimators when sample size N and
T go to infinity jointly or only N tends to infinity.

In practice, there are several sieve methods to approximate the unknown functions.
We follow Libois and Verardi (2013) to use the B-splines. More technical details on the
B-splines can be found in Newson (2000b).

3 The xtplfc command

xtplfc fits An, Hsiao, and Li’s (2016) partially linear functional-coefficient panel-data
models with exogenous variables.

3.1 Syntax

xtplfc varlist, zvars(varlist) uvars(varlist) generate(prefix)
[
te

power(numlist) nknots(numlist) quantile maxnknots(numlist)

minnknots(numlist) grid(string) pctile(#) brep(#) wild predict(prspec)

nodots level(#) fast tenfoldcv
]
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3.2 Options

zvars(varlist) specifies variables that have functional coefficients. zvars() is required.

uvars(varlist) specifies (continuous) variables that enter the functional coefficients in-
teracted with variables in order specified by zvars(). uvars() is required.

generate(prefix) specifies a prefix for the variable names to store fitted values of func-
tional coefficients. generate() is required.

te specifies to include time fixed effects.

power(numlist) (nonnegative integers) specifies the power (or degree) of the splines in
order specified by uvars(). The default is power(3).

nknots(numlist) specifies the number of knots used for the spline interpolation in order
specified by uvars(). The default is nknots(2).

quantile specifies creating knots based on empirical quantiles. By default, the knots
are generated by the rule of equal space.

maxnknots(numlist) specifies the maximum number of knots used for conducting least-
squares cross-validation (LSCV). If present, LSCV is used to determine the optimal
number of knots. In our practice, we perform the leave-one-out cross-validation (CV)
across the panelvar. That is to say, we leave one individual (with all observations
during the sample period) out each time.

minnknots(numlist) specifies the minimum number of knots used for performing LSCV.
The default is minnknots(2).

grid(string) specifies a prefix for the names to store the grid points of the variable
specified by uvars(varlist). If present, the functional coefficients are estimated over
the grid points. By default, they are estimated over the observations.

pctile(#) specifies the domain of the generating grid points. It can be used only when
grid() is specified. The default is pctile(0).

brep(#) specifies the number of bootstrap replications. The default is brep(200). We
recommend that you select the number of replications.

wild specifies using the wild bootstrap. By default, residual bootstrap with the option
cluster(panelvar) is performed.

predict(prspec) stores predicted values of the conditional mean and fixed effects us-
ing variable names specified in prspec. Specifically, one uses predict(varlist | stub*[
, replace noai

]
). The option takes a variable list or stub. The first variable

name corresponds to the predicted conditional mean. The second name corresponds
to fixed effects. When replace is used, variables with the names in varlist or stub*
are replaced by those in the new computation. If noai is specified, only a variable
for the mean is created.

nodots suppresses the iteration dots.
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level(#) sets the confidence level. The default is level(95).

fast speeds up using Mata functions.

tenfoldcv specifies using tenfold CV instead of LSCV. It is done by dividing the sample
into 10 pieces and conducting LSCV across these 10 pieces. Specifically, given the
number of knots, leave one piece out, run the regression using the left pieces, and
predict the dependent variable for the remaining piece.

3.3 Stored results

xtplfc stores the following in e():

Scalars
e(N) number of individuals
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(r2) within R2

e(r2 a) adjusted within R2

e(rmse) root mean squared error
e(mss) model sum of squares
e(rss) residual sum of squares

Macros
e(cmd) xtplfc
e(depvar) name of dependent variable
e(title) title in estimation output
e(estfun) variables storing the estimated functional coefficients
e(properties) b V
e(vcetype) type of variance–covariance
e(model) Fixed-effect Series Semiparametric Estimation
e(k#) list of knots for the #th function

Matrices
e(b) coefficient vector in the linear part
e(V) variance–covariance matrix of the estimators in the linear part
e(bs) coefficient vector in the approximating model
e(Vs) variance–covariance matrix of the estimators in the approximating

model
e(nknots) number of knots
e(power) power (or degree) of splines

3.4 Dependency of xtplfc

xtplfc depends on the moremata (Jann 2005) and bspline (Newson 2000a) packages.
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4 The ivxtplfc command

ivxtplfc fits Zhang and Zhou’s (Forthcoming) partially linear functional-coefficient
panel-data models with endogenous variables using the sieve 2SLS method.

4.1 Syntax

ivxtplfc varlist, zvars(varlist) uvars(varlist) generate(prefix)
[
endox(varlist)

endozflag(numlist) ivx(varlist) ivz(varlist, uflag(numlist)[
ivtype(numlist)

]
) te power(numlist) nknots(numlist) quantile

maxnknots(numlist) minnknots(numlist) grid(string) pctile(#) brep(#)

wild predict(prspec) nodots level(#) fast tenfoldcv
]

4.2 Options

zvars(varlist) specifies variables that have functional coefficients. zvars() is required.

uvars(varlist) specifies (continuous) variables that enter the functional coefficients in-
teracted with variables in order specified by zvars(). uvars() is required.

generate(prefix) specifies a prefix for the names to store fitted values of functional
coefficients. generate() is required.

endox(varlist) specifies endogenous variables that enter the model linearly.

endozflag(numlist) specifies the orders of variables in zvars(varlist) that are endoge-
nous variables. For example, endozflag(1 3) indicates that the first and third
variables specified in zvars(varlist) are endogenous.

ivx(varlist) specifies IVs that enter the model linearly.

ivz(varlist, uflag(numlist)
[
ivtype(numlist)

]
) specify IVs entering the model non-

linearly that interact with the functions specified by the orders in uflag(numlist).
Optionally, one may specify the type of nonlinear IVs to be constructed. iv-

type(numlist) means using the #th lag of the basis functions, and the final IVs
are formed from ivz()×L#.S(u) [where S(u) are basis functions of u]. By default,
the first lag of the basis functions is used.

te specifies to include time fixed effects.

power(numlist) (nonnegative integers) specifies the power (or degree) of the splines in
order specified by uvars(). The default is power(3).

nknots(numlist) specifies the number of knots used for the spline interpolation in order
specified by uvars(). The default is nknots(2).

quantile specifies creating knots based on empirical quantiles. By default, the knots
are generated by the rule of equal space.
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maxnknots(numlist) specifies the maximum number of knots used for conducting LSCV.
If present, LSCV is used to determine the optimal number of knots. In our practice,
we perform the leave-one-out CV across the panelvar. That is to say, we leave one
individual (with all observations during the sample period) out each time.

minnknots(numlist) specifies the minimum number of knots used for performing LSCV.
The default is minnknots(2).

grid(string) specifies a prefix for the names to store the grid points of the variable
specified by uvars(). If present, the functional coefficients are estimated over the
grid points. By default, they are estimated over the observations.

pctile(#) specifies the domain of the generating grid points. It can be used only when
grid() is specified. The default is pctile(0).

brep(#) specifies the number of bootstrap replications. The default is brep(200). We
recommend that you select the number of replications.

wild specifies using the wild bootstrap. By default, residual bootstrap with the option
cluster(panelvar) is performed.

predict(prspec) stores predicted values of the conditional mean and fixed effects us-
ing variable names specified in prspec. Specifically, one uses predict(varlist | stub*[
, replace noai

]
). The option takes a variable list or stub. The first variable

name corresponds to the predicted conditional mean. The second name corresponds
to fixed effects. When replace is used, variables with the names in varlist or stub*
are replaced by those in the new computation. If noai is specified, only a variable
for the mean is created.

nodots suppresses the iteration dots.

level(#) sets the confidence level. The default is level(95).

fast speeds up using Mata functions.

tenfoldcv specifies using tenfold CV instead of LSCV.
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4.3 Stored results

ivxtplfc stores the following in e():

Scalars
e(N) number of individuals
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(r2) within R2

e(r2 a) adjusted within R2

e(rmse) root mean squared error
e(mss) model sum of squares
e(rss) residual sum of squares

Macros
e(cmd) ivxtplfc
e(depvar) name of dependent variable
e(title) title in estimation output
e(ivlist) IVs used for estimation
e(vcetype) type of variance–covariance
e(estfun) variables storing the estimated functional coefficients
e(properties) b V
e(model) Fixed-effect Sieve 2SLS Estimation
e(k#) list of knots for the #th function

Matrices
e(b) coefficient vector in the linear part
e(V) variance–covariance matrix of the estimators in the linear part
e(bs) coefficient vector in the approximating model
e(Vs) variance–covariance matrix of the estimators in the approximating

model
e(knots) number of knots
e(power) power (or degree) of splines

Functions
e(sample) marks estimation sample

4.4 Dependency of ivxtplfc

ivxtplfc depends on the moremata (Jann 2005) and bspline (Newson 2000a) packages.
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5 The xtdplfc command

xtdplfc fits Zhang and Zhou’s (Forthcoming) partially linear functional-coefficient
panel dynamic data models using the sieve 2SLS method.

5.1 Syntax

xtdplfc varlist, uvars(varlist) generate(prefix)
[
zvars(varlist) lags(#)

lagyinz(numlist) endox(varlist) endozflag(numlist) ivx(varlist)

ivz(varlist, uflag(numlist)
[
ivtype(numlist)

]
) onlyivxz ivtype(numlist)

te power(numlist) nknots(numlist) quantile maxnknots(numlist)

minnknots(numlist) grid(string) pctile(#) brep(#) wild predict(prspec)

nodots level(#) fast tenfoldcv
]

5.2 Options

uvars(varlist) specifies (continuous) variables that enter the functional coefficients in-
teracted with variables in order specified by zvars(). uvars() is required.

generate(prefix) specifies a prefix for the names to store fitted values of functional
coefficients. generate() is required.

zvars(varlist) specifies variables that have functional coefficients.

lags(#) specifies using # lags of the dependent variable as covariates. The default is
lags(1).

lagyinz(numlist) specifies lags of the dependent variable that have functional coeffi-
cients. When this option is used, the specified lags of the dependent variable are
automatically added in front of variables in zvars().

endox(varlist) specifies endogenous variables that enter the model linearly.

endozflag(numlist) specifies the orders of variables in zvars(varlist) that are endoge-
nous variables. For example, endozflag(1 3) indicates that the first and third
variables specified in zvars(varlist) are endogenous.

ivx(varlist) specifies IVs that enter the model linearly.

ivz(varlist, uflag(numlist)
[
ivtype(numlist)

]
) specify IVs entering the model non-

linearly that interact with the functions specified by the orders in uflag(numlist).
Optionally, one may specify the type of nonlinear IVs to be constructed. iv-

type(numlist) means using the #th lag of the basis functions, and the final IVs
are formed from ivz()×L#.S(u) [where S(u) are basis functions of u]. By default,
the first lag of the basis functions is used.
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onlyivxz uses only instruments specified by ivx() and ivz(). By default, additional
instruments are automatically constructed using lags of the dependent variables,
variables specified by endox() and endozflag(), and the generating splines.

ivtype(numlist) specifies the lag of the basis functions to be used for constructing the
IVs. Suppose Z is an endogenous variable interacting with g(U); S(U) are basis
functions for g(U). ivtype(1) indicates constructing IVs from L2.Z × L.S(U).

te specifies to include time fixed effects.

power(numlist) (nonnegative integers) specifies the power (or degree) of the splines in
order specified by uvars(). The default is power(3).

nknots(numlist) specifies the number of knots used for the spline interpolation in order
specified by uvars(). The default is nknots(2).

quantile specifies creating knots based on empirical quantiles. By default, the knots
are generated by the rule of equal space.

maxnknots(numlist) specifies the maximum number of knots used for conducting LSCV.
If present, LSCV is used to determine the optimal number of knots. In our practice,
we perform the leave-one-out CV across the panelvar. That is to say, we leave one
individual (with all observations during the sample period) out each time.

minnknots(numlist) specifies the minimum number of knots used for performing LSCV.
The default is minnknots(2).

grid(string) specifies the name for storing the grid points of the variable specified by
uvars(). If present, the functional coefficients are estimated over the grid points.
By default, they are estimated over the observations.

pctile(#) specifies the domain of the generating grid points. It can be used only when
grid() is specified. The default is pctile(0).

brep(#) specifies the number of bootstrap replications. The default is brep(200). We
recommend that you select the number of replications.

wild specifies using the wild bootstrap. By default, residual bootstrap with the option
cluster(panelvar) is performed.

predict(prspec) stores predicted values of the conditional mean and fixed effects us-
ing variable names specified in prspec. Specifically, one uses predict(varlist | stub*[
, replace noai

]
). The option takes a variable list or stub. The first variable

name corresponds to the predicted conditional mean. The second name corresponds
to fixed effects. When replace is used, variables with the names in varlist or stub*
are replaced by those in the new computation. If noai is specified, only a variable
for the mean is created.

nodots suppresses the iteration dots.
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level(#) sets the confidence level. The default is level(95).

fast speeds up using Mata functions.

tenfoldcv specifies using tenfold CV instead of LSCV.

5.3 Stored results

xtdplfc stores the following in e():

Scalars
e(N) number of individuals
e(df m) model degrees of freedom
e(df r) residual degrees of freedom
e(r2) within R2

e(r2 a) adjusted within R2

e(rmse) root mean squared error
e(mss) model sum of squares
e(rss) residual sum of squares

Macros
e(cmd) xtdplfc
e(depvar) name of dependent variable
e(title) title in estimation output
e(ivlist) IVs used for estimation
e(vcetype) type of variance–covariance
e(estfun) variables storing the estimated functional coefficients
e(properties) b V
e(model) Fixed-effect Sieve 2SLS Estimation
e(k#) list of knots for the #th function

Matrices
e(b) coefficient vector in the linear part
e(V) variance–covariance matrix of the estimators in the linear part
e(bs) coefficient vector in the approximating model
e(Vs) variance–covariance matrix of the estimators in the approximating

model
e(knots) number of knots
e(power) power (or degree) of splines

Functions
e(sample) marks estimation sample

5.4 Dependency of xtdplfc

xtdplfc depends on the moremata (Jann 2005) and bspline (Newson 2000a) packages.

6 Monte Carlo simulation

In this section, we investigate the finite sample performance of estimators discussed
above through Monte Carlo simulations. For all data-generating processes (DGPs) to be
considered, we set up a standard fixed-effects panel comprising 50 individuals over 40
time periods; that is, N = 50, T = 40. We carry out 500 replications.
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We first consider the static panel-data model as follows (DGP1):

Yit = X1,it −X2,it + g(X3,it)Zit + ai + εit

g(X3,it) = X3,it + 2(X3,it)
2 − 0.25(X3,it)

3

Following Libois and Verardi (2013), we generate X1,it, X2,it, X3,it, and ai via a
two-step procedure2 as follows:

X1,it = Xe
1,it

X2,it = (Xf
2,i +Xe

2,it)/
√
2

X3,it = (Xf
3,i +Xe

3,it)/
√
2

We draw Xf
2,it, X

f
3,it, and ai from the multivariate normal distribution with mean

µ = (0, 0, 0) and covariance matrix


Xf

2,it Xf
3,it ai

Xf
2,it 1

Xf
3,it 0 1

ai 0.42 0.85 1


Similarly, Xe

1,it, X
e
2,it, and X

e
3,it are drawn from the multivariate normal distribution

with mean µ = (0, 0, 0) and covariance matrix


Xe

1,it Xe
2,it Xe

3,it

Xe
1,it 1

Xe
2,it 0.2 1

Xe
3,it 0.8 0 1


For comparison, we consider the following three regression models.

• Model 1: xtplfc, considering that X1,it and X2,it enter the model linearly,
whereas Zit is included with a functional coefficient of X3,it.

• Model 2: xtreg, regressing Yit on X1,it, X2,it, X3,it, and Zit with fixed effects.

• Model 3: xtreg, regressing Yit on X1,it, X2,it, X3,it, Zit, and c.X3,it#c.Zit with
fixed effects.

2. The generating covariates consist of two components. The first one is generated for each individual
and then duplicated T times, indicating that they are fixed for each individual. The second one is
a random realization for each time.
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The simulation codes for DGP 1 are presented as follows:3

. set obs 50
number of observations (_N) was 0, now 50

. set seed 123456

. matrix C = (1,0,0.42\0,1,0.85\0.42,0.85,1)

. drawnorm x2f x3f d, corr(C)

. generate id = _n

. expand 40
(1,950 observations created)

. bysort id: generate t = _n

. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 40

delta: 1 unit

. generate y = 0

. matrix D = (1,0.2,0.8\0.2,1,0\0.8,0,1)

. drawnorm x1 x2e x3e, corr(D)

. generate x2 = (x2f+x2e)/sqrt(2)

. generate x3 = (x3f+x3e)/sqrt(2)

. generate z=rnormal()

. generate gf=1*x3+ 2*x3^2 - 0.25*(x3)^3

3. To run the simulation code, one should install Baum and Azevedo’s (2001) outtable package and
the UCLA Statistical Consulting Group’s graph2tex (Statistical Consulting Group 2017) package
in advance. outtable can be installed with ssc install outtable. graph2tex can be installed
with net install graph2tex, from(https://stats.idre.ucla.edu/stat/stata/ado/analysis).
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. forvalues j=1/500 {
2. cap drop e
3. cap drop *_sd
4. quietly drawnorm e
5. quietly replace y = x1 - x2 + z*gf + d + e
6. quietly xtplfc y x1 x2, z(z) u(x3) maxnk(20) generate(fit`j´) fast

> brep(500)
7. matrix B=e(b)
8. matrix B=B[1,1..2]
9. matrix B1=(nullmat(B1)\B)

10. matrix V=e(Vs)
11. matrix V=vecdiag(V)
12. matrix V=V[1,1..2]
13. matrix V1=(nullmat(V1)\V)
14. quietly xtreg y x1 x2 x3 z, fe
15. matrix B=e(b)
16. matrix B=B[1,1..2]
17. matrix B2=(nullmat(B2)\B)
18. matrix V=e(V)
19. matrix V=vecdiag(V)
20. matrix V=V[1,1..2]
21. matrix V2=(nullmat(V2)\V)
22. quietly xtreg y x1 x2 x3 z c.x3#c.z, fe
23. matrix B=e(b)
24. matrix B=B[1,1..2]
25. matrix B3=(nullmat(B3)\B)
26. matrix V=e(V)
27. matrix V=vecdiag(V)
28. matrix V=V[1,1..2]
29. matrix V3=(nullmat(V3)\V)
30. }

. * Figure 1

. egen av_fit = rowmean(fit*)

. egen sd_fit = rowsd(fit*)

. generate c = invnormal(1 - (100 - 95) / 200)

. generate low = av_fit - c * sd_fit

. generate up = av_fit + c * sd_fit

. twoway (rarea low up x3, sort(x3) color(gs7))
> (line av_fit x3, sort(x3) color(black) lpattern(solid))
> (line gf x3, color(gs10) sort lpattern(longdash)),
> legend(label(1 confidence interval at 95%) label(3 DGP) label(2 average fit)
> cols(3) order(3 1 2)) xtitle("X3", height(5)) ytitle("g(X3)", height(5))
> scheme(sj)

. graph2tex, epsfile(fig1) caption(Average fit of g(X3) across replications)
> label(fig1)
% exported graph to fig1.eps
% We can see in Figure \ref{fig:fig1} that
\begin{figure}[h]
\begin{centering}

\includegraphics[height=3in]{fig1}
\caption{Average fit of g(X3) across replications}
\label{fig:fig1}

\end{centering}
\end{figure}
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. * Table 1

. clear

. set obs 500
number of observations (_N) was 0, now 500

. matrix res1=J(3,8,.)

. forvalues k=1/3 {
2. quietly svmat B`k´
3. summarize B`k´1, meanonly
4. matrix res1[`k´,1]=r(mean)-1
5. summarize B`k´2, meanonly
6. matrix res1[`k´,2]=r(mean)+1
7. quietly svmat V`k´
8. quietly replace V`k´1=sqrt(V`k´1)
9. quietly generate B`k´1_lb=B`k´1-invnormal(0.975)*V`k´1

10. quietly generate B`k´1_ub=B`k´1+invnormal(0.975)*V`k´1
11. quietly generate CIlen`k´1=B`k´1_ub-B`k´1_lb
12. quietly summarize CIlen`k´1, detail
13. matrix res1[`k´,5]=r(p50)
14. quietly replace V`k´2=sqrt(V`k´2)
15. quietly generate B`k´2_lb=B`k´2-invnormal(0.975)*V`k´2
16. quietly generate B`k´2_ub=B`k´2+invnormal(0.975)*V`k´2
17. quietly generate CIlen`k´2=B`k´2_ub-B`k´2_lb
18. quietly summarize CIlen`k´2, detail
19. matrix res1[`k´,6]=r(p50)
20. quietly generate cov`k´1=(B`k´1_lb<=1 & B`k´1_ub>=1)
21. summarize cov`k´1, meanonly
22. matrix res1[`k´,7]=r(mean)
23. quietly generate cov`k´2=(B`k´2_lb<=-1 & B`k´2_ub>=-1)
24. summarize cov`k´2, meanonly
25. matrix res1[`k´,8]=r(mean)
26. quietly replace B`k´1=(B`k´1-1)^2
27. summarize B`k´1, meanonly
28. matrix res1[`k´,3]=r(mean)
29. quietly replace B`k´2=(B`k´2+1)^2
30. summarize B`k´2, meanonly
31. matrix res1[`k´,4]=r(mean)
32. }

. outtable using res1, mat(res1) format(%9.4f) replace

Following Burton et al. (2006) and White (2010), we report the bias, mean square
error (MSE), median width of 95% confidence interval, and coverage of 95% confidence
interval of the estimated coefficients associated with X1,it and X2,it in table 1. We find
that the fixed-effects sieve estimator outperforms the fixed-effects estimator in terms of
both bias and MSE. As expected, the bias is relatively large in models 2 and 3 because
they suffer from endogeneity due to omitting the nonlinear relationship of X3,it and
Zit. In terms of the 95% confidence interval, the fixed-effects sieve estimator gives rise
to a relatively small interval width. Moreover, coverage probabilities of 95% confidence
interval generated by the fixed-effects sieve estimator are quite close to the nominal
value (0.95). The average fit of g(Xit) with the corresponding 95% confidence band in
the simulations is presented in figure 1. We see that the average fit is very close to the
true function g(Xit) and that the 95% confidence band is relatively small except for the
edges.
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Table 1. Simulation results for the parametric parts in DGP 1

Bias MSE 95% CI width Coverage

X1,it X2,it X1,it X2,it X1,it X2,it X1,it X2,it

Model 1 0.0016 0.0026 0.0007 0.0014 0.1084 0.1559 0.9540 0.9560
Model 2 −0.0547 −0.0769 0.0045 0.0071 0.5667 0.4891 1.0000 1.0000
Model 3 −0.0830 -0.0605 0.0084 0.0048 0.5595 0.4828 1.0000 1.0000
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Figure 1. Average fit of g(X3) across replications

Next, we consider the case of dynamic panel data (DGP2):

Yit = g(Uit)Yit−1 + 0.3Yit−2 + 0.3Xit + ai + εit

g(Uit) = sin
(π
3
Uit

)
Xit =Wit + 0.5ai

We assume εit are independent and identically distributed (IID) N(0, 1) across both
i and t and ai are IID N(0, 1). Wit and Uit are drawn from IID U(0, 10) and IID U(−9, 9),
respectively.
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We compare the performance of ivxtplfc and ivregress 2sls via the following
models:

• Model 4: ivxtplfc, considering that Xit and Yit−2 enter the model linearly,
whereas Yit−1 is included with a functional coefficient of Uit.

• Model 5: ivregress 2sls, taking first difference to remove fixed effects and
regressing ∆Yit on ∆Yit−1, ∆Yit−2, and ∆Xit.

• Model 6: ivregress 2sls, taking first difference to remove fixed effects and
regressing ∆Yit on ∆Yit−1, ∆Yit−2, ∆Xit, and ∆Uit.

Note that L2.Yit (the second lag of Yit) is used as the IV in ivregress 2sls and
that the interaction of L2.Yit and the first lag of the basis functions of Uit is constructed
as the IVs in ivxtplfc. The simulation codes for DGP 2 are presented as follows:

. clear all

. set obs 50
number of observations (_N) was 0, now 50

. set seed 789

. generate a=rnormal()

. generate id=_n

. expand 80
(3,950 observations created)

. bysort id: generate year=_n

. generate x=10*runiform()+0.5*a

. generate u=-9+18*runiform()

. generate gf=sin(_pi/3*u)

. generate y=0

. xtset id year
panel variable: id (strongly balanced)
time variable: year, 1 to 80

delta: 1 unit

. mata: gfmat=J(2000,500,.)
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. forvalues j=1/500 {
2. preserve
3. quietly replace y=a+0.3*x+0.3*L2.y+L1.y*gf+sqrt(2)*rnormal() if year>2
4. quietly drop if year<41
5. quietly generate L_y=L1.y
6. quietly generate L2_y=L2.y
7. quietly ivxtplfc y L2_y x, zvars(L_y) uvar(u) generate(g) endozflag(1)

> maxnknots(20) ivz(L2_y,uflag(1)) fast brep(500)
8. quietly putmata gfhat=g_1, replace
9. mata: gfmat[.,`j´]=gfhat

10. matrix B=e(b)
11. matrix B=B[1,1..2]
12. matrix B1=(nullmat(B1)\B)
13. matrix V=e(Vs)
14. matrix V=vecdiag(V)
15. matrix V=V[1,1..2]
16. matrix V1=(nullmat(V1)\V)
17. quietly ivregress 2sls D.y D.L2.y D.x (D.L.y=L2.y), noconstant
18. matrix B=e(b)
19. matrix B=B[1,2..3]
20. matrix B2=(nullmat(B2)\B)
21. matrix V=e(V)
22. matrix V=vecdiag(V)
23. matrix V=V[1,1..2]
24. matrix V2=(nullmat(V2)\V)
25. quietly ivregress 2sls D.y D.L2.y D.x D.u (D.L.y=L2.y), noconstant
26. matrix B=e(b)
27. matrix B=B[1,2..3]
28. matrix B3=(nullmat(B3)\B)
29. matrix V=e(V)
30. matrix V=vecdiag(V)
31. matrix V=V[1,1..2]
32. matrix V3=(nullmat(V3)\V)
33. restore
34. }

. * Figure 2

. quietly drop if year<41

. quietly getmata (gfs*)=gfmat

. egen av_fit = rowmean(gfs*)

. egen sd_fit = rowsd(gfs*)

. generate c = invnormal(1 - (100 - 95) / 200)

. generate low = av_fit - c * sd_fit

. generate up = av_fit + c * sd_fit

. twoway (rarea low up u, sort(u) color(gs7))
> (line av_fit u, sort(u) color(black) lpattern(solid))
> (line gf u, color(gs10) sort lpattern(longdash)),
> legend(label(1 confidence interval at 95%) label(3 DGP) label(2 average fit)
> cols(3) order(3 1 2)) xtitle("U", height(5)) ytitle("g(U)", height(5))
> scheme(sj)
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. graph2tex, epsfile(fig2) caption(Average fit of g(U) across replications)
> label(fig2)
% exported graph to fig2.eps
% We can see in Figure \ref{fig:fig2} that
\begin{figure}[h]
\begin{centering}

\includegraphics[height=3in]{fig2}
\caption{Average fit of g(U) across replications}
\label{fig:fig2}

\end{centering}
\end{figure}

. * Table 2

. clear

. set obs 500
number of observations (_N) was 0, now 500

. matrix res2=J(3,8,.)

. forvalues k=1/3 {
2. quietly svmat B`k´
3. summarize B`k´1, meanonly
4. matrix res2[`k´,1]=r(mean)-0.3
5. summarize B`k´2, meanonly
6. matrix res2[`k´,2]=r(mean)-0.3
7. svmat V`k´
8. quietly replace V`k´1=sqrt(V`k´1)
9. quietly generate B`k´1_lb=B`k´1-invnormal(0.975)*V`k´1

10. quietly generate B`k´1_ub=B`k´1+invnormal(0.975)*V`k´1
11. quietly generate CIlen`k´1=B`k´1_ub-B`k´1_lb
12. quietly summarize CIlen`k´1, detail
13. matrix res2[`k´,5]=r(p50)
14. quietly replace V`k´2=sqrt(V`k´2)
15. quietly generate B`k´2_lb=B`k´2-invnormal(0.975)*V`k´2
16. quietly generate B`k´2_ub=B`k´2+invnormal(0.975)*V`k´2
17. quietly generate CIlen`k´2=B`k´2_ub-B`k´2_lb
18. quietly summarize CIlen`k´2, detail
19. matrix res2[`k´,6]=r(p50)
20. quietly generate cov`k´1=(B`k´1_lb<=0.3 & B`k´1_ub>=0.3)
21. summarize cov`k´1, meanonly
22. matrix res2[`k´,7]=r(mean)
23. quietly generate cov`k´2=(B`k´2_lb<=0.3 & B`k´2_ub>=0.3)
24. summarize cov`k´2, meanonly
25. matrix res2[`k´,8]=r(mean)
26. quietly replace B`k´1=(B`k´1-0.3)^2
27. summarize B`k´1, meanonly
28. matrix res2[`k´,3]=r(mean)
29. quietly replace B`k´2=(B`k´2-0.3)^2
30. summarize B`k´2, meanonly
31. matrix res2[`k´,4]=r(mean)
32. }

. outtable using res2, mat(res2) format(%9.4f) replace
(note: file res2.tex not found)

Table 2 presents the bias, mean square error (MSE), median width of 95% confidence
interval, and coverage of 95% confidence interval of the estimated coefficients associated
with Yit−2 and Xit. Similar to DGP1, the simulation results show that the fixed-effects
sieve 2SLS estimator performs much better than the fixed-effects 2SLS estimator in terms
of bias, MSE, width of 95% confidence interval, and coverage of 95% confidence interval.
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Figure 2 displays the average fit of g(Uit) with the corresponding 95% band in the
simulations. Although g(Uit) is fluctuated greatly in model 4, the proposed method
estimates it quite well.

Table 2. Simulation results for the parametric parts in DGP 2

Bias MSE 95% CI width Coverage

Yit−2 Xit Yit−2 Xit Yit−2 Xit Yit−2 Xit

Model 4 −0.0009 −0.0005 0.0002 0.0002 0.0542 0.0527 0.9360 0.9400
Model 5 0.0302 0.0357 0.0017 0.0018 0.3623 0.2555 1.0000 1.0000
Model 6 0.0266 0.0385 0.0015 0.0020 0.3603 0.2539 1.0000 1.0000
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Figure 2. Average fit of g(U) across replications
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7 Conclusion

Popular in academic research, partially linear functional-coefficient models are flexi-
ble enough to accommodate the nonlinear structure and capture the heterogeneity over
individuals and times. This article briefly introduced the new development of functional-
coefficient panel-data models and provided three new commands for implementing esti-
mation. Additionally, we illustrated the usefulness of our proposed commands via some
simple simulations.
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9 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-4

. net install st0624 (to install program files, if available)

. net get st0624 (to install ancillary files, if available)
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