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Abstract. In this article, we introduce a command, tssreg, that conducts non-
parametric series estimation and uniform inference for time-series data, including
the case with independent data as a special case. This command can be used to
nonparametrically estimate the conditional expectation function and the uniform
confidence band at a user-specified confidence level, based on an econometric the-
ory that accommodates general time-series dependence. The uniform inference
tool can also be used to perform nonparametric specification tests for conditional
moment restrictions commonly seen in dynamic equilibrium models.
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1 Introduction

Nonparametric problems arise routinely from applied work because the economic in-
tuition of the guiding economic theory often does not depend on stylized parametric
model assumptions. A leading approach is to approximate the unknown function us-
ing a large number of basis functions; see, for example, Andrews (1991), Newey (1997),
Chen (2007), Belloni et al. (2015), and Chen and Christensen (2015). The series estima-
tion method is intuitively appealing, and an empirical researcher’s “flexible” regression
specification can often be given a formal nonparametric interpretation as a series esti-
mator.

In a companion article, Li and Liao (Forthcoming) propose an econometric method
for making uniform nonparametric inference in a general time-series setting based on
series estimation. The proposed uniform confidence band allows the empirical researcher
to make a formal statistical statement on the entire conditional expectation function.
This “global” inference differs from the conventional pointwise inference theory, as the
latter only concerns the unknown function at a specific point and is thus “local” in
nature. The inference method can also be conveniently used to conduct nonparametric
specification tests for conditional moment restrictions that often stem from dynamic
equilibrium models.

c© 2020 StataCorp LLC st0614

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X20953576&domain=pdf&date_stamp=2020-09-22


J. Li, Z. Liao, and M. Gao 707

This article introduces the new command tssreg, which stands for time-series se-
ries regression. Based on the econometric theory in Li and Liao (Forthcoming), this
command can be used to conduct two types of empirical analysis. One is to nonpara-
metrically estimate a conditional expectation function and its uniform confidence band.
The other is a sup-t test for conditional moment restrictions. We illustrate the method
using the empirical example of Li and Liao (Forthcoming) and further extend their
analysis.

This article is organized as follows. Section 2 provides some background on the
underlying econometric method. Section 3 describes the basic features of the tssreg

command. Section 4 provides a concrete illustration of the command in an empirical
example and concludes.

2 Background on the uniform series inference method

This section provides an overview of the econometric method. Consider the following
nonparametric time-series regression,

Yt = h(Xt) + εt E(εt|Xt) = 0 1 ≤ t ≤ n

where the dependent variable Yt and the conditioning variable Xt are both univariate
time series. Our econometric interest is to nonparametrically estimate the unknown
function h(·) and make a uniform inference for it. More precisely, we aim to construct

a (1− α)-level confidence band [L̂(·), Û(·)], such that

P
{
L̂(x) ≤ h(x) ≤ Û(x) for all x ∈ X

}
→ 1− α (1)

as the sample size asymptotically goes to infinity, where X is (possibly a subset of) the
observed support of the conditioning variable.

We implement the econometric procedure proposed by Li and Liao (Forthcoming).
These authors conduct nonparametric estimation using series regression and propose a
confidence band that satisfies the uniform coverage property described in (1). Their
method is justified by a strong approximation theory for time-series data. We refer the
readers to Li and Liao (Forthcoming) for theoretical details.

The econometric procedure contains a few steps. In the first step, we conduct series
estimation by regressing Yt on a set of approximating functions of Xt, denoted by

P(Xt) = {p1(Xt), . . . , pm(Xt)}′

Among many possible choices of approximating functions, we use the following:

pj(x) = Lj−1{f(x)} (2)

where Lj(·) denotes the jth Legendre polynomial, and f(·) is a fixed, strictly increasing
transformation that serves the purpose of “rescaling” the conditioning variable Xt, as
we will discuss in more detail below. The resulting regression coefficient is
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b̂ =

{
n∑

t=1

P(Xt)P(Xt)
′

}−1{ n∑
t=1

P(Xt)Yt

}
and the series estimator of h(x) is subsequently given by

ĥ(x) = P(x)′ b̂

The approximating functions in (2) are adopted to minimize the issue of multi-
collinearity, which is particularly relevant when the regression involves many series
terms (that is, when m is large). To see how this works, let us first recall some ba-
sic properties of Legendre polynomials. These functions can be defined recursively as
follows: L0(x) = 1, L1(x) = x, and

Lj(x) =
2j − 1

j
xLj−1(x)−

j − 1

j
Lj−2(x) j ≥ 2

Unlike the ordinary polynomial functions, the Legendre polynomials are orthogonal on
the [−1, 1] interval with respect to the uniform distribution, that is, for j 6= k,∫ 1

−1

Lj(x)Lk(x)dx = 0

If Xt is uniformly distributed over [−1, 1], the variables {Lj(Xt)}j≥0 are uncorrelated;
hence, a regression on these variables does not suffer from the issue of multicollinearity.
More generally, if the distribution function of Xt is FX , the transformed variable f(Xt),
with f(x) = 2FX(x)−1, is uniformly distributed over [−1, 1]. In this case, the regressors
{pj(Xt)}1≤j≤m are mutually orthogonal. The tssreg command provides a few options
for calibrating the f(·) transformation so as to “nearly” achieve this orthogonalization.
By doing so, this command can accommodate a relatively large number of series terms
without running into numerical instability issues. We also note that many other orthog-
onal basis functions, such as trigonometric series and Haar wavelets, may also be used
for the same purpose. We do not intend to be exhaustive on these choices, leaving such
extension to interested readers in the Stata community.

Li and Liao (Forthcoming) show that the estimation error ĥ(x)−h(x) can be approx-
imately represented as P(x)′ξ in a well-defined theoretical sense, where ξ ∼ N(0,V)

and V is the estimated variance–covariance matrix of b̂. In the time-series context here,
V generally accounts for serial dependence of the data, and we adopt the Newey–West
estimator for this purpose (also see [TS] newey). The estimated standard error of ĥ(x)
is thus

σ(x) =
√

P(x)′VP(x)

The uniform inference on the h(·) function is based on the sup-t statistic defined as

sup-t = sup
x∈X

∣∣∣∣∣ ĥ(x)− h(x)

σ(x)

∣∣∣∣∣
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which can then be approximately represented by

sup
x∈X

∣∣∣∣P(x)′ξ

σ(x)

∣∣∣∣
Hence, we can compute the critical value (CV) at significance level α for the sup-t
statistic, denoted by CVα below, as the 1 − α quantile of this random variable. This
computation is carried out via simulation, for which we draw ξ from the N(0,V) distri-
bution and approximate X with a subset of grid points for calculating the supremum.

It can be shown that in large samples

P (sup-t > CVα) = P

(
sup
x∈X

∣∣∣∣∣ ĥ(x)− h(x)

σ(x)

∣∣∣∣∣ > CVα

)
→ α

That is, the sup-t test provides correct size control under the null hypothesis

H0 : E(Yt|Xt = x) = h(x) all x ∈ X

We can also define the two-sided (1− α)-level confidence band as

L̂(x) = ĥ(x)− CVασ(x) Û(x) = ĥ(x) + CVασ(x)

which satisfies the desired uniform coverage property:

P
{
L̂(x) ≤ h(x) ≤ Û(x) for all x ∈ X

}
→ 1− α

The uniform confidence band is directly useful for making functional inference on the
relation between the dependent variable Yt and the conditioning variable Xt. Changing
the perspective slightly, we further note that this method can be conveniently used to
test conditional moment restrictions. Dynamic equilibrium models often imply condi-
tional moment restrictions of the form

E {g(Y∗
t ;γ0)|Xt} = 0

where Y∗
t is an observed time series and γ0 is a finite-dimensional vector of structural

parameters. We can test this conditional moment restriction by nonparametrically
regressing Yt = g(Y∗

t ;γ0) on Xt. If the parameter γ0 is unknown, we can replace it
with a preliminary estimator γ̂ and proceed as if γ̂ = γ0. The theoretical justification for
ignoring the estimation error in γ̂ is discussed in Li and Liao (Forthcoming). Intuitively,
the inference is asymptotically valid because the rate of convergence of γ̂ is faster
than that of the nonparametric estimator ĥ(·); hence, the estimation error in γ̂ is
asymptotically negligible relative to that in the nonparametric test. Under the null
hypothesis of correct specification, h(x) = E(Yt|Xt = x) should be identically 0 for all
x ∈ X . We reject the null hypothesis if the corresponding sup-t statistic is greater than
the CV. Equivalently, we can visually examine whether the uniform confidence band
covers 0 for all x ∈ X . The conditional moment restriction is rejected if this is not the
case.
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3 The tssreg command

This section describes the basic features of the tssreg command. This command re-
quires the moremata package (Jann 2005), which can be installed using the command
ssc install moremata.

3.1 Syntax

The syntax of the tssreg command is as follows:

tssreg depvar condvar
[
controlvar

] [
if
] [

in
] [

, lag(#) m(#)

method(transtype) confidencelevel(#) ngrid(#) trim(#) mc(#) table

plot excel
]

where depvar is the dependent variable, condvar is the conditioning variable, and con-
trolvar is a list of additional control variables.

3.2 Options

lag(#) specifies the maximum number of lags for computing the Newey–West estimator
of the long-run covariance matrix; see [TS] newey. The default is lag(0).

m(#) specifies the number of Legendre polynomial terms used in the nonparametric
series regression. The default is m(6).

method(transtype) specifies the transformation applied to the conditioning variable.
The approximating functions are Legendre polynomials of the transformed variable.
The following transformations are supported in the current version. The default is
method(rank).

rank: x 7→ 2q(x)− 1, where q(x) is the empirical quantile of x;

affine: affine transformation x 7→ [2{x−min(x)}]/{max(x)−min(x)} − 1;

normal: normal transformation x 7→ 2Φ{(x − x)/σ} − 1, where x and σ are the
sample mean and standard deviation of x, and Φ is the cumulative distribution
function of the standard normal distribution;

lognormal: log-normal transformation x 7→ 2Φ{(log x − log x)/Σ} − 1, where log x
and Σ are the sample mean and standard deviation of log x, and Φ is the cumu-
lative distribution function of the standard normal distribution;

none: no transformation.

confidencelevel(#) specifies the confidence level, as a percentage, for the uniform
confidence band. The default is confidencelevel(95).

ngrid(#) specifies the number of grid points used for discretizing the support of the
conditioning variable. The default is ngrid(100).
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trim(#) specifies the level of trimming in the computation of the sup-t statistic and its
CV. Setting trim(#) restricts the domain of condvar between its #/2 and 1−#/2
empirical quantiles. The default is trim(0).

mc(#) specifies the number of Monte Carlo simulations used to compute the CVs. The
default is mc(5000).

table reports the estimates of the regression coefficients and standard errors.

plot produces a graph with the nonparametric estimate of the conditional expectation
function, along with its uniform confidence band.

excel generates an Excel file that contains nonparametric estimates and the associated
uniform confidence band.

3.3 Stored results

tssreg stores the following in e():

Scalars
e(N) number of observations e(supt) sup-t statistic
e(df r) residual degrees of freedom e(cv) CV of sup-t statistic

Macros
e(cmd) tssreg e(condvar) name of conditioning variable
e(depvar) name of dependent variable e(method) transformation

Matrices
e(b) regression coefficients e(xgrid) grid points of the
e(ygrid) nonparametric estimate conditioning variable
e(se) standard errors of regression e(sigma) estimate of standard error

coefficients function
e(V) variance–covariance matrix of

regression coefficients

Function
e(sample) marks estimation sample

4 Illustration of the method

4.1 Basic applications

A basic application of the tssreg command is to conduct a sup-t test for the conditional
moment restriction

E(Yt|Xt = x) = 0 for x ∈ X

where X is the observed support of Xt. In dynamic stochastic equilibrium models, this
restriction can be derived from the martingale-difference property of the Y series with
respect to an information filtration, according to Euler or Bellman equations in the
structural model. Hence, under the null hypothesis, we can compute standard errors
without accounting for autocorrelations of error terms. This can be done using the
default option lag(0).
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To illustrate, we use the dataset from the empirical study of Li and Liao (Forthcom-
ing). data.dta contains three variables: timevar is the time index, the conditioning
variable x is productivity, and the dependent variable y is generated according to the
equilibrium conditions of a standard search-and-matching model. We set up the time-
series structure1 using tsset (see [TS] tsset), and then implement the sup-t test as
follows:

. use data

. tsset timevar
time variable: timevar, 1 to 215

delta: 1 unit

. tssreg y x

Transformation: sup-t 5% critical value P>|t|

Rank 11.1841 2.8545 0.000

With the default options, we carry out the test by nonparametrically fitting y using
a fifth-order Legendre polynomial of the rank-transformed x. As shown in the table
above, Stata reports the value of the sup-t statistic as 11.1841, which is far above the
5% CV.2 The p-value is virtually 0, suggesting a strong rejection of the hypothesis that
E(y|x) = 0; that is, the equilibrium condition is not compatible with observed data.

Furthermore, if we use the table option, tssreg also reports the regression coeffi-
cients and the associated sampling information. For example,

. tssreg y x, table

Number of obs = 215
Newey-West maximum lag = 0

Coef. Std. Err. t P>|t| [95% Conf. Interval]

p_1(x) -.0265563 .0015124 -17.56 0.000 -.0295378 -.0235748
p_2(x) .0112508 .0026945 4.18 0.000 .0059389 .0165627
p_3(x) .0013992 .0032379 0.43 0.666 -.0049839 .0077824
p_4(x) .0029088 .0038347 0.76 0.449 -.0046509 .0104684
p_5(x) -.0031211 .0041851 -0.75 0.457 -.0113717 .0051294
p_6(x) -.0037121 .0047803 -0.78 0.438 -.0131359 .0057116

Transformation: sup-t 5% critical value P>|t|

Rank 11.1841 2.8452 0.000

Another important use of the tssreg command is to nonparametrically estimate the
conditional expectation function h(x) = E(Yt|Xt = x) and its uniform confidence band.
The corresponding result can be visualized using the plot option and is presented as
figure 1.

1. Note that the user can treat a cross section of independent observations as a “time series” by simply
setting the “time” index to be n.

2. Note that the CV is generated via simulation and thus varies slightly across implementations.
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. tssreg y x, plot

−
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−
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0
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.96 .98 1 1.02 1.04
x

Data Fitted Value

95% Confidence Band

Figure 1. Nonparametric fit and uniform confidence band without heteroskedasticity-
and autocorrelation-consistent estimation

We stress that the confidence band plotted in figure 1 is uniformly valid over the
support of the conditioning variable displayed on the horizontal axis. In this example,
the 95% confidence band does not always cover 0, suggesting that the conditional expec-
tation function deviates from 0 at the 5% significance level. This finding is consistent
with the aforementioned testing result. The figure also reveals that the rejection mainly
occurs over the region where x is low.

When computing standard errors, the default setting lag(0) only accounts for con-
ditional heteroskedasticity, ignoring all autocorrelations. This is appropriate if the error
term Yt−E(Yt|Xt) forms a martingale-difference sequence, which typically holds under
the null hypothesis that the dynamic equilibrium model is correctly specified. However,
if the empirical goal is to make a uniform inference on the conditional expectation func-
tion x 7→ E(Yt|Xt = x), one should generally take into account time-series dependence
by properly setting the lag parameter in the Newey–West estimator, analogous to the
application of Stata’s built-in newey command (see [TS] newey). The following im-
plementation sets the Newey–West lag parameter to 5 (and we also set the confidence
level to 99% to illustrate the use of the confidencelevel() option). The resulting
nonparametric estimate and confidence band are displayed in figure 2.
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. tssreg y x, lag(5) confidencelevel(99) plot

Transformation: sup-t 1% critical value P>|t|

Rank 9.8340 3.4123 0.000
−

.1
−

.0
5

0
.0

5
y

.96 .98 1 1.02 1.04
x

Data Fitted Value

99% Confidence Band

Figure 2. Uniform confidence band with user-specified Newey–West lag parameter and
confidence level

4.2 Choice of approximating functions

Series estimation involves choosing approximating functions and the number of series
terms. While the default setting of tssreg provides a reasonable benchmark, applied
users are encouraged to experiment with alternative specifications to check the robust-
ness of their empirical findings with respect to these choices. In the current version, the
approximating functions are constructed as Legendre polynomials of the transformed
conditioning variable, where the specific transformation is set through the method()

option. Legendre polynomials are orthogonal on the [−1, 1] interval. With a proper
transformation, the distribution of the transformed conditioning variable can be made
close to uniform on [−1, 1], which mitigates the issue of multicollinearity when many
series terms are included in the regression.
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Four types of transformations are available in the current version: affine, normal,
lognormal, and rank. The common idea is first to fit the distribution of Xt, parametri-
cally or nonparametrically, and then to use the fitted distribution function to transform
the conditioning variable into a uniform distribution. Specifically, the options affine,
normal, and lognormal correspond to parametrically fitting uniform, normal, and log-
normal distributions, respectively. The default rank option implements a nonparametric
transformation using the ranks (or, equivalently, the empirical distribution function) of
the observed Xt data. The user can also use untransformed data by explicitly setting
the method(none) option.

The number of series terms is determined by the m(#) option. The constant term
is always included. Hence, m(#) corresponds to a (#–1)-order Legendre polynomial.
Recall that a fifth-order Legendre polynomial is fit under the default setting.

As an example, we can examine the sensitivity of the empirical findings in the
running example with respect to these choices. Sensitivity analysis like this is often
needed in empirical work. We experiment with three transformations affine, normal,
and rank. In addition, besides the default fifth-order Legendre polynomial, we also fit
an eighth-order Legendre polynomial by using the m(9) option. The resulting plots are
collected in figure 3.

. tssreg y x, method(affine) plot

Transformation: sup-t 5% critical value P>|t|

Affine 13.5659 2.8957 0.000

. tssreg y x, method(normal) plot

Transformation: sup-t 5% critical value P>|t|

Normal 11.4933 2.8497 0.000

. tssreg y x, method(rank) plot

Transformation: sup-t 5% critical value P>|t|

Rank 11.1841 2.8096 0.000

. tssreg y x, method(affine) m(9) plot

Transformation: sup-t 5% critical value P>|t|

Affine 11.7011 2.9492 0.000

. tssreg y x, method(normal) m(9) plot

Transformation: sup-t 5% critical value P>|t|

Normal 9.8378 3.0461 0.000
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. tssreg y x, method(rank) m(9) plot

Transformation: sup-t 5% critical value P>|t|

Rank 9.4538 2.9840 0.000
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Figure 3. Nonparametric estimates and uniform confidence bands using different series
approximations. Estimation in the top (respective bottom) row is conducted using 6
(respective 9) series terms. The left, middle, and right columns are generated using
the affine, normal, and rank transformations, respectively. Individual graphs are
combined using the grc1leg command (Wiggins 2010).

In all implementations, the null hypothesis E(Yt|Xt) = 0 is strongly rejected as
before. Figure 3 also shows that essential features of the nonparametric estimation are
robust with respect to the choice of approximating function and series terms.

4.3 Partial linear model and additional control variables

tssreg also accommodates additional control variables in a partially linear model:

Yt = h(Xt) + β′Zt + εt
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where Zt is a list of control variables that are collected in controlvar. With these control
variables, tssreg tests the null hypothesis

h(x) = 0 all x ∈ X

and the plot option will display the nonparametric estimate and the uniform confidence
band of the h(·) function. The table option reports regression coefficients of all series
terms of Xt and control variables.

To illustrate, we include two randomly generated variables, z1 and z2, as controlvar
in the running example. The results are displayed below.

. generate z1 = rnormal()

. generate z2 = rnormal()

. tssreg y x z1 z2, table plot

Number of obs = 215
Newey-West maximum lag = 0

Coef. Std. Err. t P>|t| [95% Conf. Interval]

p_1(x) -.0265895 .0015114 -17.59 0.000 -.0295692 -.0236098
p_2(x) .0114864 .0026989 4.26 0.000 .0061655 .0168073
p_3(x) .0011594 .003255 0.36 0.722 -.0052579 .0075767
p_4(x) .0021964 .0038403 0.57 0.568 -.0053747 .0097675
p_5(x) -.0024858 .0042217 -0.59 0.557 -.0108088 .0058371
p_6(x) -.0033754 .0047209 -0.71 0.475 -.0126827 .0059318

z1 -.0000595 .0015734 -0.04 0.970 -.0031614 .0030423
z2 .0016694 .0013786 1.21 0.227 -.0010484 .0043872

Transformation: sup-t 5% critical value P>|t|

Rank 11.0334 2.8674 0.000
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Figure 4. Nonparametric estimate and uniform confidence band with additional controls

Not surprisingly, because the additional control variables are in fact irrelevant in
this example, the testing result remains the same, and the nonparametric estimates
displayed in figure 4 are very close to those in figure 1.

4.4 Additional options

The ngrid() option sets the number of grid points used to discretize the support of
Xt. Discretization is needed to compute the sup-t statistic, which is theoretically de-
fined as the supremum over the support of the conditioning variable. The default is
ngrid(100). Setting this parameter to a higher level reduces the approximation error
from the discretization, while adding computational cost.

The trim() option allows the user to restrict the index set X over which the sup-t
statistic is computed. Specifically, trim(#) restricts X as [Q#/2, Q1−#/2], where Qq is
the q quantile of Xt. This option is useful if one’s empirical goal is to make a uniform
inference only over the restricted region. Note that the underlying nonparametric series
estimation is always based on all available data, whereas the trimming only affects the
computation of the sup-t statistic and its CV.
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The mc() option sets the number of simulations used to compute the CV. The default
is mc(5000), which is adequate in most empirical contexts. The user may increase this
number to improve the Monte Carlo approximation accuracy or decrease this number
to reduce computation time.

The excel option saves information for reconstructing the nonparametric plots like
figure 1. The output Excel file contains four columns: grid points of the conditioning
variable, fitted values of the conditional expectation function, and lower and upper
confidence bands at the user-specified confidence level.

5 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-3

. net install st0614 (to install program files, if available)

. net get st0614 (to install ancillary files, if available)
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