
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2020)
20, Number 4, pp. 892–915 DOI: 10.1177/1536867X20976321

iefieldkit: Commands for primary data
collection and cleaning

Kristoffer Bjärkefur
World Bank

Development Economics Research
Washington, DC

kbjarkefur@worldbank.org

Lúıza Cardoso de Andrade
World Bank

Development Economics Research
Washington, DC

lcardoso@worldbank.org

Benjamin Daniels
Georgetown University

Initiative on Innovation, Development and Evaluation
Washington, DC

benjamin.daniels@georgetown.edu

Abstract. Data collection and cleaning workflows implement highly repetitive but
extremely important processes. In this article, we introduce iefieldkit, a package
developed to standardize and simplify best practices for high-quality primary data
collection across the World Bank’s Development Research Group Impact Evalua-
tions department. iefieldkit automates error-checking for electronic Open Data
Kit-based survey modules such as those implemented in SurveyCTO; duplicate
checking and resolution; data cleaning, including renaming, labeling, recoding,
and survey harmonization; and codebook creation.

Keywords: dm0105, iefieldkit, iecodebook, iecompdup, ieduplicates, ietestform,
primary data collection, ODK, SurveyCTO, data cleaning, survey harmonization,
duplicates, codebooks

1 Introduction

The iefieldkit package is a set of commands designed to simplify a series of tedious
and repetitive tasks for Stata users who are in the process of collecting primary survey
data in the field. This package currently supports three major components of that work-
flow: survey design, survey completion, and data cleaning and survey harmonization.

The commands described in this article have grown out of the work of the World
Bank’s Development Impact Evaluation Department (DIME). DIME has employed dozens
of researchers and hundreds of full-time staff on more than 325 impact evaluations in
over 60 countries. The DIME Analytics team supports high-quality research processes
across the DIME portfolio, offers public trainings, and develops software tools and stan-
dards for the global community of development researchers.

One of the most important developments in economics research over the past two
decades has been the rise of empirical data collection, especially with unique primary
datasets collected by the researchers themselves (Angrist et al. 2017). The authors of

c© 2020 StataCorp LLC dm0105

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X20976321&domain=pdf&date_stamp=2020-12-22

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 893

iefieldkit have supported the implementation of a wide range of primary data collec-
tion in fields such as agriculture, health, energy and environment, edutainment, financial
and private sector development, fragility, conflict and violence, gender, governance, and
transport. They have developed workflows to support general best practices for data
collection and, as a rule, develop new packages only when they fill an essential gap in
Stata functionality.

The iefieldkit package provides commands that support workflows in primary
data collection. There are relatively few Stata-based tools for managing that process,
mainly because of its complexity and the diversity of practices adopted. The DIME

Analytics team has worked to standardize some of the tools and processes used for data
collection to save time during the more tedious elements of the process, improve docu-
mentation, and reduce error. Most importantly, because the quality of data collection is
as important to credible research as the quality of analysis, these tools are intended to
allow researchers to focus on ensuring that the data they collect are high quality. The
commands in the package are therefore a first attempt to provide Stata-based tools for
managing the primary data-collection process using native tools from start to finish.

Specifically, iefieldkit performs three essential tasks. First, before data collection
occurs, ietestform allows for rapid error-checking of Open Data Kit (ODK)-based1

electronic surveys, including best practices for SurveyCTO-styled forms.2 This ensures
that data, once collected, will import in Stata-friendly formats—for example, avoiding
name conflicts and ensuring compliant variable naming and labeling. Second, while data
collection is ongoing, ieduplicates and iecompdup provide a workflow for detecting
and resolving duplicate entries in the dataset, ensuring that the final survey dataset will
be a correct record of the survey sample to merge onto the master sampling database.
Finally, once data collection is complete, the iecodebook commands provide a workflow
for rapidly cleaning, harmonizing, and documenting datasets.

All three commands use spreadsheet-based workflows so that their inputs and out-
puts are significantly more human-readable than Stata do-files would be, completing
the same tasks, and these tasks can be supported and reviewed by personnel who spe-
cialize in field work rather than code tools. The increasing diversity and specialization
of research teams has made accessibility to non-Stata-proficient personnel an essential
component of data management workflows, and iefieldkit takes this development
seriously. All code for the package is open source and available for public contribution
and comment on GitHub at https://www.github.com/worldbank/iefieldkit.

2 The ietestform command

Many contemporary data-collection efforts use digital survey technologies, such as the
open-source ODK or proprietary extensions of ODK, like SurveyCTO. Because data are
often collected for researchers by third-party firms or local partners, quality assurance
prior to sending surveys to the field is essential. Because the surveys themselves are often

1. https://www.opendatakit.org.
2. https://www.surveycto.com.

https://www.github.com/worldbank/iefieldkit
https://www.opendatakit.org
https://www.surveycto.com

894 Data collection with iefieldkit

created collaboratively between topic experts, field staff, and data analysts, our teams
identified the possibility of saving a lot of time by automating a “quality checklist”
that is often overlooked in practice. This section provides extensive details on that
specific functionality, some of which requires some familiarity with ODK practice and
terminology, but anyone who collects data using third-party software may be interested
in how these checks can be implemented using Stata even before data are in hand.

In ODK and SurveyCTO, survey forms are typically built in Excel using a special-
ized structured syntax.3 Because the survey forms are long and often created using
copied-and-pasted syntax or sections from other surveys or from demo files, it is easy
to make minor syntax errors or omit Stata-optimized practices that may have major
consequences later. The ietestform command is used to test ODK and SurveyCTO-
based survey forms before they are used in the field for a range of technical issues and
Stata-optimized practices. This section assumes you are familiar with ODK syntax. If
you are not using ODK-based tools, you will not likely use this command and should
skip to section 3.

The SurveyCTO server has a built-in test feature that tests the ODK syntax of a
form when it is uploaded. The ietestform command is not meant as a substitute
for these tests but a complement, because the built-in test identifies only strict syntax
failures. For example, ietestform uses a heuristic search to test for potential typos that
would lead to unintended logic, whether the data generated will be in Stata-suitable
format, and whether these issues would fail strict syntax checks. The command also
points out commonly used best practices if not already implemented in the survey.
Specifically, it creates an easily readable output report to ensure that survey practices
that may produce unexpected behaviors are used only intentionally. The command
thereby provides an iterative, documented workflow for the quality-assurance stage of
survey development.

The ietestform command is intended to be used when developing a survey form
after it is tested on a SurveyCTO server to make sure there are no syntax errors but
before the survey is deployed in the field. The ietestform command performs several
tests. The syntax for the command is

ietestform using "/path/to/form.xlsx", reportsave("/path/to/report.csv")[
statalanguage(string) replace date

]
The ietestform command outputs a test report with various flags indicating poten-

tially improper practices in a CSV format, which is optimized for display in a number of
software applications as well as for version-tracking with software like Git. Some of the
report entries flag code errors, and others detect practices that are not strictly wrong
but that may indicate potential errors or bad practices (and are therefore intended for
manual review). There will often be cases where the command flags a line as suspicious,

3. SurveyCTO provides a web-based click-and-drag survey builder, but our experience is that the
Excel method is much better suited for the large questionnaires ietestform is developed for.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 895

but it is in fact the best way to construct the questionnaire. The goal of ietestform
is not to produce a report with no flags but to ensure that practices that may cause
serious problems if used unintentionally or incorrectly are validated for functionality.

2.1 Tests run by ietestform

This section describes tests related to best practices on how and how not to use features
in the ODK programming language to ensure data quality and reduce the risk of creating
errors that interrupt the field work. Again, note that the command does not check
whether the ODK syntax is valid. The command is intended to be used after the survey
form has passed the ODK syntax test on the SurveyCTO server, and some tests in the
command assume that the ODK syntax has already been tested and is correct.

All nonnote fields are required and no note fields are required

The required column ensures that enumerators (the people collecting data in the field)
cannot proceed with the survey before a response has been filled in for the indicated
field. This is in general a useful data-quality feature because it prevents incomplete
surveys from being submitted and helps ensure that enumerators complete surveys in
the intended order. A field that is required cannot be bypassed until data have been
entered for it.

ietestform tests that all fields that are not of type note (that is, fields with only
a prewritten text note to be read by the enumerator and no data input) have the value
“Yes” in the required column. This test adds to the report a list of all fields that
are not required and not of type note. Even when some type of nonresponse (such
as “Declined to answer”) is acceptable, the absence of a recorded answer to represent
that response should not be accepted. The absence of a recorded answer should mean
only that the question was not asked during the survey. When applicable, there should
always be a valid method to record meaningful reasons for nonresponse. When it may
be acceptable for a question to be skipped, an appropriate relevance expression should
be used to implement this functionality.

Some fields that are often intentionally not required are fields that record GPS co-
ordinates. Such fields have the type geopoint, geoshape, and geotrace. If you know
that the devices you will be using for data collection will have no problem collecting GPS

coordinates, then keeping those fields required ensures you will get valid data points.
However, if you are working in a context where GPS coordinates may be difficult to
collect, then it may be a good idea to not require these fields, so that the enumerator
can complete the other fields and submit the survey even when it was not possible to
record GPS coordinates. These fields will still be flagged in the report, but as long as
you are happy with your decision, you can still deploy the survey.

Fields of type note can be required but cannot record data. Therefore, it is not
possible to advance a survey past a required note field. If an enumerator encounters
a required note during a live survey, there is no way to continue with the interview

896 Data collection with iefieldkit

or to submit the data already collected. There are cases when this functionality is
intentionally used. Because you cannot skip required note fields, they can be used
alongside a relevance condition to create the equivalent of an “error” state: if some
previous input is absolutely incorrect, this will force the enumerator to go back and
correct it before continuing data collection.4

All begin group and begin repeat fields have a corresponding end field

This test checks that all begin group fields are matched by an end group and that all
begin repeat fields are matched by an end repeat. The primary functionality of this
test is also implemented by the ODK syntax tester on the SurveyCTO server. However,
the report outputted by ietestform provides additional information that makes it
easier and less time consuming to solve this problem, especially when the survey form
is very large. For example, ODK does not require the end group and end repeat to
have field names, making it difficult to provide pointers to the source of the error in
the underlying survey form. ietestform fills that gap by requiring those fields to have
names and including the names as well as the form row number of nonvalid begin and
end pairs in the report.

For a begin and end pair to be valid in ietestform, the following three criteria
need to be fulfilled:

1. For each begin field, there is an end field.

2. The corresponding end field is of the correct type, so that a begin group is not
closed by an end repeat and a begin repeat is not closed by an end group.

3. The end field names match the begin fields. The SurveyCTO test makes sure
that the begin names are unique, so each pair will also be unique if this part of
the test is valid.

Variable naming and labeling is Stata optimized

ODK applies very few restrictions to field names and other inputs. These are converted
into metadata for Stata, which places many more restrictions on these values. Therefore,
it is not uncommon for ODK-created datasets to contain, for example, variable names

4. For example, enumerators are often asked to enter respondent IDs twice to be extra careful that
there is no typo in the ID. Let’s say those two double-entry fields are id1 and id2. Then, they can
be followed by the required note field that has the relevance expression triggering its appearance,
${id1} != ${id2}, such that the required note appears only if the two IDs are not identical.
The note can then inform the enumerator that the two ID fields are not identical and that the
enumerator must go back and change the values to continue. The same functionality could have
been achieved using the constraint condition on the second ID field when the ID is reentered, but
the label in a note field can be made more informative than a constraint message; and when the
conditional test is more difficult than just testing that two fields are identical, then this method is
made easier by using intermediate calculate fields that are then used in the relevance column for
the required note field.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 897

and labels that are not valid in Stata and will cause error. In ODK, for example, all
names must be unique, and there are a few special characters that are not allowed.
These restrictions are tested by the ODK syntax test on the SurveyCTO server. The
additional tests done by ietestform ensure that names that will be imported by Stata
are valid and optimized for use there.

ietestform first returns a flag if you have not programmed the survey to return
Stata-specific labels. SurveyCTO forms can be programmed to display questions in
multiple languages. This is done by creating label columns named label:english,
label:swahili, label:hindi, and so on. When exporting data into Stata format
through SurveyCTO Sync, you can choose which language to use for labels. Labels can
obviously be added and modified once the dataset has been opened in Stata. However,
the simplest way to add them to a dataset created in SurveyCTO is using this feature
to create Stata-optimized labels by adding a “language” called label:stata. If this
practice is not used, the dataset is often not labeled as intended. Labels in ODK contain
the full survey question, which is rarely a suitable variable label in Stata. Most often,
they will be too long, but they may also include special characters, line breaks, or HTML

code that may be difficult to handle. The same test is applied to the choices sheet, so
that all labeled variables use Stata-compliant value labels.

Stata variable names are limited to 32 characters and variable labels to 80. Longer
names or labels will be truncated or replaced with a generic name of the format var1,
var2, and so on, if the truncated name is no longer unique. All of these cases can be
resolved in Stata, but it is much simpler to ensure that all names are collectively unique
at 32 characters before collecting data. ietestform therefore flags all fields with variable
names longer than 32 characters or Stata labels longer than 80 characters. Furthermore,
ietestform also flags any fields with leading (“ ABC”) or trailing (“ABC ”) spaces
because these can cause unexpected problems.

This test is extended to fields in repeat groups whose names will be too long when
imported to Stata in wide format, as well as to fields in repeat groups where the risk of
overlong names is high but not certain. When you use a SurveyCTO-generated Stata
import do-file or export a dataset in wide format, a suffix is added to the names of
variables that are created inside repeat groups. For example, if a group of questions
is repeated three times, the wide version of the resulting dataset will contain three
variables for each question in the repeat group. Each of these three variables will
have the same name, followed by 1, 2, and 3. Therefore, variables created inside
a repeat group may not have a name longer than 30 characters. If the field is in a
nested repeat group (a repeat group inside a repeat group), it will be suffixed once for
each repeat group. So the actual constraint used in this test is given by this formula:
32− (2× depth of nested repeats). This test lists all variables that have longer names
than that constraint. It assumes that there are no more than 9 iterations in each
repeat group. If there were more than 9, the suffixes would be 10, 11, etc., which
take up three characters. The second test lists all fields with a field name longer than
32 − (3 × depth of nested repeats). Whether this will create an issue with long names
is uncertain, but if field names are so long that they might be caught in this test, then
it is probably a good idea to make them shorter.

898 Data collection with iefieldkit

ietestform also flags name conflicts that could result from repeat suffixes that are
added to fields inside a repeat group. SurveyCTO’s ODK syntax tester tests that all
names are unique. The names myvar and myvar 1 are not duplicates in the ODK syntax
test, but if myvar is in a repeat field, it will be suffixed with 1 for the first iteration of
that variable, and that will create a name conflict with the variable created from field
myvar 1.5 Therefore, ietestform flags all fields inside a repeat group that are at risk
of creating this type of name conflict. For example, if there is a field named myvar,
the command checks whether there are any other field names with the format myvar #,
where # is one or more digits. This is extended to nested repeat groups sensibly.

Test choice lists for typos, missing values, and redundancies

The ODK syntax is very lenient when it comes to the definition of choices lists, which
are translated into Stata value labels. It does not have robust checks for typograph-
ical errors, duplication, or missingness that will affect Stata datasets in unexpected
ways. ietestform flags these and other “suspicious” patterns because they are com-
mon by-products of coding errors or redundant code likely to cause future errors; for
example, unused choice lists and duplicated labels could indicate that the list elements
were copied and pasted accidentally or incompletely. ietestform checks that all lists
defined in the choices list sheet are actually used in at least one select one or se-
lect multiple field in the survey sheet.6 ietestform also flags any duplicates in list
names and elements in the choice sheet because these will cause unexpected behavior
when converted to Stata data.

In Stata, categorical data are often stored as integers attached to value labels. In Sur-
veyCTO, other formats for categorical response questions are allowed, such as strings.
Although not strictly required, our team recommends using labeled integers rather than
strings. Strings take up significantly more memory in large datasets and cannot be used
in many Stata functions that handle categorical variables. ietestform therefore flags
all list items that have a nonnumeric value in the value or name column. ietestform
also flags any list item that has a value in the label column but no value in the value
or name column. It then flags any cases where the opposite occurs. This is common
when a survey is programmed in multiple languages and one is not fully completed.
ietestform also flags labels in the same choice list that are identical—that is, one label
that is listed twice for the same choice list but with different codes—because this is
likely a typo.

5. However, if the fields myvar and myvar 1 are both in a nonnested repeat group, then there will be
no name conflict, because the first iteration of both fields will generate the variables myvar 1 and
myvar 1 1 because the variables from both fields are suffixed. These fields are still listed by this
test because it will be confusing that the variable myvar 1 is from field myvar and not from myvar 1,
which has the same name, even though this is technically not a name conflict.

6. For example, if you have 10 villages in a choice list called village but you incorrectly type vilage

for one of them, then, according to ODK syntax, you have two lists, one called village with 9 items
and one called vilage with 1 item. It is unlikely that there is a select one or select multiple

field that uses the choice list vilage, so listing unused choice lists is a good way to spot a typo like
this one.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 899

3 The ieduplicates and iecompdup commands

The ieduplicates and iecompdup commands were designed as part of a workflow
to process duplicate observations in primary data in a reproducible and transparent
manner. In such a workflow, these commands are used to identify and resolve dupli-
cated occurrences of an ID value in raw survey data, ensuring that each observation is
uniquely and fully identified. The commands combine four key tasks involved in solving
duplicated ID values: i) identifying duplicated entries; ii) comparing observations with
the same ID value; iii) tracking and documenting any changes made to the identifying
variable; and iv) applying the necessary corrections to the data.

On the first run of ieduplicates, a duplicate correction template is created listing
all observations containing duplicated values of an ID variable that is intended to be
unique. Observations are required to have a “key” variable that is unique in the raw
data by construction so that they can be identified in processing.7 After creating this
correction template, ieduplicates will, by default, display a message pointing out that
the intended ID variable does not uniquely and fully identify the data and stop your
code, so you know to fill the correction template.

Once the correction template is created, iecompdup helps identify the reason why
duplicated entries were created, so they can be resolved. The decision on how to correct
a duplicate is always a qualitative decision. iecompdup compares the duplicated entries
variable by variable. The output format can be selected by the user, depending on his
or her decision process.

The commands are therefore intended to be used as follows:

1. Run ieduplicates on the raw data. If there are no duplicates, you are done. If
there are duplicates, the command will output an Excel file containing a dupli-
cates-correction template, display a link to this file, stop the code execution, and
show a message listing the duplicated ID values. You can prevent the command
from stopping your code by specifying the option force, in which case it will
remove all observations with duplicated ID values and allow the code to continue.

2. Open the duplicates correction template. This template will list duplicated entries
of the ID variable, information about each observation and five blank columns. Fill
the blank columns with the necessary corrections and comments on the solution
process.

3. If the information in the duplicates correction template is not enough to solve a
case, use iecompdup for the listed ID value to obtain more information.

7. To be clear on the terminology: the key or unique variable is created within a survey or dataset to
identify an observation and guarantee its uniqueness, while the ID variable is intended to uniquely
identify an individual respondent, and its nonuniqueness is therefore a data-quality error. For
example, an ID variable could be a respondent’s taxpayer number. If one person was accidentally
interviewed twice or if a taxpayer number was misrecorded as someone else’s, each interview must
still have its own unique key value, but some taxpayer number would appear twice as the ID
variable, even though it was intended to uniquely identify respondents.

900 Data collection with iefieldkit

4. After entering all the corrections to the duplicates correction template, save it in
the same location with the same name, overwriting the previous file.

5. Run ieduplicates on the raw data again. The corrections you have entered in
the duplicates correction template will be applied, and only duplicates that are
still not resolved will be removed this time.

6. Save the resulting dataset under a different name so the raw data are not over-
written.

7. Repeat these steps every time you receive new data.

An example of a basic duplicates correction template created by ieduplicates

is displayed in figure 1. The first six duplicated entries have been solved by filling
columns E to I. When ieduplicates is run again, they will be dealt with as indicated
in these columns. The other two are still to be resolved, so the next time you run the
command, your code will stop unless the template is filled for them or you choose to
drop them through the force option. The function of this report is to impose a clear
and consistent structure to document changes made to the information contained in the
identifying variable.

Figure 1. Partially filled ieduplicates correction template

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 901

3.1 Listing and resolving duplicate observations with ieduplicates

The purpose of ieduplicates is to ensure that observations are uniquely and fully iden-
tified. As inputs, ieduplicates requires, first, a singular unique ID variable, which, if
repeated, would be an unacceptable duplicate in the dataset.8 A file name for the du-
plicates correction template, including an absolute file path,9 must be specified through
using. Finally, the command requires a guaranteed way to uniquely identify each obser-
vation in the dataset, in the form of one or multiple variables. Software like SurveyCTO
create these automatically by design, commonly naming such a variable a “key”. Other
data-collection methods should have such an identifier built into their data-collection
process because solutions such as using n will usually not be sufficient. The formal
syntax is

ieduplicates ID varname using "filename.xlsx", uniquevars(varlist)
[
force

keepvars(varlist) tostringok droprest nodaily duplistid(string)

datelisted(string) datefixed(string) correct(string) drop(string)

newid(string) initials(string) notes(string) listofdiffs(string)
]

When ieduplicates runs in a dataset, it identifies all observations with duplicated
values with regard to the variable specified as ID varname. If there are no duplicates,
the command will display a message saying the dataset is uniquely and fully identified
by this variable. In this case, no output will be saved, and data will be left unchanged.
If there are duplicates, the command exports an Excel sheet, saved to the file specified
after using, with information on these observations, and stops your code with a message
listing the values in the ID variable that are repeated. This is meant to operate similarly
to the command isid, but offering both information to help identify the duplicated
observations and a self-documenting method to easily fix them.

Alternatively, if the force option is specified, it will remove all observations contain-
ing duplicated values of ID varname from the data and return only uniquely and fully
identified observations. This may be useful because many other quality checks require
unique IDs in the dataset and cannot be completed until the ID variable uniquely and
fully identifies the data; yet resolving duplicated IDs is often among the slowest correc-
tion processes. For example, if a household with ID A123456 was selected for survey
audit, but you incorrectly have two observations that were given the ID A123456, then
it is better to resolve that duplicate first before trying to compare the audit survey
answers to either of the observations the ID potentially represents. The option force is
required in this case so you know that ieduplicates is making changes to your dataset,

8. Though this is not strictly necessary either for Stata or ODK, it is our preferred practice to use a
single variable to identify an individual in the sample, as opposed to a combination of variables.
This simplifies both the identification of duplicated entries and the tracking of individuals across
survey rounds and datasets. If you adopt a different standard that uses multiple variables, this
variable can be easily created by concatenating a set of variables or using Stata’s egen, group

function. (This variable can be string or numeric.)
9. For a discussion on why absolute file paths are required, see the article on file paths in the DIME

Wiki: https://dimewiki.worldbank.org/wiki/Stata Coding Practices#File paths.

https://dimewiki.worldbank.org/wiki/Stata_Coding_Practices#File_paths

902 Data collection with iefieldkit

and do not overwrite the original raw data with the one that has been returned, because
you would lose the original data. To avoid this, always save the dataset with removed
duplicates with a different name.

The duplicates correction template exported by ieduplicates contains at least 11
columns, in the following order: ID varname, indicating the value of the ID variable in
the observation; duplistid(), the unique identifier of the observation in the duplicates
correction template; datelisted(), indicating the date the observation was first in-
cluded in the template; correct(), drop(), newid(), initials(), and notes(), blank
columns to be filled in by the user to correct the data; varlist, one or multiple columns
containing the values of the variables specified in uniquevars() for the observations
in the template; and listofdiffs(), which lists the variables in the dataset that are
different across the duplicate observations. The names of the columns can be changed
by specifying the column title desired within their respective options.

Inside the template, you can indicate corrections to resolve the duplicated observa-
tions. By this method, the completed template becomes a permanent documentation
on how duplicated IDs were resolved from the raw data. Three options for resolution
are offered as columns in the template: correct(), drop(), and newid(). If you want
to keep one of the duplicates and drop another, because they are double recordings of
the same observation, then write “correct” in the correct column for the observation
with the key varname you want to keep and “drop” in the drop column for the one
you want to drop. If you want to keep one of the duplicates and assign a new ID to
another one, write “correct” in the correct column for the observation you want to
keep and the new corrected ID value in the newID column for the observation that you
want to assign a new ID to. You can combine these two methods if you have many
duplicates with the same ID. Note that you must always indicate which observation to
keep for each duplicate set. After you have entered your corrections, save the file, and
run ieduplicates again to apply the corrections—ieduplicates will automatically
recognize that a partially completed template is already there.

Because the expectation is that the command will be used frequently as the data are
collected, ieduplicates also manages a subfolder called /Daily/, where it saves dated
backups whenever it is rerun in case the main corrections template or any contents are
deleted. If two different templates are generated the same day, the second will be saved
with an additional time stamp on the name. To restore a backup version, simply copy
it out of the Daily folder, and remove the date from the name. The option nodaily

suppresses the creation of backups.

3.2 Analyzing duplicate observations with iecompdup

ieduplicates not only identifies duplicates but also gives you some hints on how to
resolve them by listing the names of the variables that are different across the compared
observations. Although this list could be very long, we restrict it to 250 characters to
save space—it will be most helpful when only a few variables are different, and listing
out all the variables in the dataset does not help. Furthermore, this comparison can be

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 903

done only when there are exactly two duplicates. When there are more differences than
can be stored by ieduplicates, or more than two duplicates, you can use iecompdup

to explore differences. iecompdup requires as inputs the name of the intended unique
ID variable (the same one as in ieduplicates) and the value that variable takes in the
duplicate observations you wish to compare,

iecompdup ID varname
[
if
]
, id(ID value)

[
didifference keepdifference

keepother(varlist) more2ok
]

where ID varname is the name of the ID variable and ID value is the value of the ID

variable that is duplicated.

If you have several pairs of duplicates, you will need to run this command multiple
times to see the comparison for each duplicated value of the ID variable. If there are
more than two observations with a particular ID value to be compared, the command
will return an error. This is because iecompdup can be run only on two duplicates
at a time: the multiway relationships among duplicate groups larger than two may be
too complex to be informative. In this case, you should use the if qualifier to select
the pair of observations to be compared, usually by specifying the values of a uniquely
identifying variable in the selected observations. Another solution is to use the option
more2ok. This option allows the command to pick the two first observations in the sort
order by default, in which case a warning message will be shown so that the user is
aware that the sorting of observations will affect the result.

The default output for iecompdup is information on the number of variables where
the duplicate pair has identical values and where the duplicate pair has different values.
Two lists with the names of these variables are returned as macros. Specifying option
didifference will also make the command print the list of variables with different
values. The option keepdifference will keep a dataset containing only variables with
different values across the duplicate pair (effectively dropping those that are not of
interest). The option keepother(varlist) may be used to retain additional variables
that are useful for analyzing the duplicate pair.

After running iecompdup, you will be able to browse the dataset and explore the
differences between observations to determine the best way to correct the duplicates.
We have identified three cases as the main reasons for the occurrence of duplicated
IDs when working with SurveyCTO. The section below lists them and indicates how
iecompdup can be used to identify which of these cases applies to a particular pair
of duplicates. The general picture should be the same even if you are using different
software, but some details might be different. No output from iecompdup can guarantee
any of the cases below, but most of the time, the output will still be conclusive for one
of the three cases.

904 Data collection with iefieldkit

• Case 1: Double submission of the same observation, with the same survey data
values.

• Case 2: Double submission of the same observation, but with modified survey
data values.

• Case 3: Incorrectly assigned ID.

Case 1 error is often a consequence of a circumstance like poor Internet connection
during data collection. If submission of data to the server is interrupted before com-
pletion, the incomplete data may still be saved (SurveyCTO servers never delete any
data). When a second submission is received, it is also saved. The server cannot tell
intentional and accidental submissions apart. In iecompdup’s output, such cases would
result in two observations with very few differences, coming mostly from metadata such
as submission time or submission ID (the KEY variable in SurveyCTO). If no media files
(audio, images, monitoring) were used and all differences come from metadata, the user
can resolve this according to his or her own practice. However, when a submission
is interrupted, it is common for large media files such as audio or video to not up-
load correctly. Those files do not always appear as variables in Stata, depending on the
data-collection software, so in some cases only metadata variables will be different. This
could be a field such as a filename pointer variable, which sometimes is submitted even
when the file is not; therefore media files external to the data will need to be checked
carefully in duplicated observations.

Case 2 errors are possible but rare in most data-collection software because it is
bad practice to allow multiple complete observations with the same ID to be validly
submitted. Recent advancements in “case management” workflows are available on
most survey software to control this process. However, Case 2 errors may still occur if
an observation is modified after the first submission and then resubmitted. Sometimes,
there is a need for modifying data already submitted; but then it is much better practice
to do so in a do-file when the dataset is cleaned (such as through “revisions” workflows
in the survey software). This way, the manual modifications are properly documented.
In iecompdup, this would show up as a pair where the submission metadata differ and
some observational data also differ. These cases have to be manually examined and
followed up with the field team responsible for the submission to confirm which entry
should be kept.

Case 3 errors can occur by mistake any time. This can be due to typos or to
protocols not being followed correctly in the field. In iecompdup, this would show up
as submission data differing, as well as many differences in survey responses. You will
need to follow up with enumerators and supervisors responsible for this submission and
assign a new ID to one of the observations based on what you learn when investigating
this case.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 905

4 The iecodebook commands

Once data collection is complete, the data must be cleaned before they can be analyzed.
The iecodebook commands are designed to automate repetitive data-cleaning tasks in
two typical situations: iecodebook apply, where many variables need to have arbitrary
rename, recode, or label commands applied to them; and iecodebook append, where
two or more datasets need to be harmonized to have the same variable names, labels,
and value labels (“choices”) to be appended together. iecodebook also provides an
export subcommand so that a human-readable record of the variables and their labels
in a dataset can be created at any time and a template subcommand that prepares the
codebooks for the other subcommands.

As its name suggests, the iecodebook command is structured around Excel-based
“codebooks”. The purpose of these codebooks is to process and document data cleaning
in a format that is both human and machine readable. By completing these codebooks
with data-cleaning instructions for Stata, iecodebook creates a metadata record that is
easier to write than a long sequence of data-cleaning commands in a do-file and easier
to read later. This functionality is implemented via four subcommands:

• iecodebook template creates an Excel template that describes the current or
targeted datasets, with empty columns for you to specify the changes or harmo-
nizations for the other iecodebook commands.

• iecodebook apply reads an Excel codebook that specifies renames, recodes, vari-
able labels, and value labels and applies them to the current dataset.

• iecodebook append reads an Excel codebook that specifies how variables should
be harmonized across two or more datasets—renames, recodes, variable labels and
value labels—applies the harmonization, and appends the datasets.

• iecodebook export creates an Excel codebook that describes the current dataset
and optionally produces an export version of the dataset with only variables used
in specified do-files.

4.1 Apply cleaning commands to the open dataset

The most common data-cleaning tasks are renaming variables, applying variable and
value labels, and recoding values. The iecodebook apply subcommand provides a
workflow to execute any number of these commands without writing Stata code. Instead,
the dataset is first translated into a template with each line describing the contents
of a single variable. Then, the user fills out the template, creating a codebook that
specifies all the cleaning commands he or she wishes to execute. The iecodebook

apply subcommand reads these commands and executes them all with a single line of
Stata code. The resulting output is a cleaned dataset and a highly readable record of
the cleaning commands applied to it.

906 Data collection with iefieldkit

First, create an apply template with the dataset open:

iecodebook template using "/path/to/codebook.xlsx"
[
, replace

]
Next, fill out the template with the specific instructions desired, then apply the

completed codebook to the open dataset by writing

iecodebook apply using "/path/to/codebook.xlsx"
[
, drop

missingvalues(# "label"
[
"label" ...

]
)
]

For example, running

. // Load data

. sysuse auto
(1978 Automobile Data)

. // Create cleaning template

. iecodebook template using "cleaning.xlsx"

produces a template codebook reflecting the current state of the data, as displayed in
figure 2 after resizing the columns.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 907

Figure 2. iecodebook apply data-cleaning codebook template

To apply changes to the data, complete the name and label columns to prepare
rename and label variable commands for the current dataset, respectively. To apply
value labels, enter a label name in the choices column, and create the corresponding
value label in the choices sheet (every template includes a demo yesno label as a
guide). To recode data values, use the usual syntax (rule)

[
(rule) ...

]
in the re-

code:current column. The data types are given for reference only; the iecodebook

command cannot change them. Figure 3 shows an example of what you might write to
make some adjustments to the foreign variable.

908 Data collection with iefieldkit

Figure 3. iecodebook apply codebook filled out with changes to be applied

To apply the changes, you would then run the following command:

. // Apply cleaning commands to open dataset

. iecodebook apply using "cleaning.xlsx"

Note that the correct command is created by replacing template with apply. By
default, all variables with no adjustments will be left as is. However, this is not required:
drop specifies that all variables lacking a final variable name in the name column be
dropped from the dataset. Alternatively, the user can place single periods, “.”, in the
name column to drop variables one by one. The missingvalues() option allows global
missing-value codes to be propagated to all value labels. All value-label lists must be
re-created in the choices sheet (it is blank by default, except for a demonstrative yesno
value label), but all value labels from the original dataset are available for copy-paste
from the choices current sheet.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 909

4.2 Append and harmonize multiple datasets

A common downstream task in data collection is to combine two or more sequential
rounds of surveys, or, similarly, to combine similar survey instruments conducted in
different settings. This is always harder than it first sounds. Inevitably, updates or con-
textualizations, or both, have been made to at least one of the datasets, so that a simple
append command will not produce the desired data structure. Most often, these changes
cause desynchronization of variable names, variable labels (including translation), value
labels, and data types.

The iecodebook append subcommand offers a rapid workflow for documenting and
resolving these differences across multiple datasets. The general syntax of its template
subcommand is

iecodebook template "/path/to/survey1.dta" "/path/to/survey2.dta"
[
...

]
using "/path/to/codebook.xlsx", surveys(Survey1Name Survey2Name

[
...

]
)[

match generate(varname) replace
]

The match option automatically aligns variables from multiple datasets if they share
a name with a variable in the first dataset and is optional for the template subcom-
mand only. To append the datasets using the rules from the codebook, use the append
subcommand:

iecodebook append "/path/to/survey1.dta" "/path/to/survey2.dta"
[
...

]
using

"/path/to/codebook.xlsx", clear surveys(Survey1Name Survey2Name
[
...

]
)[

generate(varname) missingvalues(# "label"
[
"label" ...

]
) report

replace keepall
]

The surveys() option is required in both steps and must match between them.
The user should specify, as a list of single words, the names of the surveys (which the
command will place and then look for in the codebook headers). The command will also
create a survey variable in the resulting dataset by default, whose value label contains
these names—to change the name of that variable, use the generate() option in both
commands. The report option exports a codebook with the results for quick reference
of the resulting dataset; the replace option allows it to be overwritten.

910 Data collection with iefieldkit

To demonstrate the usage, we will create two datasets that have similar data but
with different structures, then combine them using a codebook. Run the following:

. // Create demonstration datasets

. sysuse auto, clear
(1978 Automobile Data)

. save data1
file data1.dta saved

. rename price cost

. rename mpg car_mpg

. recode foreign (0=1 "Domestic") (1=0 "Foreign"), gen(origin)
(74 differences between foreign and origin)

. drop foreign

. save data2
file data2.dta saved

. // Create harmonization codebook template

. iecodebook template "data1.dta" "data2.dta" using "harmonization.xlsx",
> surveys(First Second)

This should produce the harmonization codebook template shown in figure 4.

Figure 4. iecodebook append harmonization codebook template

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 911

Specifying match would cause it to appear like figure 5. Note that in this case
the variables are ordered according to the first dataset they are encountered in; they
are unaltered in the underlying datasets, and iecodebook will never reorder variables
beyond the functionality of the built-in append command.

Figure 5. iecodebook append harmonization codebook template using the match op-
tion

In either case, to resolve the differences in naming and labeling between datasets,
you might modify the completed codebook to look like figure 6. Note the key func-
tionality of harmonization—variables from different datasets that are intended to be
represented by the same variable in the final dataset are placed by the user into the
same row. iecodebook append understands this to mean that they should have the
same final variable names, labels, and value labels applied to them so that they append

properly. recode commands must be handled dataset by dataset to prepare for this;
therefore, there is one recode: column for each data source as well as choices sheets
for reference.

912 Data collection with iefieldkit

Figure 6. iecodebook append codebook, filled out with data harmonization instruc-
tions

There are two important differences from the apply syntax. First, the default is to
keep only those variables that are explicitly given final names in the name column. This
is to encourage explicit manual review of each variable. We note that this process can
be sped up dramatically using Excel features such as splitting panes and formulas to
rapidly move information from one portion of the spreadsheet to another. The keepall
option may be specified to retain all variables from all datasets (except those flagged
for deletion with a single period in the name column), but the user should check the
final dataset carefully because appending variables without explicit review may cause
unintended results (identical to use of the built-in append command without the force
option). Again, note that you will have to manually re-create the value label lists in
the choices sheet but that the data labels from your original datasets are available for
copy-paste from respective choices sheets, as in figure 7.

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 913

Figure 7. choices sheet in a codebook

To execute the command, type

. // Harmonize and append the datasets

. iecodebook append "data1.dta" "data2.dta" using "harmonization.xlsx",
> clear surveys(First Second)

The combined dataset will yield the following cross-tabulation, and, if the report

option is specified, a codebook titled codebook report.xlsx will be created in the same
location as the append codebook documenting the final state of the dataset for quick
reference.

. tabulate survey foreign

Data Car type
Source Domestic Foreign Total

First 52 22 74
Second 22 52 74

Total 74 74 148

914 Data collection with iefieldkit

4.3 Export a codebook for an existing dataset

The iecodebook export command provides a simple utility for documenting the cur-
rent state of a dataset and for preparing a trimmed “release” version of a dataset. The
syntax is

iecodebook export using "/path/to/codebook.xlsx"
[
, replace

trim("/path/to/dofile1.do"
[
"/path/to/dofile2.do"

] [
...

]
)
]

The base command will simply produce a record of the dataset’s contents at the
specified location. If the trim() option is specified, iecodebook export will read the
contents of the specified do-files; drop any variables that do not match the contents;
restrict the dataset according to if and in as specified; and save the results in the same
location as the codebook as a .dta file with the same name. Note that this is a new
functionality and is imperfectly implemented: trim() will not, for example, correctly
parse code that relies on macros to select variables. Therefore, please check that your
results run and reproduce correctly after using this option. (We are working on a more
fully featured version for future release.)

For example, given a do-file titled analysis.do containing only the line summarize
foreign mpg trunk and auto.dta, the command

. iecodebook export using "codebook-trim.xlsx", trim("analysis.do")

saves a codebook called codebook-trim.xlsx and a dataset called codebook-trim.dta

in the same location. Both contain only the variables foreign, mpg, and trunk because
they are mentioned in the do-file.

5 Programs and supplemental materials

The iefieldkit commands are hosted on GitHub and can be installed by typing

. net install iefieldkit,
> from("https://raw.githubusercontent.com/worldbank/iefieldkit/master/src")

6 Reference
Angrist, J., P. Azoulay, G. Ellison, R. Hill, and S. F. Lu. 2017. Economic research
evolves: Fields and styles. American Economic Review 107: 293–297. https: //doi.
org/10.1257/aer.p20171117.

https://doi.org/10.1257/aer.p20171117
https://doi.org/10.1257/aer.p20171117

K. Bjärkefur, L. Cardoso de Andrade, and B. Daniels 915

About the authors

Kristoffer Bjärkefur is a data coordinator with the Development Impact Evaluation depart-
ment (DIME) at the World Bank. He has previously worked in development research in the
agricultural sector but is now working full-time on supporting other researchers in their data
work. This includes developing packages like iefieldkit and ietoolkit, training research
teams in different programming methodologies, and providing teams with general data work
advice when planning large data projects.

Lúıza Cardoso de Andrade is a data coordinator with the Development Impact Evaluation
department (DIME) at the World Bank. She splits her time between research projects, where
she supervises data work and supports the use of new data sources for development research and
public goods such as iefieldkit. Her work focuses on creating training, tools, and resources
to help researchers ensure the quality and reproducibility of their data work.

Benjamin Daniels is a research fellow at the Georgetown University Initiative on Innovation,
Development and Evaluation and a data coordinator with the Development Impact Evaluation
department (DIME) at the World Bank. His research focuses on the delivery of high-quality
primary healthcare in developing contexts. His work has highlighted the importance of direct
measurement of healthcare provider knowledge, effort, and practice. To that end, he has sup-
ported some of the largest research studies to date using clinical vignettes, provider observation,
and standardized patients. He works with the QuTUB Project.

All three authors are members of the DIME Analytics team, which creates tools and workflows
that improve the quality and reproducibility of development research. There, they support best
practices in econometrics, statistical programming, and research reproducibility across the i2i
portfolio. This work comprises code and process development, research personnel training, and
direct support for data analysis and survey development. The findings, interpretations, and
conclusions expressed here are those of the authors and do not necessarily represent the views
of the World Bank, its executive directors, or the governments they represent.

	Blank Page
	Blank Page

