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Abstract. In this article, we describe jackknife2, a new prefix command for
jackknifing linear estimators. It takes full advantage of the available leave-one-out
formula, thereby allowing for substantial reduction in computing time. Of special
note is that jackknife2 allows the user to compute cross-validation and diagnos-
tic measures that are currently not available after ivregress 2sls, xtreg, and
xtivregress.
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1 Introduction

The jackknife (Quenouille 1956; Tukey 1958; Miller 1974; Efron 1982) is a method for
assessing the accuracy of an estimator from data that are independently and identi-
cally distributed (i.i.d.) but not necessarily conditionally homoskedastic. Its basic idea
is to exploit the information contained in the empirical distribution of the estimates
computed from the n subsamples of size n — 1 that can be obtained from a sample
of size n by leaving out one data point at a time. The jackknife is known to work
very well for linear estimators, such as ordinary least-squares (OLS) and instrumental-
variables (IV) estimators, which are the workhorses of empirical research in a variety
of fields. For these estimators, the jackknife may be implemented using simple formula
for the effect of leaving out either one data point or one block of data points at a time.
These leave-one-out (L10) formula also represent the basis for other methods, including
cross-validation (CV) procedures for model selection (Stone 1974, 1977) and diagnostic
procedures for detecting heteroskedasticity, influential observations, and high-leverage
points (Cook and Weisberg 1982).

The current Stata implementation of the jackknife is very general because it applies
to both linear and nonlinear estimators. However, this generality comes at a cost in
terms of computational speed when linear estimators are considered. For example, if
one types regress yvar zvar, vce(jackknife), Stata computes the jackknife estimate
of the sampling variance of the OLS estimator by literally leaving out one observation
at a time and then recomputing the OLS estimates for each of the n subsamples of
n — 1 observations. The same is true when using the vce(jackknife) option for the
IV command ivregress or the panel versions of the OLS and IV commands, xtreg and
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xtivregress, or when using the jackknife prefix command for statistics that are lin-
ear in the data. With “big data” (either a large sample size or many regressors), this
way of implementing the jackknife causes unnecessarily long computing times and there-
fore restricts the applicability of the method to samples with at most a few thousand
observations.

In this article, we introduce a new procedure for jackknifing linear estimators. Our
procedure takes full advantage of the available L10 formula, thereby achieving substan-
tial reductions in computing time. Because postestimation commands that implement
CV and diagnostic procedures are currently available only after regress, we also ex-
tend these commands to ivregress 2sls, xtreg, and xtivregress. We hope that this
will help promote a wider application of the jackknife and related methods in empirical
research.

2 The basic L10 formula

This section presents the basic L10 formula for OLS and IV estimators, both for cross-
sectional and panel data. The following sections then show how these formulas may
be used for inference (section 3), model selection (section 4), and diagnostic checking
(section 5).

2.1 Cross-sectional data

Let the random variable Y and the random vector X represent, respectively, the outcome
of interest and a set of k regressors (including the constant term). We denote by Y the
n-vector containing the observations on Y and by X the n x k matrix containing the
observations on X. We assume that X has full column rank k& < n. We also denote
by Y; the ith element of Y and by X, the ith row of X. Our parameter of interest is
the unknown k-vector 3 in the linear model Y = X3 + U, where U is an n-vector of
unobservable regression errors.

OLS estimation

If there are no endogeneity problems, that is, the regressors are uncorrelated with the
regression errors, an OLS regression of ¥ on X provides the standard way of estimating
B. The OLS estimate of 3 computed from the full sample is 8 = (XTX)_lXTY7 while
the estimate computed by excluding the ith data point (X, ,Y;) is

~

- (x7x)” X, (Yi-X/B)

-y i=1,...,n (1)

where h; is the ith diagonal element of the “hat” matrix H = X(X"X) !XT (see, for
example, Peracchi [2001]). Because H is a projection matrix (that is, symmetric and
idempotent), 0 < h; < 1. The k-vector n(8 — B;)), viewed as a function of i = 1,...,n,
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is called the sensitivity curve or empirical influence function (EIF) of OLS. The ith data
point is said to be influential if the difference ,6 5 is large in some norm. Notice

that the influence of the ith data point on the OLS coeﬁicient depends on both T/J\'l and
h;. If h; is near one, then the ith data point is said to exert a high leverage.

IV estimation

If there are endogeneity problems, that is, the regressors are correlated with the re-
gression errors, the available data on Y and X are generally insufficient to estimate 3
consistently. In this case, the IV method offers a solution provided one can find a set
of r > k valid instruments, namely, variables that are both exogenous (that is, uncorre-
lated with the regression errors) and relevant (that is, correlated with the regressors).
We denote by W the n x r matrix containing the n observations on the r instruments
and by W the ith row of W. We also assume that the matrix W' X has full column
rank k < r.

With r = k instruments (the “exactly identified” case), the IV estimator of 3 is
unique and is called a simple IV estimator. The simple IV estimate computed from the
full sample is ﬂ (WTX) WY, while the estimate computed by excluding the ith
data point (X, W, Y;) is

W, ( XTB)
1—d

B(i):,@—(WTX) i=1,....n 2)

where d; = X (W' X)W, is the ith diagonal element of the matrix X (W 'X)"*W .

With r > k instruments (the “overidentified” case), the number of IV estimators
is infinite. By far the most popular among them is the two-stage least-squares (2SLS)
estimator. The estimate computed from the full sample is Zi = (X'cx)"'x'cy,
where C = W(W'W)"'W' is an n x n matrix. Phillips (1977) showed that the
estimate computed by excluding the ith data point is

By=B-P'R, i=1..n (3)
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with
P=X'CX
T~ T T
Ri =3 {(¥i-X; B) - (vi-W/#)} - (3 + K) (Y - X[ B)

~T 4
m; & Vz P Xi

J: e; fi Vit eifi X
vV, PIx 1
K= —"——'V, - =X,
€z‘f¢ =)
~T 2
(Vi P—lxi)
e =m; + —m-—

fi
~T ~
f,* =1- C; +Vi P*1V,L-

where # = (W' W)WY is the r-vector of coefficients from the “reduced-form” OLS
regression of Y on the instruments in W, )/(\l = XTW(WTW)’lwi and \Afz =X 7)/(:-
are the k-vectors of fitted values and residuals for the ith unit from the “first-stage” OLS
regressions of the k variables in X on the r instruments in W, and m; =1 — X;'—P_lXi
and ¢; = W;(W'W)~'W are the ith diagonal elements of the matrices M = I,, —
XP'X" and C.

2.2 Panel data

To simplify the notation and with little loss of generality, let us consider a balanced
panel dataset in which n units are all observed at the same 7" time points. Our param-
eter of interest is the unknown k-vector 3 in the linear panel-data model Y = X3+ U,
where now Y denotes the nT-vector containing the observations on Y, X denotes the
nT x k matrix containing the observations on X, and U denotes the nT-vector of re-
gression errors. We denote by Y;; the generic element of Y and by X/, the generic row
of X. A popular specification of the vector of regression errors is U = a ® tp + ¢, where
a = (a1,...,a,)" is an n-vector of unknown unit-specific effects, ® is Kronecker’s
product, ¢ is a T-vector with elements all equal to 1, and € is an nT-vector of unob-
servable random errors. Endogeneity problems arise if either a or € is correlated with
the regressors.

Fixed-effects estimation

If only « is correlated with the regressors, the standard estimator of @ in a linear
panel-data model is the so-called fixed-effects (FE) estimator, which treats the unit-
specific effects as additional parameters to estimate. The FE estimate computed from
the full sample is B* = (X*TX")"'X*TY* where Y* is the nT-vector with generic

element Y;; =Y — Y,;, X* is the nT X k matrix with generic row X;‘t—r = (X —X)T,
Y, =771 Zle Y, and X; = T1 23;1 X;:. Banerjee and Frees (1997) showed that
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the estimate computed by excluding the block of T observations [X;, Y;] on the ith unit
is

Biy=8 - (X*TX*)_I X7 (1 — HY) ! (Y;; - x;ffa*) i=1,....n  (4)

where H} = X;(X*'X*)"'X;" and [X}, Y], respectively, are the T x T diagonal

block of the matrix X*(X*"X*)"'X*" and the T x (k 4+ 1) submatrix of [X*,Y*]
corresponding to the ¢th unit.

Fixed-effects IV estimation

If « and € are both correlated with the regressors but one can find a set of r > k
valid instruments, a consistent estimator of 3 is the so-called fixed-effects instrumental-
variables (FE-IV) estimator, which is the IV estimator for the transformed model where
the unit-specific effects are eliminated by taking deviations of all variables from their
unit-specific means over the T periods.

When r = k, the FE-IV estimator of 3 is unique and is called a simple FE-IV estimator.
The simple FE-IV estimate computed from the full sample is B* = (W*TX") " TW*Ty*,
where W* is the nT x r matrix with generic row W3 = (W;; — W;)T and W, =
7! 23:1 W, while the estimate computed by excluding the block of T" observations
[Xi, Wi, Y] is

~ % ~ % -1 ~ %

Bo=8 - (WTx) W@ -D) (YI-XiB) i=l..n (5
where D} = X;(W*T X*)~'W: T and [X], W}, Y], respectively, are the T'x T' diagonal
block of the matrix X*(W*"X*)~'W " and the T'x (k+7r+1) submatrix of [X*, W* Y*]
corresponding to the i¢th unit.

When r > k, a popular FE-IV estimator is FE-2SLS. Assuming that the nT x r
instrument matrix W has full column rank, the FE-2SLS estimate of 3 computed from
the full sample is 3 = (X*TC*X*)~1X*T C*Y*, where C* = W*(W*TW*)~'W* " is
an nT X nT matrix, while the estimate computed by excluding the block [X;, W;, Y]
of T observations on the ith unit is

By=B —(P) 'R} i=1..n (6)
with
P* _ X*TC*X*
R =3 {(Y; -XiB") - (Yi -wiw) | - @+ KD (Y -Xi8)
* x\—1 * £\ —1x7rF $\—1x7F *\ — * *\ — *
Jr=(E) M;(F;)7'V, + (E))"'V,(PY) 1X¢T(Fz‘) 'X;
K] = (E)7'V;(P")7'X; T (F)7'V; — (B))7'X]

E;

~ % ~x T

= M; +V, (P") X (F) 7 X[ (PF) TV,
* * 5 1T

Fi:IT_Ci+Vi( ) \Z
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where 7#° = (W*TW*)"'W*TY* is the r-vector of coefficients from the “reduced-
form” OLS regression of the demeaned Y* on the demeaned instruments in W™, X: =
XTWH W TWH) Wi T and {7: =X — )A(:T are the T x k matrices of fitted values
and residuals for the 4th unit from the “first-stage” OLS regressions of the k-demeaned
variables in X* on the r-demeaned instruments in W*, and M} = I — X} (P*)~'X; T
and C; = W} (W*TW*) "W} are the T x T diagonal blocks of the matrices M* =
L.y — X*(P*)"'X*T and C* corresponding to the ith unit.

3 Inference

Monte Carlo experiments (MacKinnon and White 1985) and theoretical calculations
(Chesher and Jewitt 1987) show that conventional heteroskedasticity-consistent (HC)
estimates of the OLS variance matrix can be severely downward biased in finite samples,
particularly in the presence of high-leverage points, leading to overrejection of statistical
hypotheses of interest (Chesher 1989). Young (2020) documents similar problems for
inference based on conventional HC estimates of variance in the 1V case. For both OLS
and 1V, the available evidence shows that inference based on the jackknife estimate of
variance is more accurate. In addition, IV estimators are known to be biased in finite
samples. Here, again, the jackknife can help by reducing the order of magnitude of the
bias.

3.1 Estimating sampling variability

The jackknife estimate of the sampling variance of a k-dimensional estimator 0 is defined

as
n

V== Y (6 —-80)) (96 - a(-))T (7)

i=1

where g(i) is the 7th L10 estimate and g(_) =n 'Yy, g(i) is the average of the ith
L10 estimate.

It follows from (1) that the jackknife estimate of the sampling variance of the OLS

estimator is

n

e e mme T () "

n :
i=1

where P = XX, R, = Xi(Yi—X;'—B)/(l—hi), and R=n"13""  R;. Ignoring R gives
the estimate proposed by Horn, Horn, and Duncan (1975) and Hinkley (1977), while
ignoring the denominator 1 — h; in R; gives the conventional HC estimate, implemented
in Stata with the option robust after the command regress.

Estimators based on the TV method only have moments up to order r —k, the number
of overidentifying restrictions (see, for example, Davidson and MacKinnon [2007]). In
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particular, a simple IV estimator has no moments.! When second moments do not
exist, jackknife estimates of variance need to be properly interpreted as estimating the
asymptotic variance divided by n (see, for example, Shao and Wu [1989]). Of course,
the same note of caution applies to conventional HC estimates of variance.

From (2), the jackknife estimate of variance for a simple IV estimator with k& = r has
the same form as (8) with P = W'X and R; = W;(Y; — XZTB)/(l —d;). Ignoring the
term 1 — d; in R; gives the conventional HC estimate, implemented in Stata with the
option robust after the command ivregress 2sls. In the case of overidentified 2SLS
estimators, the jackknife estimate of variance for a 2SLS estimator has the same form as
(8) with P = P* and R; = R}, where P* and R} are defined after (3).

From (4), the jackknife estimate of variance for an FE estimator has the same form
as (8) with P = X*"X* and R; = X} (I — H})(Y? — Xfa*) Ignoring the matrix
Iy — H! in R, gives the so-called clustered standard errors (Stock and Watson 2008;
Cameron and Miller 2015), implemented in Stata with the option vce(cluster) after
the command xtreg, fe. A Monte Carlo comparison of inference based on jackknife

and clustered standard errors is presented in section 7.2.

From (5), the jackknife estimate of variance for a simple FE-IV estimator has the
same form as (8) with P = W*'X* and R; = W} ' (I — D})(Y; — X;3 ). Finally,
from (6), the jackknife estimate of variance for an FE-2SLS estimator has the same form
as (8) with P = P* and R; = R}, where P* and R} are defined after (6).

3.2 Correcting for bias

If @ is a biased estimator of a population parameter 6, in the sense that IE(@) # 0, the
jackknife estimate of its (mean) bias is defined as

@SJ = (n — 1) (5() — /é)
Suppose that 0 has a finite bias of order 1/n; that is,
~ b b b
E(e)_0:i+72+73+...
n n

with by # 0. Then, the bias of the jackknife bias-corrected estimator 0=0— BTi\asJ is

~ b2 (2n—1)b
E(a)_ez_n(n—l) B 7”L2(n—1)23

which is of the smaller order 1/n2. This argument relies on the existence of first mo-
ments, so it works only for overidentified 2SLS and FE-2SLS estimators with r > k + 1.
Jackknife bias-corrected 2SLS estimators were first proposed by Owen and Phillips
(1975). Related estimators have been proposed by Angrist, Imbens, and Krueger (1999),

1. We thank the anonymous referee for stressing this point.
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Blomquist and Dahlberg (1999), Hahn, Hausman, and Kuersteiner (2004), and Acker-
berg and Devereux (2009). The actual performance of these estimators in finite samples
typically depends on the strength of the instruments.

4 Model selection

Model selection is about choosing, from a given set of models, one that is best in terms
of out-of-sample prediction. It differs from hypothesis testing, which is instead about
deciding whether the available data support a particular model against some alterna-
tives. The distinguishing features of model selection are the emphasis on predictive
accuracy and the concern for overfitting.

A variety of model-selection criteria are available, including the adjusted R?, Mal-
low’s C), (Mallows 1973), and information criteria such as the Akaike information crite-
rion (Akaike 1973) and the Bayesian information criterion (Schwarz 1978). All of these
criteria may be regarded as analytical approximations to measures of out-of-sample
predictive risk.

An alternative approach, purely data driven, is CV. Its simplest version is sample
splitting, which randomly divides the data in two halves, one used to fit a model (the
“training set”) and the other to assess predictive accuracy (the “validation set”). The
mean squared error for the validation set provides an estimate of the mean squared
prediction error (MSPE). Though easy to implement, sample splitting uses the data
asymmetrically and inefficiently and tends to produce results that are highly variable.

An alternative method, K-fold CV, randomly divides the data into K < n groups
or folds of about equal size n/K. Then, it iteratively holds out one of the folds, fitting
the data in the other K — 1 folds and using the results to predict the outcomes in the
held-out fold. Finally, it estimates the MSPE by averaging the prediction error over the
K folds.

When K = n, this method is equivalent to holding out one observation at a time
and then using the results to predict the held-out case. Because of this, n-fold CV is
also known as leave-one-out cross-validation (L10CV). The L10CV criterion is defined as

=1

where }/}(i) is a predictor of Y; that does not make use of ¥;. The L10CV procedure
selects the model with the smallest CV.

The L10CV criterion may be used to choose an appropriate value for “tuning param-
eters” such as the number of regressors in a linear model fit by OLS or the number of
instruments in an IV procedure. As argued by Varian (2014), “even if there is no tuning
parameter, it is prudent to use CV to report goodness-of-fit measures because it mea-
sures out-of-sample performance, which is generally more meaningful than in-sample
performance.”
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4.1 OLS and IV

Because )/}(Z-) = X;'—B(Z-) for a linear model fit by OLS, the L10CV criterion becomes

n ﬁ 2
v = :

Under the classical homoskedastic linear model E(U2) = (1 — hy)o?, where o2 is the
variance of a regression error,

V):U2§n: 1_1hi

i=1
If n is large enough and there are no high-leverage points, a first-order Taylor series
expansion of (1 — h;)~! about h; = 0 gives

~ o2 2”: (n+ k)o?
i=1

Thus, in this case, CV is an approximately unbiased estimator of the MSPE.

Similar criteria are easily constructed for simple 1V, 2SLS, FE, FE-IV, or FE-2SLS
estimates using (2)—(6).

5 Diagnostic checking

We focus on predictive residuals and measures of influence and leverage.

5.1 Predictive residuals

Predictive OLS residuals are defined as

The main advantage of predictive residuals is that they tend to give more emphasis
to high-leverage points, because U(Z) > U; because 0 < h; < 1. Notice that predictive
residuals are in fact ubiquitous, because they are a part of (1), the formula for the
jackknife estimate of the sampling variance of OLS, and the L10CV criterion for OLS. Also
notice that the predictive residuals are related to the internally Studentized residuals

=U;/\/$*(1 — h;), with s> = (n — k)= 31 UZQ, which have approximately unit
variance under the assumptions of the classical hnear model. The externally Studentized
residuals instead replace s* by s?,) = (n —k —1)7' 32, UZ.

Although Studentized residuals are defined only for OLS, predictive residuals are
easily defined for all other estimators we consider. For 1V and 2SLS, they are defined as
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For FE, they are defined as
while for FE-IV and FE-2SLS, they are defined as

5.2 Measures of influence and leverage

To measure the overall influence of the ith observation on the OLS estimates, Cook
(1977) proposed the index

~ ~\ 2 ~ 2
p,= = (X]TZ;) “Xi) 1fihi (U:) i=1,...,n

where ﬁiS is the ith internally Studentized residual. The index D; is proportional to the
norm of the EIF of OLS in the metric of the matrix X' X. A large value of D; indicates
that the 7th observation has a strong influence on the OLS estimate. Cook and Weisberg
(1982) suggest choosing D; = 1 as a cutoff. An extension of Cook’s D-statistic to linear
panel-data models was proposed by Banerjee and Frees (1997).

~ ~ ~—1 o~ ~
Notice that Cook’s distance may be written as D; = (8 — ﬂ(i))TVOLS(,B = Bwy)/k,
where W?OLS = 52(XTX)*1 is the classical estimate of the sampling variance of OLS,

which assumes homoskedasticity. To avoid this assumption, we propose the following
generalization,

D=1 (0-80) 7, (0-00) i=1...m (9)

where 8 is any of our linear estimators and \Y 7 is the jackknife estimate of their sampling
variance.

5.3 Diagnostic plots

A leverage plot shows on the x axis the leverage measure h;/(1 — h;) and on the y
axis the square of the internally Studentized residuals ﬁ? These plots are very useful
to detect the presence of outliers in the data and understand their nature but are not
routinely produced by Stata.
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6 The jackknife2 prefix command

jackknife?2 is a prefix command written using Mata. The basic jackknife2 syntax,
similar to the official jackknife prefix command, is as follows,

jackknife2 [, eif (ﬁlename[ s replace]) gat(newvar[ , replace})
fehat (ﬁlename[ s replace]) Eesidual(newvar[ , replace ])
irstudent (newvar[ , replace ]) Lstudent(newvar[ s replace])
gooksd(newvar[ s replace]) bjd(newvar[ s replace}) dots (#) nodots]

command

where command can be regress, xtreg with the fe option, ivregress 2sls, or xtivreg
with the fe option. Only pweight and iweight are allowed, even if command supports
other weight types.

jackknife2 automatically computes the L10CV criterion and the bias-corrected es-
timate. The latter, computed using the formula reported in section 3.2, is reported and
stored in e (), while post diagnostics and measures of leverage are computed only when
explicitly requested by the user through the corresponding options.

6.1 Options

eif (filename| , replace]) saves an Excel file (.x1s) containing n(a - 5(1-)), the EIF
of the estimator. replace specifies that it is okay to replace filename if it already
exists.

hat (newvar[ , replace ] ) generates a new variable containing the diagonal elements of
the relevant projection (“hat”) matrix. This option is available only when command
is specified as regress or ivregress 2sls. replace specifies that it is okay to
replace newvar if it already exists.

fehat (filename| , replace|) saves an Excel file (.x1s) containing as many sheets as
the number of diagonal blocks of the relevant projection (“hat”) matrix. replace
specifies that it is okay to replace filename if it already exists. This option is available
only when command is specified as xtreg, fe or xtivreg, fe. Notice that this
option can be very time consuming when the number of clusters is large.

presidual(newvar[ , replace]) generates a new variable containing the predictive
residuals. replace specifies that it is okay to replace newvar if it already exists.

irstudent(newvar[ , replace]) generates a new variable containing the internally
Studentized residuals. This option is available only when command is specified as
regress. replace specifies that it is okay to replace newwvar if it already exists.

erstudent(newvar[ , replace]) generates a new variable containing the externally
Studentized residuals. This option is available only when command is specified as
regress. replace specifies that it is okay to replace newwvar if it already exists.
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cooksd(newvar[ , replace}) generates a new variable containing the value of Cook’s
D-statistic (Cook 1977) and its extension to IV, 2SLS, or FE estimators. This option
is available only when command is specified as regress, ivregress 2sls, or xtreg,
fe. replace specifies that it is okay to replace newwvar if it already exists.

bpd(newvar[ , replace ]) generates a new variable containing the generalization (9) of
Cook’s D-statistic. replace specifies that it is okay to replace newwvar if it already
exists.

dots (#) displays dots every # replications. dots(0) is a synonym for nodots.

nodots suppresses replication dots.

6.2 Implementation

Both jackknife and jackknife2 are built around a loop consisting of n iterations, one
for each sample unit (cluster), but differ in the way the L10 estimate 8 ;) is computed
at each iteration.

~

jackknife computes 6(;) at each iteration by running the appropriate estimation
command, for example, regress, on the subsample with the ith unit (cluster) removed.
After exiting the loop, it then computes the jackknife estimate of variance using (7).
This is computationally expensive because it involves solving the k OLS normal equations
n times.

jackknife2 instead computes g(i) at each iteration using the L10 formula, for ex-
ample, (1) for OLS. Within the loop, it also accumulates the ingredients for the final
computation of the jackknife estimates of variance and bias, the L10CV criterion dis-
cussed in section 4, and the options listed in section 3.2. This substantially reduces the
computational burden because the only heavy computation, for example, the inversion
of XX for OLS, is performed just once and outside the loop. Further, only the di-
agonal elements of certain high-dimensional matrices are needed, not the full matrices.
For example, in the case of OLS, only the diagonal elements h; = XZ-T(XTX)*lXi of
the n x n» matrix H = X(XTX)*IX—r are needed, not the full matrix. To reduce the
computational burden, jackknife2 also exploits (2) when r = k and (3) when r > k.

7 Examples

7.1 Computing time: jackknife2 versus jackknife

In this section, we provide a comparison of the effective computing time needed for
estimating jackknife standard errors using jackknife2 and jackknife.
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We consider the following data-generating process,
Yie = a; + X[, 8+ €xae
Xlit7"~7int iid. N(O,l), lfp:()

Xiit = 03 + Wiy + Waieya + €24, and
X21’t7---7int,W1it7WQit iid. N(O,l), lfp#()

€14t 0 1 p
(i)~ ((0)-1) 1))
withi=1,...,nand t=1,...,T.

This data-generating process encompasses all the cases covered by jackknife2,
namely,

e regress: OLS estimator for cross-sectional data (T = 1) with n = 10000 or
1000000, k£ = 10 or 100 exogenous regressors, a; = --- = &, = 1, and p = 0;2

e ivregress 2sls: 2SLS estimator for cross-sectional data (T = 1) with n = 10000
or 1000000, one endogenous regressor, k — 1 exogenous regressors (k = 10), two
valid instruments, a; = - -=a, =1, =---=§, =1, and p # O;

e xtreg, fe: FE estimator for panel data with 7' = 2 or 10, n = 10000 or 1000000,
k =10 or 100 exogenous regressors, a, ..., a, i.i.d. N(0,1), and p = 0;

e xtivreg, fe: FE-2SLS estimator for panel data with 7' = 2 or 10, n = 10000 or
1000000, one endogenous regressor, k — 1 exogenous regressors (k = 10), two valid
instruments, ay,...,a, and d1,...,d, iid. N(0,1), and p # 0.

When p = 0, f1,..., B are all drawn independently from an A(0, 1) distribution.
When p # 0, 31 =1, Ba,..., [k are drawn independently from an N'(0,1) distribution,
and 71 = 72 = 0.5. We consider 18 exercises (4 for regress and xtivreg, fe, 2 for
ivregress 2sls, and 8 for xtreg, fe), each containing two sets of estimates, one for
jackknife and one for jackknife2. We run all of them using Stata/MP8 15.1 on a
x64 desktop with an Intel i7-7820X 8 Cores 3.60 GHz processor with 32 GB of RAM.

Results are reported in tables 1-4. The tables largely speak for themselves, showing
substantial gains in computing time using jackknife2. When jackknife2 is used as a
prefix for the regress command, the estimation is up to 18,121 times faster compared
with jackknife (this occurs when n = 1000000 and k£ = 10). A huge gain is obtained
also for the case of the ivregress 2sls command, where the estimation is up to 148,162
times faster (n = 1000000 and k = 10). Similarly, the estimation is up to 507 times
faster in the case of xtivreg, fe (n = 10000 7' = 2 and k = 10), while smaller gains
(around, on average, 37 times faster) are obtained when jackknife2 is used with the
xtreg, fe command.

2. The number of regressors, k, includes the constant term.
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Table 1. jackknife2 versus jackknife in the case of the regress command (k = 10
and k = 100)*

n k  jackknife  jackknife2

10000 10 105.70 0.11
100 577.85 1.52

1000000 10 127,101.31 7.01
100  1,104,862.50 604.51

*Results are reported in seconds. Desktop x64 with
Stata/MP8 15, Intel i7-7820X 8 Cores 3.60 GHz, 32 GB
of RAM.

Table 2. jackknife2 versus jackknife in the case of the ivregress 2sls command
(k=10)*

n  jackknife  jackknife2

10000 650.80 1.18
1000000 1,968,636.25 13.29

*See notes to table 1.

Table 3. jackknife2 versus jackknife in the case of the xtreg, fe command (k= 10
and k = 100)*

n T  jackknife  jackknife2

k=10
10000 2 1,594.09 24.96
10 4,263.13 91.04
100000 2 125,035.53 2,390.01
10 332,554.56 9,706.91

k=100
10000 2 4,103.94 133.18
10 15,312.85 723.07

100000 2 292,890.03 12,033.85
10 1,078,424.50 45,629.41

*See notes to table 1.
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Table 4. jackknife2 versus jackknife in the case of the xtivreg, fe command
(k=10)*

n T  jackknife  jackknife2

10000 2 14,038.09 27.67
10 52,015.40 108.26
100000 2 865,672.19 3,069.46

10 3,096,145.75 18,277.38

*See notes to table 1.

7.2 Leave-one-panel-out: jackknife2 versus cluster

In this section, we carry out a small Monte Carlo study comparing the performance of
the jackknife in estimating the sampling variance of the FE estimator (see section 3.1)
with that of its direct competitor, the clustered estimator (Stock and Watson 2008),
implemented in Stata with the option vce (cluster). To our knowledge, this is the first
time such a comparison has been made.

We consider the simple Gaussian linear panel-data model
Yie = a; + XS + €

where the logarithm of X;; is distributed as normal with mean «; and unit variance.
Notice that the lognormal distribution for X;; tends to generate isolated high-leverage
points. As for the simulation of the unit-specific effects, we consider two cases: i)
distributed as standard normal; and ii) «; distributed as the normal mixture 0.95 x
N(0,1) +0.05 x NV'(5,0.25).

Finally, we compare the cases of homoskedastic and heteroskedastic errors. In the
first case, the €;’s are generated as i.i.d. N'(0,1) pseudo-random variables, while in
the second case, they are generated as independent A/ (0, 0% ) pseudo-random variables
with means zero and variance o2 = 0.1 + 0.2X;; + 0.3X2. Note that the latter ensures
substantial heteroskedasticity, especially when the «;’s are generated according to the
aforementioned mixture model.

We investigate the effect of varying the cross-sectional dimension (n = 1000 or
10000) or the panel length (T' = 2 or 10). Each experiment involves M = 2000 repli-
cations, and there are 16 experiments in total (one for each combination of n and T,
separately for homoskedastic and heteroskedastic errors and the two different models
for the unit-specific effects a;).

For each replication, we compute two “quasi-t” statistics for testing the hypoth-
esis that 8 is equal to 1. These statistics, denoted by “Clustered” and “Jackknife”,
exploit the covariance matrices after which they are named. For each experiment, we
calculated the sample mean, standard deviation, skewness, and kurtosis (over the 2,000
replications) for both test statistics, but because there was nothing in the simulation
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results suggesting that they had a nonzero mean, or that their distributions were not
symmetric, we report only the standard deviation (“Std.dev.”) and the kurtosis.®> To
investigate how often we will be led to make invalid inferences by using the considered
test statistics, we report rejection frequencies (“5%”) of the form ¢ = R/M, where R is
the observed number of rejections, that is, the number of times the test statistic exceeds
the 1.96 critical value, and M is the number of replications.

Simulation results for all experiments are reported in tables 5 and 6. As in MacK-
innon and White (1985), we find that almost all the test statistics have standard de-
viations greater than one, so that rejection frequencies based on them almost always
exceed their 5% nominal size. As expected, these standard deviations tend to one as n
or T increases. Interestingly, the distribution of the test statistics is close to standard
normal when the errors are homoskedastic (table 5). Overall, the standard deviation
and the kurtosis of the test statistic based on the clustered variance estimator exceed
those of the statistic based on the jackknife variance. The difference between the two
test statistics is striking, especially in the presence of heteroskedasticity and when the
unit-specific effects are distributed as a normal mixture. Table 5 clearly shows that,
even with moderate sample sizes (n = 1000 regardless of the panel length) and ho-
moskedasticity, using the clustered variance estimator could easily lead to serious errors
of inference. With n = 1000 and substantial heteroskedasticity, the jackknife also does
not perform well. Tts worst performance is when n = 1000, 7' = 2, and the distribution
of the unit-specific effects is characterized by heteroskedasticity and outliers. In this
case, the jackknife-based test incorrectly rejects the null hypothesis 9.7% of the time at
the nominal 5% level. Still, it performs much better than its competitor because the
clustered-based test rejects the null 22.2% of the time.

3. Standard deviation and kurtosis are equal to one and three, respectively, if the test statistic of
interest is distributed as standard normal.
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Table 5. Homoskedastic errors*

n T Clustered Jackknife
Std.dev. Kurtosis 5% Std.dev. Kurtosis 5%*
Qy ~ N(O, 1)
1000 2 1.13 3.72 0.075* 1.04 3.42 0.062
10 1.11 6.82 0.069* 1.01 3.19 0.052
10000 2 1.01 2.88 0.051 0.99 2.90 0.046
10 1.02 3.10 0.052 1.00 3.13 0.049
a; ~0.95+ N(0,1) 4+ 0.05 * N'(5,0.25)
1000 2 1.30 5.62 0.112* 1.07 4.26 0.065*
10 1.22 4.17 0.105* 1.07 4.12 0.069*
10000 2 1.05 3.00 0.058 1.01 2.90 0.052
10 1.04 3.23 0.056 1.01 3.23 0.049

*Numbers under Std.dev. and Kurtosis are the standard deviation and kurtosis of the

quasi-t statistic.

TNumbers under 5% are the estimated rejection probabilities at this nominal level. An
asterisk indicates they differ at the 1% level from what they should be if the quasi-t

statistic was distributed as N'(0, 1).

Table 6. Heteroskedastic errors*

n T Clustered Jackknife
Std.dev. Kurtosis 5% Std.dev. Kurtosis 5%
Q ~ N(Oa 1)
1000 2 1.49 7.78 0.141* 1.15 3.69 0.064*
10 1.36 4.09 0.132* 1.11 3.03 0.068*
10000 2 1.16 3.85 0.075* 1.06 2.90 0.056
10 1.14 2.76 0.078* 1.06 2.68 0.056
a; ~ 0.95x N(0,1) + 0.05 x N'(5,0.25)
1000 2 2.66 82.68 0.222* 1.34 11.61 0.097*
10 1.59 5.68 0.179* 1.21 4.21 0.093*
10000 2 1.21 3.29 0.094* 1.07 2.96 0.062
10 1.14 3.17 0.084* 1.04 3.02 0.057

*See notes to table 5.
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8 Conclusions

Although the jackknife is potentially very useful, its current implementation in Stata is
very general and also inefficient for linear estimators. In this article, we described the
new prefix command jackknife2, which computes jackknife standard errors and other
useful statistics, such as CV criteria, predictive residuals, and measures of influence and
leverage, much faster than the official jackknife command. The new prefix command
can be used when the model is fit via the regress, ivregress 2sls, xtreg, fe, and
xtivreg, fe official Stata commands. We reported a comparison of the effective com-
puting time needed for the estimation of the jackknife standard errors using jackknife
and jackknife2, documenting the huge benefits in terms of computing time obtainable
using the new prefix command. We also reported Monte Carlo evidence comparing
the performance of the jackknife and its direct competitor, the clustered estimator, in
estimating the sampling variance of the FE estimator.
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10 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-4
. net install st0617 (to install program files, if available)
. net get st0617 (to install ancillary files, if available)
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