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Abstract. In this article, I build on the work of Abadie and Gardeazabal (2003,
American Economic Review 93: 113–132) and Abadie, Diamond, and Hainmueller
(2010, Journal of the American Statistical Association 105: 493–505), extend-
ing the synthetic control method for program evaluation—implemented in Stata
via the community-contributed command synth—to the case of a nonparametric
identification of the synthetic (or counterfactual) time pattern of a treated unit (a
country, a region, a city, etc.) subject to a specific intervention in a given time.
After theoretical description of the model, I present npsynth, the command I de-
veloped for estimating the nonparametric synthetic control method proposed in
this article. Using both simulated and real data, I set out a comparison of the
performance of the parametric and nonparametric methods and widely discuss the
results.

Keywords: st0619, npsynth, synthetic control, nonparametric estimation, program
evaluation

1 Introduction

Social scientists nowadays recognize counterfactual evidence as an indispensable prin-
ciple for reliably assessing the effects of specific events or policy interventions (Angrist
and Pischke 2010).

Counterfactual program evaluation is particularly popular for microlevel analysis,
the standard tool for detecting the effect of a program to specific target variables (An-
grist and Pischke 2009; Cerulli 2015; Imbens and Rubin 2015). However, the current
large availability of aggregated longitudinal (or panel) data has pushed some authors
to extend the counterfactual logic to the macrolevel, where aggregate entities such as
countries, regions, and cities are the units of interest.

The synthetic control method (SCM), recently proposed by Abadie and Gardeazabal
(2003) and Abadie, Diamond, and Hainmueller (2010), is a powerful approach to extend
the counterfactual approach to assess macropolicy effects. This approach imputes the
missing counterfactual status of a specific treated unit as a weighted average of a number
of control units (the so-called donors pool). The weights are computed by minimizing a
vector distance between the treated unit and the donors over a series of preintervention
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covariates. The main philosophy underlying the SCM is that combining units (properly)
often provides a better comparison for the unit exposed to the intervention than any
single unit taken alone.

It is clear that the choice of the weights is at the heart of the model. The SCM

proponents choose weights by minimizing a specific objective function, that is, the
prediction error between the treated series of the covariates of interest (including the
outcome) and the series generated by a linear combination of the same variables for the
nonexposed units.

Such an approach entails a least-squares regression, which assumes a parametric
estimation of the weights that are the parameters to estimate in the regression. This
model implicitly assumes a linear conditional mean (or projection) of the treated unit’s
covariates in the vector space spanned by the donors’ covariates.1 If this conditional
mean is not linear, or more generally is unknown, the weights may be inconsistently
estimated, and the counterfactual imprecisely imputed.

Therefore, relaxing the linearity assumption by providing a nonparametric estima-
tion of the weights may somehow improve their estimation under certain conditions,
thus providing a more reliable imputation of the missing counterfactual.

I propose a procedure to nonparametrically estimate SCM weights using a local av-
erage kernel approach (Pagan and Ullah 1999; Hastie, Tibshirani, and Friedman 2009;
Li and Racine 2007). It sets out the econometrics of the method and presents an ap-
plication for a (parametric versus nonparametric) comparative assessment of the effects
on exports of adopting the Euro as national currency in the case of Italy.

I present npsynth, the command I developed for fitting the proposed model. This
command is freely downloadable from the Stata Journal and the Statistical Software
Components archive and can be suitably used to reproduce the results of this article
along with the use of the companion command synth provided by Abadie, Diamond,
and Hainmueller (2010) for the parametric case.

The structure of the article is as follows. Section 2 provides a short account of the
parametric SCM as proposed by Abadie and Gardeazabal (2003). In the exposition, I
will follow the example presented by the authors in their article. Section 3 presents
the proposed nonparametric approach. Section 4 sets out the main documentation
of the command npsynth. In section 5, I perform a simulation example where the
predictive performance of npsynth is compared with that of synth. Section 6 presents
an application on real data comparing again the parametric (synth) and nonparametric
(npsynth) approaches. Section 7 concludes the article.

1. In the SCM literature, the linearity assumption is also known as “interpolation bias” because it
may entail a bias due to poor overlap. As a possible solution, some authors have proposed to limit
the donor pool to those within a certain range of values for the pretreatment variables (Abadie and
L’Hour 2019).
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2 Parametric approach

Abadie and Gardeazabal (2003) pioneered the SCM when estimating the effects of the
terrorist conflict in the Basque Country, using other Spanish regions as a comparison
group. In that article, the authors evaluated whether terrorism in the Basque Country
had a negative effect on regional growth. Because none of the other Spanish regions fol-
lowed the same time trend as the Basque Country, the authors could not use a standard
difference-in-differences approach, because the parallel trend identification assumption
was in this case violated (Card and Krueger 1994; Autor 2003).

They proposed therefore to take a weighted average of other Spanish regions as
a “synthetic control” group to avoid relying either on a single region or on a sharp
arithmetic mean of all the remaining regions as counterfactual. They showed both
strategies would lead to a spurious imputation of the missing counterfactual. In what
follows, I provide a concise account of the model by following the authors’ example and
notation.

Suppose we have J available control regions (that is, the 16 Spanish regions other
than the Basque Country). The main task of the authors’ proposed model is to assign
weights ω = (ω1, . . . , ωJ)

′—which is a (J × 1) vector—to each region with ωj ≥ 0 and∑J
j=1 ωj = 1. The weights are chosen so that the synthetic Basque Country most closely

resembles the actual one before terrorism.

Let x1 be a (K×1) vector of preterrorism economic growth predictors in the Basque
Country. Let X0 be a (K×J) matrix that contains the values of the same variables for
the J possible control regions. LetV be a diagonal matrix with nonnegative components
reflecting the relative importance of the different growth predictors. The vector of
weights ω∗ is then chosen to minimize the following objective function:

D (ω) = (x1 −X0ω)′V(x1 −X0ω)

The optimal weights are those making the real per capita GDP path for the Basque
Country during the 1960s (the preterrorism time span) best reproduced by the resulting
synthetic Basque Country. Alternatively, the authors could have just chosen the weights
to reproduce only the preterrorism growth path for the Basque Country.

The last step concerns the construction of the “counterfactual” using the optimal
weights as follows:

• let y1 be a (T × 1) vector whose elements are the values of real per capita GDP

values for T years in the Basque Country;

• let y0 be a (T × J) matrix whose elements are the values of real per capita GDP

values for T years in the control regions.
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Analytically, the authors obtain the counterfactual per capita GDP pattern (that is,
the one in the absence of terrorism) as

y∗
1︸︷︷︸

T×1

= y0︸︷︷︸
T×J

× ω∗︸︷︷︸
J×1

To validate the estimation of the weights, the authors require that the patterns of y1

and y∗
1 in the preterrorism period be indistinguishable, thus proving that the treated

unit and the synthetic control followed a parallel trend. This is the main identification
assumption to test for the counterfactual imputation to be considered as reliable. If
this condition holds, one may more confidently assume the postterrorism per capita
GDP pattern of the synthetic control as a good proxy of the true counterfactual.

Finally, the authors provide inference for the statistical significance of results using
a placebo test. This allows them to reject the null hypothesis of no effect anytime the
treated unit’s treatment effect takes unusual values compared with those of the placebo
units.

3 Nonparametric version

In this section, I provide an extension of the SCM to a nonparametric estimation of the
weights (and, thus, of the missing counterfactual).2 The basic idea is that of computing
the weights as proportional to the vector distance between the treated unit and the con-
trols, using a kernel weighting scheme. In other words, given a certain bandwidth, this
method allows for estimating a vector of weights proportional to the distance between
the treated unit and all the rest of untreated ones. Consequently, instead of relying
directly on one single vector of weights common to the entire period, one can obtain a
vector of weights for each of the periods considered, eventually averaging them to obtain
the unique set of weights. To make the exposition clearer, the next section sets out a
simple example for understanding the logic and econometrics of the proposed model.3

3.1 An illustrative example

Suppose that the treated country is the United Kingdom (UK), with treatment starting
in 1973. Assume that the pretreatment period is 1970, 1971, 1972 and that the post-
treatment period is 1973, 1974, 1975. Suppose we use three countries as donors: France
(FRA), Italy (ITA), and Germany (GER), using a set ofM covariates, x = x1, x2, . . . , xM ,
for each country.

2. This section draws on Cerulli (2019).
3. Abadie and L’Hour (2019) have recently proposed an SCM approach close in spirit to the one

herein presented. To find the optimal weights, they use a Lasso regression that penalizes over the
differences among treated and control pretreatment covariates. In contrast, the present work uses a
kernel approach that is another possible route to cope with the interpolation bias. Note, however,
that the Lasso still continues to be a linear model because based on constrained ordinary least
squares. Differently, my model relaxes completely the linearity assumption between the vector of
the treated unit’s covariates and the matrix of donors’ covariates.
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We define a distance metric based on x between each pair of countries in each year.
For instance, with only one covariate x (that is, M = 1), the distance between UK and
ITA in terms of x in 1970 is

d1970(UK, ITA) = ||x1970,UK − x1970,ITA||

Given a distance definition, the pretreatment weight for ITA will be

ωUK
1970,ITA(h) = K

(
||x1970,UK − x1970,ITA||

h

)
where K(·) is a specific kernel function, h the bandwidth chosen by the analyst, and || · ||
a specific norm. The kernel function defines a weighting scheme penalizing countries
that are far away from the UK and giving more relevance to countries closer to the UK.
Observe that closeness is measured in terms of a predefined x distance (such as the
Mahalanobis, Euclidean (L2), or modular) within a normed vector space.

Based on the chosen vector distance defined over the covariates x, we can derive the
vector of weights W, whose generic element is

ωj
t,s(h) = K

(
||xt,j − xt,s||

h

)
(1)

where, in this example, j = UK and s = FRA, ITA,GER.

Figure 1 provides a graphical and intuitive representation of (1). Once one has set a
bandwidth h, each country in each year obtains a weight decreasing with the increasing
distance from the UK. In this illustrative example, ITA gets a positive value because its
distance from the UK is smaller than h; GER, on the contrary, gets a weight equal to
zero because its distance from the UK is larger than h. Of course, the UK itself obtains
the largest weight by default.
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Figure 1. Kernel weights representation

Following this simple example, we can define the weighting matrix W as

W =

1970 1971 1972
FRA ωUK

11 ωUK
12 ωUK

13

ITA ωUK
21 ωUK

22 ωUK
23

GER ωUK
31 ωUK

32 ωUK
33

One issue is that we need just one single vector of weights, while the previous pro-
cedure provides a vector of weights for each pretreatment year. We can overcome this
minor problem by taking the mean (or the median) of the yearly weights, thus defining
the following augmented weighting matrix,

W∗ =

1970 1971 1972 1973 1974 1975
FRA ωUK

FRA ωUK
FRA ωUK

FRA ωUK
FRA ωUK

FRA ωUK
FRA

ITA ωUK
ITA ωUK

ITA ωUK
ITA ωUK

ITA ωUK
ITA ωUK

ITA

GER ωUK
GER ωUK

GER ωUK
GER ωUK

GER ωUK
GER ωUK

GER

where

ωUK
s =

1

3

1972∑
t=1970

ωUK
t,s
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Define the matrix of outcomes Y as follows (where y is the outcome):

Y =

FRA ITA GER


1970 y11 y12 y13
1971 y21 y22 y23
1972 y31 y32 y33
1973 y41 y42 y43
1974 y51 y52 y53
1975 y61 y62 y63

We can define a matrix C as
C︸︷︷︸

T×T

= Y︸︷︷︸
T×J

× W∗︸︷︷︸
J×T

The diagonal of matrix C contains the “UK synthetic time series Y0”:

Y0,UK= diag(C)

This vector is an estimation of the unknown counterfactual behavior of the UK. The
generic element of the diagonal of C is

ct = yt︸︷︷︸
1×J

× w∗︸︷︷︸
J×1

In the previous example,

cUK
75 = [y75,FRA, y75,ITA, y75,GER]×

 ωUK
FRA

ωUK
ITA

ωUK
GER

 =
∑

s=FRA,ITA,GER

y75,sω
UK
s

Therefore, ct—that is, the synthetic outcome of the UK—is a weighted mean of controls’
y at time t, with weights provided by the previous procedure.

Previous estimation of the synthetic counterfactual is based on a specific choice of
the bandwidth h. Thus, one question is how to select such bandwidth properly. As
usual with nonparametric estimators, a cross-validation approach can be used (Li and
Racine 2004). In this context, it reduces to select the optimal bandwidth as the one
minimizing as loss objective function the preintervention root mean-squared prediction
error (RMSPE) defined as

RMSPEj(h) =

√√√√ 1

T−0

T−0∑
t=1

{
yj,t − y∗j,t(h)

}2
where T−0 is the last pretreatment time. We can estimate the optimal bandwidth
computationally by first forming a grid of possible values for h and then finding h∗

as the value of the bandwidth minimizing the RMSPE over the grid. We provide an
application of such a procedure in the next section.
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4 The npsynth command

This section provides the documentation of the command npsynth, which can be used
to fit the model presented in this article.

4.1 Syntax

npsynth outcome varlist, trperiod(#) bandw(#) panel var(varname)

time var(varname) trunit(#) kern(kerneltype)
[
npscv n grid(#1, #2)

save res(filename) w median gr y name(name) gr tick(#) gr1 gr2 gr3

save gr1(graphname1) save gr2(graphname2) save gr3(graphname3)
]

outcome is the target variable over which one measures the impact of the treatment.
varlist is the set of covariates (or observable confounding) predicting the outcome in the
pretreatment period.

4.2 Description

npsynth extends the SCM for program evaluation proposed by Abadie and Gardeazabal
(2003) and Abadie, Diamond, and Hainmueller (2010) to the case of a nonparametric
identification of the synthetic (or counterfactual) time pattern of a treated unit. The
model assumes that the treated unit—such as a country, a region, a city—underwent a
specific intervention in a given year and estimates its counterfactual time pattern, the
one without intervention, as a weighted linear combination of control units based on
the predictors of the outcome. The nonparametric imputation of the counterfactual is
computed using weights proportional to the vector distance between the treated unit’s
and the controls’ predictors, using a kernel function with prefixed bandwidth. The
command provides a graphical representation of the results for validation purposes.

4.3 Options

trperiod(#) specifies the time in which treatment starts. trperiod() is required.

bandw(#) specifies the bandwidth of the kernel weighting function. bandw() is required.

panel var(varname) specifies the panel variable. panel var() is required.

time var(varname) specifies the time variable. time var() is required.

trunit(#) specifies the treated unit, with # indicating one of the values taken by
panel var(). trunit() is required.
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kern(kerneltype) specifies the type of kernel function to use for building synthetic
weights. kern() is required.

kerneltype Description

epan uses an Epanechnikov kernel
normal uses a normal kernel
biweight uses a biweight (or quartic) kernel
uniform uses a uniform kernel
triangular uses a triangular kernel
tricube uses a tricube kernel

npscv allows for computing the optimal bandwidth minimizing the pretreatment RMSPE.
The default length of the grid over which to find the optimal bandwidth is 20, which
means that the bandwidth’s grid is [0.1, 0.2, . . . , 2]. This option returns the optimal
bandwidth in the e-class object e(opt band).

n grid(#1, #2) specifies the length of the grid over which to find the optimal band-
width. The default is n grid(1, 20), which means that the bandwidth’s grid is
[0.1, 0.2, . . . , 2].

save res(filename) saves the treated factual and counterfactual time patterns in file-
name.dta.

w median specifies that the unique vector of synthetic weights be calculated by the
yearly weight’s median (the default uses the mean).

gr y name(name) gives a convenient name to the outcome variable to appear in the
graphs.

gr tick(#) sets the tick of the time in the time axis of the graphs.

gr1 plots the pretreatment balancing and parallel trend graph.

gr2 plots the overall treated and synthetic-pattern comparison graph.

gr3 plots the overall pattern of the difference between the treated and synthetic-pattern
graph.

save gr1(graphname1) saves graph 1, that is, the pretreatment balancing and parallel
trend.

save gr2(graphname2) saves graph 2, that is, the overall treated and synthetic-pattern
comparison.

save gr3(graphname3) saves graph 3, that is, the overall pattern of the difference
between the treated and synthetic pattern.
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4.4 Stored results

npsynth stores the following in e():

Scalars
e(bandh) bandwidth used within the selected kernel function
e(RMSPE) RMSPE of the fit model

Matrices
e(W) vector of (kernel) weights

4.5 Requirements

• Before running npsynth, one must first install the moremata (Jann 2005) and
mahapick (Kantor 2006) packages. npsynth uses the command mahascore from
the mahapick package.

Finally, cross-validation optimal bandwidth can be obtained using the npsynth’s
postestimation command npscv, which returns the optimal bandwidth via the return
scalar e(opt band). The command npscv takes neither arguments nor options; thus, it
can be easily typed immediately after running npsynth. The command also provides a
graphical representation of the RMSPE minimization.

5 Simulation

Before presenting an application on real data, I perform a simulation example to show
how npsynth improves counterfactual estimation precision compared with the tradi-
tional SCM (estimated by the command synth) when nonlinearities are considered.

I perform an SCM simulation using a data-generating process (DGP) where E(x1|X0),
that is, the projection of the covariates of the treated unit over the vector space spanned
by the covariates of the donors, is highly nonlinear. This contrasts with the linearity
assumption of this projection used by the Abadie, Diamond, and Hainmueller (2010)
model, while it should suitably accommodate the nonlinear projection used by npsynth.

Because the simulation code is pretty long, for the sake of brevity, I do not report
the code here. One can reproduce it by running the do-file simulation npsynth.do.
Thus, I focus on the main DGP assumptions and related results.

We consider a setting with three normally distributed covariates x1, x2, x3, one
treated unit, and three donors {1, 2, 3}. We model the three covariates for the treated
unit in a highly nonlinear way as a function of the respective covariates of the three
donors,

x1 = x211 + |x21|0.5 + x331 + e1

x2 = ex12 + e1/x22 + x232 + e2

x3 =
x13
x23

+ ex23 + x−5
33 + e3
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where ei are normally distributed errors. This specification of E(x1|X0) is thus far from
the linear one implied by synth. The observed (or factual) outcome of the treated unit
is

y1 = x1 + x2 + x3 + e

while the counterfactual is

y0 =

{
x1 + x2 + x3 + e if t ≤ 2009
−100 + x1 + x0.72 + log(|x3|) + e if t > 2009

where the year of treatment is 2009. Figure 2 sets out the plot of the factual and
counterfactual pattern of the treated unit according to the above specified DGP.

-1
00

-5
0

0
50

10
0

2000 2005 2010 2015
year

Factual Counterfactual

Figure 2. Simulated factual and counterfactual pattern of the treated unit outcome
when the policy occurs at year 2009

Also, we generate the donors’ pattern as the counterfactual pattern of the treated
units plus a normally distributed shock with different means and variances. Results are
plotted in figure 3.
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Figure 3. Simulated treated and donors outcome pattern, when policy occurs in year
2009

We apply both synth and npsynth to this simulated dataset. Figure 4 shows the
plots of the DGP counterfactual outcome (the true one) and the ones estimated by synth

and npsynth.
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Figure 4. Estimated counterfactual: Comparison between npsynth and synth; policy
occurs in year 2009

As expected, results show that npsynth substantially outperforms synth, especially
in year 2012, 2013, and 2015. Importantly, the synth’s RMSPE is equal to 8.96 against
a lower value of 6.65 achieved by npsynth. Notice also that, in terms of mean squared
prediction error, the npsynth error is half the one provided by synth. This lends support
to the main idea of this article, that is, that the linearity restriction does matter in the
construction of the synthetic counterfactual.

6 Application

In this section, I compare the proposed nonparametric approach and the parametric
approach provided by Abadie, Diamond, and Hainmueller (2010) by focusing on the
effects of adopting the Euro as the national currency. In 2001, some European coun-
tries abandoned their national currencies to adopt the Euro. It is thus interesting to
understand whether this relevant institutional change has had an impact on European
economies. Of course, one can consider many outcome variables over which to measure
such an effect. In this exercise, we focus on one specific country, Italy, and one specific
outcome, namely, the domestic direct value added (DDVA) exports obtained by using
the gross export decomposition suggested by Wang, Wei, and Zhu (2013).
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To evaluate the goodness of fit of both procedures, we consider the preintervention
RMSPE for Italy (that is, the average of the squared discrepancies between DDVA in
Italy and in its synthetic counterpart during the pretreatment period). As donors, we
consider a set of 18 countries worldwide that experienced no change in currency adoption
during the period under scrutiny. In this case, the RMSPE formula is

RMSPEITA =

√√√√ 1

T−0

T−0∑
t=1

(yt,ITA − y∗t,ITA)
2

with T−0 = 1999. We consider 2000 as the year of treatment because many transactions
were done using the Euro starting from one year before the currency was officially
adopted.

The model specification is a type of gravity model, which is standard in the economics
of trade, taking as explanatory variables the same DDVA, the log of the distance between
each pair of countries, the sum of their GDP, the presence of a common language, and
a contiguity measure between countries.

By applying the Abadie, Diamond, and Hainmueller (2010) model to this dataset
and specification, we obtain the following results:

. * Parametric SCM using "synth"

. * Load the dataset

. use ita_exp_euro

. * tsset the panel dataset

. tsset reporter year

(output omitted )

. * Set the confounders

. global xvars "ddva1 log_distw sum_rgdpna comlang contig"

. * Run the synth command

. synth ddva1 $xvars, trunit(11) trperiod(2000) figure

(output omitted )

Loss: Root Mean Squared Prediction Error

RMSPE .0079342
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Unit Weights:

Co_No Unit_Weight

AUS 0
BRA 0
CAN 0
CHN 0
CZE 0
DNK 0
GBR .122
HUN 0
IDN 0
IND 0
JPN .18
KOR 0
MEX 0
POL .599
ROM 0
SWE .099
TUR 0
USA 0

Predictor Balance:

Treated Synthetic

ddva1 .6587541 .6587987
log_distw 7.708661 7.839853

sum_rgdpna 27.20794 26.33796
comlang 0 .0234725
contig .0824561 .088393

The RMSPE is equal to 0.008, which is quite small. The donors’ optimal weights,
as reported above, show that only four countries are used as donors: Great Britain,
Japan, Poland, and Sweden. The largest weight is the one of Poland, with a value of
around 0.6, followed by that of Japan (0.18), and Great Britain (0.12). The subsequent
panel, finally, shows that all the predictors are sufficiently balanced, thus entailing a
good quality in the construction of the pretreatment synthetic counterfactual.

The good performance provided by the Abadie, Diamond, and Hainmueller (2010)
method is confirmed by figure 5, plotting over the years the treated and synthetic
pattern of the outcome variable DDVA. This figure clearly shows an effect of adopting
the Euro, because after 2000, the synthetic and treated patterns diverge considerably.
In particular, it seems that in the absence of the Euro, the DDVA would have been lower
than that experienced in adopting the Euro. This means that the Euro seems to have
had positive effects in increasing the DDVA component of the gross export for Italy.
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Figure 5. Treated and synthetic pattern of the outcome variable DDVA. Parametric
model.

When applying the nonparametric approach proposed here, one has to first find the
optimal bandwidth. As said, we select the bandwidth by minimizing the RMSPE. Results
are reported in figure 6, where we can see that the RMSPE is minimized at a bandwidth
equal to 0.5. Both the optimal bandwidth and the graph in the figure can be obtained
by inserting the option npscv into the npsynth command as we set out below.
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. * Run npsynth using an initial bandwidth, such as 0.4

. quietly npsynth ddva1 $xvars, panel_var(reporter) time_var(year)
> trperiod(2000) trunit(11) bandw(0.4) kern(triangular) npscv n_grid(3 10)

.0
1

.0
15

.0
2

.0
25

.0
3

R
M

SP
E

.2 .4 .6 .8 1
Bandwidth

Figure 6. Optimal bandwidth by minimizing the RMSPE

A graphical inspection, however, shows that a bandwidth equal to 0.4 (namely,
a slight undersmoothing) performs better for years closer to the treatment year, thus
making it more appropriate to use such a bandwidth as the optimal one in the estimation
of the synthetic pattern. The panel of results below sets out that the value of the RMSPE

is 0.01, a bit larger than that found in the parametric case. Also, the weighting scheme
is different, with more donors having a nonzero weight, and China obtaining the lion’s
share.
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. * Nonparametric SCM using npsynth

. npsynth ddva1 $xvars, panel_var(reporter) time_var(year)
> trperiod(2000) trunit(11) bandw(0.4) kern(triangular)
> gr1 gr2 gr3 save_gr1(gr1) save_gr2(gr2) save_gr3(gr3)
> gr_y_name("Domestic direct value added (DDVA) export")
> gr_tick(5) save_res(res)

*******************************************
Root Mean Squared Prediction Error (RMSPE)
*******************************************

RMSPE = .01

*******************************************
AVERAGE UNIT WEIGHTS
*******************************************

UNIT WEIGHT

AUS 0
BRA 0
CAN 0
CHN .356908
CZE .1244664
DNK 0
GBR .0133546
HUN 0
IDN .035076
IND 0
JPN .1021579
KOR 0
MEX .0083542
POL .0563253
ROM .0733575
SWE .0837784
TUR .1410372
USA .0051846

*******************************************
PRE-TREATMENT COVARIATES BALANCING
*******************************************

Treated Synthetic

ddva1 .6587541 .6634707
log_distw 7.708661 8.325776

sum_rgdpna 27.20794 26.8054
comlang 0 .0270124
contig .0824561 .056066

The graph in figure 7 shows a good fit of the model, which slightly outperforms the
parametric method when gradually approaching the treatment time. This improvement
is not signaled by overall RMSPE, because the nonparametric estimation performs worse
than the parametric one at the very beginning of the pretreatment period, which is less
relevant, however, for assessing the overall quality of the fit. To assess that npsynth
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provides a smaller RMSPE close to the time of treatment (year 2000), we rerun both
models and estimate the pretreatment fit considering only the years between 1996 and
2000 via this supplementary code:

. * PARAMETRIC SCM

. quietly synth ddva1 $xvars, trunit(11) trperiod(2000)
> keep(synth_data, replace) figure

. * NONPARAMETRIC SCM

. quietly npsynth ddva1 $xvars, npscv n_grid(3 10) panel_var(reporter)
> time_var(year) trperiod(2000) trunit(11) bandw(0.4) kern(triangular)
> gr1 gr2 gr3 save_gr1(gr1) save_gr2(gr2) save_gr3(gr3)
> gr_y_name("Domestic direct value added (DDVA) export")
> gr_tick(5) save_res(npsynth_data)

. * SHOW THAT npsynth HAS BETTER RMPSE THAN synth CLOSE TO THE TREATMENT TIME

. preserve

. use npsynth_data, clear

. keep year _Y0_ _Y1_

. rename _Y0_ _y_0_npsynth

. save npsynth_data, replace
file npsynth_data.dta saved

. restore

. preserve

. use synth_data, clear

. keep _Y_synthetic _time

. rename _time year

. rename _Y_synthetic _y_0_synth

. save synth_data, replace
file synth_data.dta saved

. restore

. use npsynth_data, clear

. merge 1:1 year using synth_data

(output omitted )

. keep if year < 2000 & year>=1996
(14 observations deleted)

. generate DEV_gdp_synth=(_Y1_ - _y_0_synth)^2

. quietly summarize DEV_gdp_synth

. global RMSPE_gdp_synth=sqrt(r(mean))

. generate DEV_gdp_npsynth=(_Y1_ - _y_0_npsynth)^2

. quietly summarize DEV_gdp_npsynth

. global RMSPE_gdp_npsynth=sqrt(r(mean))

. display $RMSPE_gdp_synth

.00480732

. display $RMSPE_gdp_npsynth

.00339866
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Figure 7. Treated and synthetic pattern of the outcome variable DDVA. Nonparametric
model.

In this case, we can see that the nonparametric approach behaves a bit better than
the parametric one (with a RMSPE of 0.0034 against 0.0048), although both provide a
small pretreatment prediction error.

7 Conclusions

This article has provided an extension of the SCM for program evaluation to the case
of a nonparametric identification of the synthetic (or counterfactual) time pattern of a
treated unit. After briefly presenting the parametric method, I introduced the nonpara-
metric alternative by focusing on npsynth, which I used to implement the nonparametric
SCM. I proposed a parametric versus nonparametric comparative assessment both on
simulated and real data. Both exercises showed that, while both methods provide a
small pretreatment prediction error, the nonparametric approach tends to outperform
the parametric one, especially in the presence of high nonlinearity in the relationship
between the treated unit’s and the donors’ covariates.

The novel approach herein proposed can thus complement the traditional one by
providing more robustness to program evaluation results obtained using the SCM.
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9 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-4

. net install st0619 (to install program files, if available)

. net get st0619 (to install ancillary files, if available)

This routine is freely downloadable from the Stata Statistical Software Components
archive,

. ssc install npsynth
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