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Abstract. To compare distributions of ordinal data such as individuals’ responses
on Likert-type scale variables summarizing subjective well-being, we should not
apply the toolbox of methods developed for cardinal variables such as income.
Instead, we should use an analogous toolbox that accounts for the ordinal nature
of the responses. In this article, I review these methods and introduce a new
command, ineqord, for undertaking distributional comparisons. As the empirical
illustrations demonstrate, ineqord can be used for dominance checks as well as for
estimation of indices of polarization and inequality.
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1 Introduction

This article is about how to compare distributions of personal well-being where well-
being is measured using an ordinal scale, and it introduces a new command, ineqord,
for undertaking these comparisons.

Leading examples of personal well-being indicators are self-assessed (“subjective”)
life satisfaction or health status for which individuals provide responses on a Likert-type
scale. For instance, regarding life satisfaction, respondents may be presented with a
linear integer scale running from 0 to 10 (11 levels) and asked to respond to the question
“Overall, how satisfied are you with your life nowadays where 0 is ‘not at all satisfied’ and
10 is ‘completely satisfied’?” (Data based on this scale are used in section 4.) Other life
satisfaction scales use 5, 7, or 10 levels. Some subjective well-being (SWB) scales employ
a mixture of negative and nonnegative integers to label the levels. For example, people
are asked to rate how satisfied they are with their life, choosing between “completely
dissatisfied” (scaled as −3), “mostly dissatisfied” (−2), “somewhat dissatisfied” (−1),
“neither satisfied nor dissatisfied” (0), “somewhat satisfied” (1), “mostly satisfied” (2),
and “completely satisfied” (3).

SWB measures are increasingly being used in tandem with the monetary measures of
personal economic well-being such as income or wealth that national and international
statistical agencies and most researchers have conventionally focused on. A catalyst for
the new emphasis was the “Report by the Commission on the Measurement of Eco-
nomic Performance and Social Progress” (Stiglitz, Sen, and Fitoussi 2009), which set
out a comprehensive agenda for going “Beyond GDP”. The report’s Quality of Life sec-
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tions emphasize that “well-being is multidimensional” (2009, 14) and that “objective
and subjective dimensions of well-being are both important” (2009, 16). The Organi-
sation for Economic Co-operation and Development (OECD) has played an important
role in implementing the report’s recommendations in this area, launching its Better
Life Initiative (in 2011), regularly reporting on well-being outcomes (How’s Life; see,
for example, OECD [2020]), and developing the Better Life Index and multiple online
resources (see https://www.oecd.org/statistics/better-life-initiative.htm). In parallel,
the national statistical agencies of OECD member countries have introduced initiatives
to address the Beyond GDP agenda, including a greater emphasis on collection of and
reporting on SWB data.

Income and wealth are cardinal variables, and there are well-established methods
for comparing distributions of them in terms of levels and inequality. There are also
many community-contributed commands for undertaking distributional comparisons of
cardinal variables, including my ineqdeco, ineqdec0, sumdist, and svylorenz, svyatk
and svygei (with Martin Biewen), and glcurve (with Philippe Van Kerm), all available
from the Statistical Software Components (SSC) archive.

In contrast, SWB measures are ordinal in nature, which raises the question of how
to undertake distributional comparisons in this situation. How do we assess whether
average well-being or well-being inequality has increased over time or differs between
countries or social groups? A growing literature (cited below) has shown on the one hand
that it is inappropriate to apply comparison methods developed for cardinal well-being
measures to ordinal SWB measures, although many researchers continue to do this—the
World Happiness Report (Helliwell, Huang, and Wang 2019) is a leading example. How-
ever, on the other hand, there is now a toolbox of methods for application to ordinal
data that is analogous to the toolbox long applied to distributions of cardinal variables
such as income. See Jenkins (Forthcoming) for development of this argument and illus-
trations. ineqord provides the means to implement methods that are appropriate for
comparisons of distributions of ordinal data.

ineqord produces estimates of inequality and polarization indices: the Allison–
Foster index, the normalized average jump index, multiple Apouey indices, multiple
Abul Naga–Yalcin indices, multiple Cowell–Flachaire indices, and Jenkins indices. Op-
tionally, ineqord also derives estimates of cumulative distribution functions (CDFs)
and related objects that can be used to describe ordinal distributions and to undertake
dominance checks of differences between distributions.

ineqord assumes the user has respondent-level data with responses referring to
ordinal well-being scores. If the user has grouped data describing the distribution of the
well-being variable, the user needs first to construct a dataset using this information.
See section 4 for illustrations.

https://www.oecd.org/statistics/better-life-initiative.htm
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2 Comparisons of distributions of ordinal data

This section provides a brief overview of methods used for undertaking comparisons of
distributions of ordinal data and discusses ineqord’s functionality against this back-
ground.

Let us suppose that we have individual-level SWB data held in a variable called
swb. The inequality and polarization indices calculated by ineqord summarize dis-
persion in the distribution of responses across the levels of swb. There are K ≥ 3
levels of the ordinal variable in principle, though one or more levels might receive no
responses in practice, a situation to which I return below. The levels have numerical
labels c1, c2, . . . , cK , where −∞ < c1 < c2 < · · · < cK < ∞. The “linear integer” scale
is the one with ck = k, for each k = 1, 2, . . . ,K. The empirical distribution of responses
is described by the proportion of the individuals who report the kth level, fk, for each
k. The CDF is described by the proportion of individuals reporting the kth level or
lower, Fk =

∑k
j=1 fk, for each k. The survivor function is described by the proportion

of individuals reporting the kth level or higher, Sk =
∑K

j=k jk, for each k. This is a non-
standard definition—usually the survivor function is defined as 1− Fk—but it is what
is used to characterize a class of Cowell–Flachaire inequality indices (see section 2.2).

A commonly used measure of inequality of such ordinal data, especially life satisfac-
tion and happiness data, is the standard deviation. Use of this measure is inappropriate
because it assumes that swb is measured on a ratio scale. Kalmijn and Veenhoven (2005)
acknowledge this issue but claim that the standard deviation is an appropriate measure
nonetheless.

Economists specializing in inequality measurement have long been critical of the
application to ordinal data of the standard deviation and other inequality indices typ-
ically applied to variables measured on a ratio scale. These indices use the mean as
the reference point for assessing spread, but with ordinal data, the value of the mean
is contingent on the scale used. Orderings of distributions according to their means or
standard deviations are not robust to changes in the scale used.

Critiques by economists include the papers by Allison and Foster (2004), Cowell and
Flachaire (2017), and Dutta and Foster (2013). These authors and others propose mea-
sures that respect the ordinal nature of the data. In one tradition, indices characterize
greater inequality as greater spread about the median. The other tradition characterizes
greater inequality as greater spread away from a maximum value.

2.1 Polarization indices

The Allison–Foster index is the difference between the mean score for respondents with
scores above the median minus the mean score for respondents with scores below the
median. This index was first proposed by Allison and Foster (2004). Dutta and Foster
(2013) provide more extensive discussion of it, and the formulas used by ineqord are
based on their equations 1 and 2 (page 398).
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The two-parameter indices proposed by Abul Naga and Yalcin (2008), ANY(a, b),
with a, b ≥ 1, are a form of weighted difference between the cumulative percentages of
individuals in the lower half of the distribution and the cumulative percentages in the
upper half of the distribution. The parameters tune the weights given to the two halves.
ANY(1, 1) weights the two halves equally. Broadly speaking, when b > a,ANY(a, b) gives
greater weight to the bottom half of the distribution; when a > b, it gives greater weight
to the top half of the distribution. According to Abul Naga and Yalcin (2008, 1621), “For
a given value of β, . . . , as α → ∞, the inequality index abstracts from the dispersion
below the median.” (Their α and β correspond to my a and b.) On the other hand, when
b > a, ANY(a, b) gives greater weight to the bottom half of the distribution. For a given
value of a, choosing larger values of b places less weight on the distribution in categories
above the median. In the limiting case when b → ∞, only below-median categories
are relevant. Thus, for example, the indices ANY(1, 1), ANY(1, 2), and ANY(1, 4) give
increasingly greater weight to the lower half of the distribution when assessing overall
polarization.

Apouey’s (2007) P2(e) indices each aggregate the “distances” between Fk and 0.5
(the value of Fk at the median) across the levels of swb. P2(0.5) uses the square
root of the absolute differences to summarize distance, and P2(1) uses a “city block”
(linear) distance function. P2(2) uses a Euclidean distance metric and is the same as
the 1− l2 index of Blair and Lacy (2000). (The Blair–Lacy index may also be calculated
using Lacy’s (2010) community-contributed ordvar command, available from the SSC

archive.) In general, the value of parameter e determines how concentration within the
groups below the median and within the groups above the median contributes to overall
polarization.

The average jump index is the average across respondents of the absolute difference
between each observed value of swb and the median value, normalized by the maximum
value for the index. For a linear integer scale, the average jump index equals the
Allison–Foster index divided by the total number of levels of swb minus one (Allison
and Foster 2004, 514). In this case, the index summarizes the (normalized) average
number of category “jumps” required to change from the observed level to the median
level. For a linear integer scale, the average jump index is the same as the ANY(1, 1)
index and the P2(1) index.

2.2 Inequality indices

Cowell and Flachaire (2017) build inequality measures from axiomatic first principles,
providing two families of one-parameter indices based on downward-looking and upward-
looking measures of individual “status”, respectively. ineqord uses the “peer-inclusive”
(rather than “peer-exclusive”) definitions of these, reflecting the focus of Cowell and
Flachaire (2017) and other authors. For an individual reporting a response correspond-
ing to the kth level of the scale, peer-inclusive downward-looking status is given by
Fk, and peer-inclusive upward-looking status is given by Sk. The inequality indices ag-
gregate “distances” between each individual’s status and the maximum possible status
value (which is one, given his or her definition of status).
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Members of the two Cowell–Flachaire inequality index families I(α) are distin-
guished by parameter α, which encapsulates the sensitivity of overall inequality to
the dispersion of individual status in different ranges of the status distribution, with
0 ≤ α < 1. The smaller that α is, the more sensitive is the overall index to differences in
status at the bottom of the status distribution rather than at the top. If the distribution
of responses on swb is symmetric across the levels, Fk = Sk, and each downward-looking
Cowell–Flachaire index has the same value as its upward-looking counterpart with the
same α.

Jenkins’s (2019) Jd index is defined for Cowell–Flachaire’s peer-inclusive downward-
looking status measure, and his Ju index is defined for their peer-inclusive upward-
looking status measure. Each index is equal to the area between the generalized Lorenz
(GL) curve for the relevant status distribution and the GL curve for the distribution with
no status inequality [in which case the GL curve is a straight line between the origin
and point (1, 1)], divided by the total area beneath the perfect equality curve (= 0.5).
Equivalently, each index is equal to one minus twice the area beneath the GL curve
for status. The GL curve for status, GL(p), plots cumulative status per capita against
cumulative population share, 0 ≤ p ≤ 1, of individuals ranked in ascending order of
status. GL(0) = 0 and GL(1) is the arithmetic mean of status. See Jenkins (2019) for
details.

2.3 Index properties

All the polarization and inequality indices calculated by ineqord equal their minimum
value, zero, if all respondents report the same value for swb. The Allison–Foster, average
jump, Apouey, and Abul Naga–Yalcin indices each summarize polarization of responses
relative to the median. These indices reach their maximum value when half the responses
on swb refer to the minimum value of the scale and half the responses refer to the
maximum value; that is, the distribution of responses is totally polarized. In this case,
the maximum value equals one—except for the Allison–Foster index, for which the
maximum value depends on the number of categories.

Cowell–Flachaire I(α) and J indices need not reach a maximum value with this
distribution of responses: this is because the indices summarize inequality as spread
rather than as polarization. For example, for any given K, I(α) and J indices record
greater inequality for a uniform distribution than for a totally polarized distribution
(Jenkins 2019).

I(α) and J indices are invariant to order-preserving transformations of the ordinal
scale variable, that is, scale independent. The Allison–Foster index is not scale inde-
pendent, and hence, Dutta and Foster (2013), in their empirical application, provide
estimates based on linear, convex, and concave scales. Abul Naga–Yalcin and Apouey
indices are scale independent (but also see the remarks in section 2.5).



510 Comparing distributions of ordinal data

2.4 Dominance checks for unanimous orderings by classes of indices

ineqord also provides users with the ability to undertake dominance checks. In general,
dominance means that finding an appropriately defined graph for one distribution lies
everywhere on or above the corresponding graph for another distribution is equivalent
to a unanimous ranking of the two distributions by all measures satisfying a specific set
of properties. There are several different types of dominance in this context.

Allison and Foster (2004) provide results for “F -dominance” and “S-dominance”.
The former refers to comparisons of CDFs and rankings by average well-being levels
(first-order dominance): if the CDF for distribution A lies everywhere on or above the
CDF below that for distribution B, then A has higher average well-being than B, re-
gardless of scale. S-dominance (spread dominance) refers to comparisons of S-curves,
which are derived from CDFs, so the criterion can also be expressed in terms of these.
That is, if A and B have the same median, and the CDF for A lies above that for B at
scale values below the median but above that for B at scale values at the median and
above, all polarization indices respecting the property that greater spread about the
median corresponds to greater polarization will show A as having greater polarization
than B. S-dominance can arise only if the pair of distributions have a common median
and if there is no F -dominance.

Jenkins (2019) shows that, for each of the two Cowell–Flachaire definitions of status,
if the GL curve for status distribution A lies nowhere above the GL curve for status
distribution B, all Cowell–Flachaire I(α) indices and the J index will record A as
having more inequality than B. These GL curve comparisons can be applied if the
distributions have different medians.

ineqord can also be used to undertake the H-dominance checks proposed by Gravel,
Magdalou, and Moyes (Forthcoming). These authors start from the principle that the
inequality of an ordinal variable increases if there is a shift in density mass away from
a specific level (one person moving up a level and one moving down). This is the
concept of a disequalizing “Hammond transfer” (compare the concept of a disequalizing
Pigou–Dalton transfer for a cardinal variable such as income). Gravel, Magdalou, and
Moyes (Forthcoming) define H+ and H− curves (called H and H curves in their article),
which are specifically defined recursive cumulations of CDFs (just as GL curves are but
differently defined). The authors prove a dual dominance result: distribution A being
more equal than distribution B according to the Hammond transfer concept is equivalent
to finding (i) the H+ curve for A lying nowhere above the H+ curve for B and (ii) the
H− curve for A lying nowhere above the H− curve for B. They also show that, if there
is F -dominance, there is also H+ dominance. The dual dominance check can be applied
if the distributions have different medians.

Gravel, Magdalou, and Moyes (Forthcoming) do not refer to any existing indices
when discussing their dual dominance criteria. The relationships between the dual
dominance and GL dominance criteria are a topic of current research.
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2.5 Some computational and conceptual issues

For correct calculation of the Abul Naga–Yalcin, average jump, Apouey, and Jenkins
indices, ineqord must know the total number of possible levels of the ordinal response
variable. This number may be greater than the maximum observed in the data, for
example, if there are no responses on some scale values or if there is total polarization.
By default, ineqord assumes that the total number of possible levels of the ordinal
response is the number of levels observed containing responses. If this assumption is
incorrect, it is the user’s responsibility to specify the maximum number of levels of
response using the nlevels() option, described below. See also the discussion of scale
dependence below.

Apouey P2(e) indices refer to the case in which the ordered-response categories
are labeled with positive integers (1 for the lowest level, 2 for the second-lowest level,
etc.), which is a linear integer scale. For correct calculation of these indices, it is the
user’s responsibility to check that the scale underlying swb is appropriate. Optionally,
ineqord relabels the observed responses to calculate the Apouey indices using a linear
transformation: response new = response − minlevel + 1, where minlevel is the value
specified by the minlevel() option and response in this case would be swb. For example,
with the option, the life satisfaction scale cited above (0, 1, . . . , 10) is converted to
(1, 2, . . . , 11) by setting minlevel = 0. Scale (−1, 0, 1) is converted to (1, 2, 3)
by setting minlevel = −1. Be aware that if the response scale values were instead
(2, 4, 6), say, and the user sets minlevel = 2, ineqord’s calculation would be based on
transformed responses (1, 3, 5), not (1, 2, 3), and correct calculation of the Apouey
(and J) indices would also require setting the maximum number of levels to 5 using the
nlevels() option. Calculation of the indices would assume that scale values 2 and 4 are
possible (and this is relevant to the assessment of how polarized swb is), but there are
no responses observed for them. On related issues, see the discussion of the “mergers
principle” by Cowell and Flachaire (2017).

The precise definition of the median is fundamental to the estimation of polarization
indices. I use Stata’s definition of the median, as set out in Methods and formula of
[R] summarize, with one rarely used modification.

There are other possible definitions of the median. For example, Abul Naga and
Yalcin’s definition is that level “m is the median . . . if Pm−1 ≤ 0.5 and Pm ≥ 0.5”
(2008, 1616), where Pk is the fraction of individuals reporting level k or less, that is,
what I have referred to as Fk. The definition means that the median is undefined if the
fraction reporting the lowest level k = 1 is greater than one half (P1 > 0.5), though,
of course, this case is likely to be rare in practice. Cowell and Flachaire (2017, 300)
discuss other potential issues and refer to them when motivating their nonmedian-based
approach.

Although use of Stata’s definition of the median almost invariably works well in
real-world situations, there is one tricky special case to deal with—the situation in
which Stata reports a noninteger median (having taken the average value of the scale
in two adjacent categories—see the Stata Base Reference Manual again). This is most
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likely to occur if there are scale levels in the middle of the range that do not receive any
responses. Using a noninteger median “as is” leads to an error when calculating ANY

indices using Abul Naga and Yalcin’s (2008) formulas. Thus, the code for ineqord uses
Stata’s definition by default except that, in the (rarely experienced) noninteger median
case, it applies the ceil() function to the noninteger median and then proceeds using
the revised (integer-valued) median. If ceil() changes the median, r(newmedian)

differs from r(median) in the stored results. With this adjustment, ineqord generates
the estimates expected.

Bootstrapped standard errors for the indices can be derived using bootstrap or, for
example, rhsbsample (Van Kerm 2013) implementing Saigo, Shao, and Sitter’s (2001)
repeated half-sample bootstrap approach. See section 4 below. Analytical formulas for
variance estimates exist for some of the indices and curve ordinates but not for all of
them, and the formulas that are provided do not account for sample design features
such as weights, clustering, or stratification.

Finally, note that the indices and the dominance results cited earlier refer to levels
and dispersion of a categorical well-being variable with an arbitrary scale. They do not
refer to levels and dispersion of some underlying unobserved SWB variable. This is an
important distinction because it is often assumed that discrete categorical responses on a
Likert-type scale are manifestations of a latent continuous variable. For example, Delhey
and Kohler’s (2011) adjustment to the standard deviation measure to account for the
bounded nature of a Likert-type scale, implemented in sdlim on the SSC archive, refers
to a latent SWB variable. Stevenson and Wolfers (2008) suppose that the ordinal data
responses are realizations of a latent continuous well-being variable that is assumed
to be normally distributed within a population, with moments of the latent variable
estimated using ordinal regression techniques. Bond and Lang (2019) emphasize the
distinction between manifest categorical and latent continuous SWB variables, and they
highlight the strong assumptions required to identify distributions of the latter from
the former. More positively, Kaplan and Zhuo (2019) provide some results about what
can be learnt about latent SWB distributions when manifest categorical distributions
are available.

3 The ineqord command

3.1 Syntax

This section describes the syntax of the ineqord command. The command works with
Stata 14 or later.

ineqord varname
[
if
] [

in
] [

weight
] [

, alpha(#) nlevels(#) minlevel(#)

ustatusvar(string) dstatusvar(string) catvals(string) catprops(string)

catcprops(string) catsprops(string) gldvar(string) gluvar(string)

hplus(string) hminus(string)
]
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by and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

alpha(#) calculates an additional Cowell–Flachaire index with parameter value α.
The value must be between 0 and 1.

nlevels(#) specifies the total number of possible levels of the ordinal response variable.
nlevels() is required for correct calculation of the Blair–Lacy and Apouey indices
if the observed number of levels is less than the maximum possible.

minlevel(#) specifies the minimum level of the ordinal response variable. minlevel()
is required for correct calculation of the Blair–Lacy and Apouey indices if the ob-
served minimum is not equal to 1.

ustatusvar(string) saves the Cowell–Flachaire upward-looking status variable after
calculation.

dstatusvar(string) saves the Cowell–Flachaire downward-looking status variable after
calculation.

catvals(string) saves the distinct values of the response variable after calculation.
There is one value per level.

catprops(string) saves the sample proportions for each level after calculation.

catcprops(string) saves the sample cumulative proportions after calculation.

catsprops(string) saves the sample cumulative survivor proportions after calculation.

gldvar(string) saves the GL ordinates of the Cowell–Flachaire downward-looking status
variable after calculation.

gluvar(string) saves the GL ordinates of the Cowell–Flachaire upward-looking status
variable after calculation.

hplus(string) saves the ordinates of H+ curve after calculation.

hminus(string) saves the ordinates of H− curve after calculation.

ustatusvar() and dstatusvar() are observation-level variables. cat*(), gl*(), and
h*() are category-level variables (with K values). See section 4.
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3.3 Stored results

ineqord stores the following in r():

Scalars
r(n distinct cats) number of distinct levels in varname
r(mean) mean of varname
r(mean rescaled) mean of varname if minlevel() option applied
r(median) median of varname
r(median rescaled) median of varname if minlevel() option applied
r(newmedian) ceil(median of varname); see discussion in text
r(Var) variance of varname
r(sd) standard deviation of varname
r(sumw) sum of weights
r(N) number of observations on varname
r(min) minimum value of varname
r(max) maximum value of varname
r(min rescaled) minimum value of varname if minlevel() option applied
r(max rescaled) maximum value of varname if minlevel() option applied
r(nlevels) number of levels specified in nlevels() option
r(minlevel) value of minimum level specified in minlevel() option
r(dfmeanabove) mean of varname for observations above the median (Allison–Foster

definition)
r(s H) mean of varname for observations above the median minus the median

of varname
r(dfmeanbelow) mean of varname for observations below the median (Allison–Foster

definition)
r(s L) median of varname minus mean of varname for observations above

the median
r(allisonfoster) Allison–Foster index
r(avjump) average jump index
r(apoueypt5) Apouey P2(0.5) index
r(apouey1) Apouey P2(1) index
r(apouey2) Apouey P2(2) index
r(blairlacy) Blair–Lacy index (1− l2) = P2(2)
r(any11) Abul Naga–Yalcin (1, 1) index
r(any21) Abul Naga–Yalcin (2, 1) index
r(any12) Abul Naga–Yalcin (1, 2) index
r(any41) Abul Naga–Yalcin (4, 1) index
r(any14) Abul Naga–Yalcin (1, 4) index
r(i0d) Cowell–Flachaire downward-looking index (α = 0)
r(ioneqd) Cowell–Flachaire downward-looking index (α = 0.25)
r(ihalfd) Cowell–Flachaire downward-looking index (α = 0.5)
r(ithreeqd) Cowell–Flachaire downward-looking index (α = 0.75)
r(ixd) optional Cowell–Flachaire downward-looking index (α = #)
r(i0u) Cowell–Flachaire upward-looking index (α = 0)
r(ionequ) Cowell–Flachaire upward-looking index (α = 0.25)
r(ihalfu) Cowell–Flachaire upward-looking index (α = 0.5)
r(ithreequ) Cowell–Flachaire upward-looking index (α = 0.75)
r(ixu) optional Cowell–Flachaire upward-looking index (α = #)
r(Jd) Jenkins downward-looking index
r(Ju) Jenkins upward-looking index

Locals
r(cats list) list of levels of varname
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4 Examples

This section illustrates ineqord in action. For further examples of distributional com-
parisons based on numerical indices and dominance checks applied to World Values
Survey data on life satisfaction, see Jenkins (Forthcoming, 2019). These data were
also used by Cowell and Flachaire (2017), and ineqord produces the same estimates
that they report—they focus on I(0) using both peer-inclusive downward- and upward-
looking definitions of status.

4.1 Life satisfaction data from the UK Annual Population Survey
(APS)

Most of my examples are based on data about life satisfaction drawn from the Annual
Population Survey (APS) Three-Year Pooled Dataset January 2015–December 2017 (Of-
fice for National Statistics, Social Survey Division 2018), a nationally representative
survey of UK adults. The data and documentation are downloadable from the UK Data
Service by researchers who register. For brevity, I refer to the data as “the APS”. Data
drawn from the APS are used by the UK’s Office for National Statistics to provide annual
reports on personal well-being; see, for example, Office for National Statistics (2019).

The dataset contains 530,300 (unweighted) observations of which 275,336 provide a
nonmissing response to the life-satisfaction question set out in section 1. Responses are
held in the variable named SATIS. Sample weights are provided in variable PWTA17C.
Missing values are recorded as values of −8 and −9 and all variables names are in
uppercase. Before any use of ineqord, I convert the missing values to Stata missing
values and, for convenience, put all variable names in lowercase.

. use aps_3yr_jan15dec17_eul

. rename _all, lower

. tabulate satis

Satisfied with your
life Freq. Percent Cum.

Does not apply 252,574 47.63 47.63
No answer 2,390 0.45 48.08

not at all satisfied 1,777 0.34 48.41
1 886 0.17 48.58
2 2,124 0.40 48.98
3 3,165 0.60 49.58
4 5,246 0.99 50.57
5 19,531 3.68 54.25
6 18,684 3.52 57.77
7 48,054 9.06 66.84
8 90,366 17.04 83.88
9 42,993 8.11 91.98

completely satisfied 42,510 8.02 100.00

Total 530,300 100.00

. replace satis = .a if satis == -8
(2,390 real changes made, 2,390 to missing)



516 Comparing distributions of ordinal data

. replace satis = .b if satis == -9
(252,574 real changes made, 252,574 to missing)

. label define SATIS .b "Does not apply" .a "No answer", modify

. tabulate satis

Satisfied with your
life Freq. Percent Cum.

not at all satisfied 1,777 0.65 0.65
1 886 0.32 0.97
2 2,124 0.77 1.74
3 3,165 1.15 2.89
4 5,246 1.91 4.79
5 19,531 7.09 11.89
6 18,684 6.79 18.67
7 48,054 17.45 36.13
8 90,366 32.82 68.95
9 42,993 15.61 84.56

completely satisfied 42,510 15.44 100.00

Total 275,336 100.00

The weighted distribution of valid responses is as follows:

. tabulate satis [aw = pwta17c]

Satisfied with your
life Freq. Percent Cum.

not at all satisfied 1,707.0425 0.62 0.62
1 846.473904 0.31 0.93
2 2,051.4235 0.75 1.67
3 3,103.0005 1.13 2.80
4 5,037.9697 1.83 4.63
5 19,173.955 6.97 11.61
6 19,141.885 6.96 18.57
7 49,671.19 18.06 36.63
8 90,855.553 33.03 69.66
9 42,814.464 15.57 85.23

completely satisfied 40,628.044 14.77 100.00

Total 275,031 100.00

Only around 12% of respondents report a value of 5 or lower on the 0 to 10 scale.
Almost 15% report that they are completely satisfied with their life (scale point 10),
with the modal value equal to 8.

To proceed further, we have to address the fact that the linear integer scale runs
from 0 to 10. It does not start at 1. If ineqord were applied ignoring this, it would
provide incorrect estimates for some of the indices. There are two ways to proceed:
either 1) create a new variable to ensure the scale goes from 1 to 11 and then run
ineqord using this variable; or 2) run ineqord using its minlevel(0) option and the
variable satis. To implement strategy 1, I create a new variable named ls:

. generate ls = satis + 1
(254,964 missing values generated)

. label variable ls "= satis + 1"
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. label def ls 1 "Not at all satisfied: 1" 11 "Completely satisfied: 11"
> .b "Does not apply" .a "No answer"

. label values ls ls

Applying strategy 2, we derive the following estimates for the UK adult population.
It is easily verified that the code ineqord ls [aw = pwta17c] gives exactly the same
estimates as those shown, whereas ineqord satis [aw = pwta17c] gives incorrect es-
timates (output not shown).

. ineqord satis [aw = pwta17c], minlevel(0)
Note: satis rescaled for calculation of Apouey indices (see help file)
Warning: summary statistics for rescaled responses differ from those for
observed responses

Summary statistics for observed levels

All obs min max # levels median

0 10 11 8

Mean, variance, and standard deviation of observed levels

All obs mean variance sd

7.67653 3.12008 1.76638

Polarization indices: Allison-Foster; Average Jump; Apouey P2(2); Apouey P2(1);
> Apouey P2(.5)

All obs A-F Av. Jump P2(2) P2(1) P2(.5)

2.45139 0.24514 0.37056 0.24514 0.14555

Polarization indices: Abul Naga-Yalcin(a,b)

All obs ANY(1,1) ANY(2,1) ANY(1,2) ANY(4,1) ANY(1,4)

0.24514 0.21218 0.28417 0.31366 0.34238

Inequality indices: Cowell-Flachaire, downward-looking status

All obs I(0) I(.25) I(.5) I(.75)

0.76610 0.82952 1.04890 1.81626

Inequality indices: Cowell-Flachaire, upward-looking status

All obs I(0) I(.25) I(.5) I(.75)

0.66864 0.76828 1.00823 1.78788
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Inequality indices: J_d (downward-looking status); J_u (upward-looking status)

All obs Jd Ju

0.56744 0.55128

The first components of the output provide descriptive statistics. For example, we
see that the median response is 8 on the 0–10 scale. The average jump index estimate
is 0.24514. Because we have a linear integer scale, the average number of category
“jumps” required to change from the observed level to the median level (normalized by
the total number of levels minus one = 10) is 0.24514 and is also equal to the estimates
of ANY(1, 1) and P2(1) in this case. The Allison–Foster index value, 2.45139, is 10 times
the average jump index.

The earlier tabulation of satis shows dispersion in life-satisfaction responses, and
this is reflected in estimates of the indices of polarization and inequality that are greater
than 0. The specific values of the estimates are otherwise hard to interpret; they be-
come more valuable when there are estimates from multiple distributions that can be
compared.

Let us therefore proceed to some distributional comparisons, considering how life
satisfaction distributions differ between UK adults according to their marital status. I
create a new variable, mstat, collapsing the information held in the marsta variable. I
treat individuals in a cohabiting relationship as married.

. generate mstat = .
(530,300 missing values generated)

. label variable mstat "Marital status"

. replace mstat = 1 if marsta == 1
(234,840 real changes made)

. replace mstat = 2 if marsta == 2
(219,411 real changes made)

. replace mstat = 3 if inlist(marsta, 3, 4, 5)
(75,081 real changes made)

. replace mstat = 4 if marsta == 6
(968 real changes made)

. label define mstat 1 "Single, never married"
> 2 "Married, living with spouse"
> 3 "Separated, divorced, or widowed"
> 4 "Other (current/prev civil partnership)"

. label values mstat mstat

. tabulate mstat [aw = pwta17c]

Marital status Freq. Percent Cum.

Single, never married 248,085.17 46.82 46.82
Married, living with spouse 210,891.57 39.80 86.62

Separated, divorced, or widowed 69,898.505 13.19 99.81
Other (current/prev civil partnership) 996.753415 0.19 100.00

Total 529,872 100.00
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A first look at the distributions of life satisfaction broken down by marital status
indicates that married individuals are more satisfied than single, never married (SNM)
or separated, divorced, or widowed (SDW) individuals. (In what follows, I ignore the
“other” group given their small size.) For convenience, I use the rescaled variable ls

henceforth (rather than satis).

. tabulate ls mstat [aw = pwta17c], column nofreq

Marital status
= satis + 1 Single, n Married, Separated Other (cu Total

Not at all satisfied: 0.66 0.29 1.31 0.00 0.62
2 0.36 0.16 0.57 0.85 0.31
3 0.92 0.38 1.33 0.87 0.75
4 1.51 0.61 1.78 0.46 1.13
5 2.20 1.09 3.02 1.53 1.83
6 7.87 4.76 10.77 4.44 6.97
7 8.72 5.19 8.60 5.83 6.96
8 22.13 15.84 17.61 19.69 18.06
9 32.24 35.21 29.20 33.35 33.03

10 12.45 18.81 12.39 17.86 15.57
Completely satisfied: 10.93 17.65 13.41 15.12 14.77

Total 100.00 100.00 100.00 100.00 100.00

4.2 Dominance checks

I begin by reporting dominance checks rather than indices, for two reasons. First, from
a robustness point of view, it is useful to know whether a pair of distributions can be
unanimously ranked by all indices of a given family sharing key common characteristics.
Even if you and I disagree about which is the best index within the family but there is
dominance, you and I will agree about how to rank a pair of distributions—though of
course we may disagree about the magnitudes of differences. Second, because dominance
checks are usually implemented using graphs, using them is also a way of “showing the
data”.

All the raw materials for the various dominance checks can be created by ineqord us-
ing the cat*(), gl*(), and h*() options shown in the syntax diagram. When ineqord

runs using these options, it creates new variables that can be listed or displayed graph-
ically. To compare distributions of life satisfaction by marital status group, I run the
following code. The output for the indices is not shown here but is summarized later.

. // single, never married

. ineqord ls [aw = pwta17c] if mstat == 1, alpha(.9)
> catv(v_snm) catpr(f_snm) catcpr(F_snm) catspr(S_snm)
> gldvar(gld_snm) gluvar(glu_snm) hplus(hp_snm) hminus(hm_snm)

(output omitted )

. // married, living with spouse

. ineqord ls [aw = pwta17c] if mstat == 2, alpha(.9)
> catv(v_m) catpr(f_m) catcpr(F_m) catspr(S_m)
> gldvar(gld_m) gluvar(glu_m) hplus(hp_m) hminus(hm_m)

(output omitted )
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. // Separated, divorced, or widowed

. ineqord ls [aw = pwta17c] if mstat == 3, alpha(.9)
> catv(v_sdw) catpr(f_sdw) catcpr(F_sdw) catspr(S_sdw)
> gldvar(gld_sdw) gluvar(glu_sdw) hplus(hp_sdw) hminus(hm_sdw)

(output omitted )

A listing of the values of new variables for married individuals is shown below. Going
from left to right, we see there are scale labels followed by the estimates of the density
function, the CDF (with estimates corresponding to those shown by the earlier tabulate
command), the survivor function, GL ordinates for (peer-inclusive) downward-looking
status, andH+ andH− ordinates, respectively. ineqord creates the zeros in the bottom
row by default to facilitate drawing of GL and H curves.

. sort v_m

. list v_m f_m F_m S_m gld_m glu_m if !missing(F_m)

v_m f_m F_m S_m gld_m hp_m hm_m

1 .0029368 .0029368 1 8.62e-06 .0029368 292.5553
2 .0015666 .0045034 .9970632 .0000157 .0074403 146.2769
3 .0038127 .0083161 .9954966 .0000474 .0186932 73.13654
4 .0061448 .014461 .9916838 .0001362 .0435313 36.5652
5 .0108831 .0253441 .985539 .0004121 .0979457 18.27716

6 .0476428 .0729869 .9746559 .0038894 .2435341 9.114757
7 .0519418 .1249287 .9270132 .0103784 .5390101 4.531407
8 .1584475 .2833762 .8750713 .0552786 1.236468 2.18648
9 .352071 .6354473 .7166238 .2790012 2.825006 .9172045

10 .188099 .8235463 .3645527 .4339095 5.838112 .3645527

11 .1764537 1 .1764537 .6103632 11.85268 0
. . 0 0 0 0 0

Figure 1 shows the CDFs for the three marital status groups. The code used to
produce the graph follows below. (Stata 14 users should omit the “%55”, which refers
to a transparency option introduced in Stata 15.)

. twoway (line F_m v_m, sort c(stairstep) lcolor(black%55))
> (line F_sdw v_sdw, sort c(stairstep) lcolor(black) lpatt(dash))
> (line F_snm v_snm, sort c(stairstep) lcolor(black) lpatt(shortdash))
> , xlab(1(1)11) yline(0.5, lpatt(shortdash) lcol(black))
> ylab(0(.1)1, angle(0)) ytitle("it:p") xtitle("Response (rescaled)")
> legend(label(1 "Married") label(2 "Separated, divorced, widowed")
> label(3 "Single, never married") col(1)
> ring(0) position(11))
> scheme(s1color) graphregion(color(white))
> saving(aps01_Fdom_m-sdw-snm.gph, replace)
(file aps01_Fdom_m-sdw-snm.gph saved)
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Figure 1. Cumulative distribution functions (CDFs) for life satisfaction, by marital
status group

We can see immediately that 9 is the median value of ls for all three groups (the
value where cumulative population share, p = 0.5). The CDF for married adults lies
everywhere on or below the CDFs for the other two groups (F -dominance), so we can
say that married adults have higher average life satisfaction than the other two groups,
regardless of the scale used. The CDFs for the SNM and SDW groups cross, so there
is no F -dominance result. However, there is S-dominance. Below the median, the
CDF for the SDW group is further from the median than the CDF for the SNM group,
and the reverse is the case above the median. Thus, there is greater polarization in
the distribution of life satisfaction among the SDW group than among the SNM group
according to all standard polarization indices—including all members of the ANY(a, b)
and P2(e) families of indices.

To check for unanimous rankings by Cowell–Flachaire and J indices, I focus on the
peer-inclusive downward-looking definition of status for brevity. Figure 2 shows the
results of the three pairwise comparisons between groups. Below, I show the code used
for the married and SDW groups’ comparison. Analogous code for the other two pairwise
comparisons followed by graph combine produced figure 2.
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. twoway (function y = x, lpatt(shortdash) lcol(black))
> (line gld_m F_m, sort lcolor(black%55))
> (line gld_sdw F_sdw, sort lcolor(black) lpatt(dash))
> , xtitle("it:p") ytitle("GL(it:p)")
> xlab(0(.2)1, grid) ylab(0(.2)1, grid angle(0))
> legend(label(2 "Married") label(3 "Separated, divorced, widowed")
> ring(0) position(11) order(2 3) col(1))
> aspect(1) scheme(s1color)
> saving(aps01_gld_sdw-m.gph, replace)
(file aps01_gld_sdw-m.gph saved)
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note: Graphs drawn using Cowell and Flachaire’s (2017) peer-inclusive downward-looking definition

of status.

Figure 2. Generalized Lorenz curve comparisons for life satisfaction, by marital status
group

All three pairwise comparisons reveal dominance. The clearest result, in the sense
that the gap between the GL curves for status is greatest, is in the top-right picture: life
satisfaction is more unequal for the SDW group than the married group according to all
Cowell–Flachaire indices and the J index. The other two charts show that inequality
is greater among the SNM group than the married group and among the SDW group
compared with the SNM group. Thus, there is an unambiguous ranking from highest to
lowest inequality according to all Cowell–Flachaire indices and J , with the SNM group
the most unequal, the married group the least unequal, and the SDW group in between.

Figure 3 summarizes checks of Gravel, Magdalou, and Moyes’s (Forthcoming) dual
dominance criteria based on H+ and H− curve comparisons. The code used for the
comparison of H+ curves for married and single, never-married groups is shown be-
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low. Analogous code for the other two pairwise H+ comparisons and for the three H−

comparisons followed by graph combine produced figure 3.

. * H-plus dominance single, never married and married

.

. twoway (line hp_m v_m, sort lcol(black%50))
> (line hp_snm v_snm, sort lcolor(black) lpatt(dash))
> , legend(label(1 "Married") label(2 "Single, never married")
> ring(0) position(11))
> xlab(1(1)11, grid) xtitle(" ")
> ylab( 0(5)35, angle(0) grid)
> scheme(s1color) graphregion(color(white))
> saving(aps01_hplus_snm-m.gph, replace)
(file aps01_hplus_snm-m.gph saved)
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note: H+ curve comparisons are shown on the left, and H− curve comparisons are shown on the right.

Figure 3. H+ and H− curve comparisons for life satisfaction, by marital status group

Recall that for Gravel, Magdalou, and Moyes’s dual dominance criteria to be satis-
fied, we need to find the H+ and H− curves for one group nowhere above the corre-
sponding curves for another group. For these data, the orderings of the groups according
to the H+ criterion are the same as the orderings by the F -dominance criterion (be-
cause F -dominance implies H+ dominance). See the charts on the left-hand side of
figure 3. However, there is dual dominance in only one case. The distribution of life
satisfaction among the single, never-married group is more equal than the distribution
among the separated, divorced, widowed group: the H+ and H− curves for the former
group are nowhere below those for the latter group. This ordering of the two groups,
based on Hammond transfer principles, is the same as their ordering according to the



524 Comparing distributions of ordinal data

S-dominance criterion (referring to greater polarization about the median) and is also
the same as their GL dominance ordering (see figure 2).

4.3 Indices of polarization and inequality

Estimates of specific polarization and inequality indices are consistent with this dom-
inance result and also the S-dominance result cited earlier (the SDW group is more
polarized about the median than the SNM group). Specific indices are also useful
for deriving inequality and polarization orderings when there is no dominance result
and, of course, can be used to place a number on the magnitude of differences. To
illustrate these points, I present estimates of a selection of inequality indices [I(α) for
α = 0, 0.25, 0.5, 0.75, 0.9; and J ; all using a peer-inclusive downward-looking status def-
inition] and three polarization indices, ANY(1, 1), the top-sensitive ANY(4, 1), and the
bottom-sensitive ANY(1, 4). In addition, I show how one can derive standard errors for
the indices using Saigo, Shao, and Sitter’s (2001) repeated half-sample bootstrap using
Van Kerm’s (2013) rhsbsample (available from the SSC archive), with 500 bootstrap
replications in this case. With the APS’s very large sample size, the indices are going to
be precisely estimated and confidence intervals narrow, even for subgroup calculations,
but this is not generally the case with survey data. (See Jenkins [Forthcoming] for
examples.) Hence, this code may be usefully applied in other contexts.

The code below shows the derivations for the married group. First, I drop ob-
servations with missing values. Second, I use rhsbsample to create the bootstrap
sample weights. Third, I svyset the data. If survey design variables other than
weights—primary sampling unit and strata variables—had been available, this is where
they would have been cited. Fourth, I call ineqord using the svy bootstrap pre-
fix command. Observe that I use the alpha(0.9) option to derive estimates of the
Cowell–Flachaire indices, I(α), for values of α spanning its range. (I also derived esti-
mates for more polarization indices than I cited earlier, just in case I needed them.) The
“d” suffix on the estimates’ names reminds us that I am using Cowell and Flachaire’s
peer-inclusive downward-looking status definition. Finally, I save the estimates of in-
dices, standard errors, and confidence intervals to a dataset using Newson’s (2003)
parmest utility command (latest version available from the SSC archive).

. ** Married **

. use aps_3yr_jan15dec17_eul if MARSTA == 2, clear

. rename _all, lower

. generate ls = .
(219,411 missing values generated)

. replace ls = satis + 1 if satis >= 0 & !missing(satis)
(140,679 real changes made)

. label variable ls "Response (scaled)"

. label define ls 1 "Not at all satisfied: 1" 11 "Completely satisfied: 11"

. label values ls ls

. drop if missing(ls)
(164,851 observations deleted)

. rename pwta17c wgt // for convenience
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. drop if missing(wgt)
(0 observations deleted)

. local R = 500

. forvalues i = 1/`R´ {
2. qui gen rhsbrw`i´ = .
3. qui rhsbsample, weight(rhsbrw`i´)
4. qui replace rhsbrw`i´ = rhsbrw`i´ * wgt
5. }

. svyset [pw = wgt], vce(bootstrap) bsrweight(rhsbrw*) mse

pweight: wgt
VCE: bootstrap
MSE: on

bsrweight: rhsbrw1 .. rhsbrw500
Single unit: missing

Strata 1: <one>
SU 1: <observations>

FPC 1: <zero>

. svy bootstrap ithreequ = (r(ithreequ)) ithreeqd = (r(ithreeqd))
> ihalfu = (r(ihalfu)) ihalfd = (r(ihalfd)) ioneqd = (r(ioneqd))
> i0u = (r(i0u)) i0d = (r(i0d)) ipt9u = (r(ixu)) ipt9d = (r(ixd))
> any11 = (r(any11)) any21 = (r(any21)) any12 = (r(any12))
> any41 = (r(any41)) any14 = (r(any14))
> apoueypt5 = (r(apoueypt5)) blairlacy = (r(blairlacy))
> jd = (r(Jd))
> N = (r(N)) sumw = (r(sumw))
> median = (r(median)) mean = (r(mean)) sd = (r(sd))
> , dots
> : ineqord ls, alpha(0.9)
(running ineqord on estimation sample)

(output omitted )

. parmest, idn(2) saving(aps02_bstrap-m_parmest.dta, replace)
(note: file aps02_bstrap-m_parmest.dta not found)
file aps02_bstrap-m_parmest.dta saved

I repeated this code for the SNM and SDW groups as well, specifying different ar-
guments for parmest’s idn(.) option in each case to separately identify the estimates
for the three marital status groups when I combined the three datasets using append.
Using the combined-estimates dataset, we can straightforwardly summarize differences
across groups, by index, in graphical form. See figure 4 created by first creating graphs
for each index and then using graph combine. Here is the code used to display the
estimates for I(0):

. twoway (rcap min95 max95 idnum if parm == "i0d", lcol(black) horizontal)
> (scatter idnum estimate if parm == "i0d", mc(black))
> , ylab(1(1)3, angle(0) valuelabel) ytitle(" ")
> xlabel(0.7(.05).8, format(%3.2f)) xmtick(.7(.01).8)
> xtitle("Cowell-Flachaire, I(0)") legend(off)
> graphregion(color(white))
> saving(aps03_bstrap-all_parmest_i0d.gph, replace)
(note: file aps03_bstrap-all_parmest_i0d.gph not found)
(file aps03_bstrap-all_parmest_i0d.gph saved)
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All indices are very precisely estimated, and all between-group differences are sta-
tistically significantly different from 0.

The rankings of marital status subgroups in figure 3 are of course consistent with the
dominance results discussed earlier. However, there was no S-dominance result for the
polarization comparisons between the married group and each of the other two groups,
so index values are valuable for providing a polarization ranking. Interestingly, figure 4
shows that this depends on the index chosen. For ANY(1, 1) and ANY(1, 4), the ranking
is the same as for the inequality indices. However, for top-sensitive index, ANY(4, 1), the
married group shows the greatest polarization rather than the lowest. What is driving
this result is that the married group has relatively large fractions of responses in the
top-two life-satisfaction scale categories in contrast with the other two groups (see the
tabulation of life satisfaction by marital status shown earlier).

Indices also tell us about the magnitudes of differences across groups. As it happens,
the I(α) and J indices provide similar estimates. For example, all of them indicate that
the difference in life satisfaction inequality between the most unequal group (SDW) and
the least unequal group (married) is around 7%. More marked differences are apparent
for the ANY polarization indices. For example, for ANY(1, 1), which is also the average
jump index, the difference in polarization between the SDW and married groups is around
39%, whereas for ANY(1, 4), it is around 17%. For ANY(4, 1), it is −20%.



S. P. Jenkins 527

S N-M

M

S|D|W

 
0.70 0.75 0.80

Cowell-Flachaire, I(0)

S N-M

M

S|D|W

 

1.75 1.80 1.85 1.90
Cowell-Flachaire, I(0.25)

S N-M

M

S|D|W

 

1.00 1.05 1.10
Cowell-Flachaire, I(0.5)

S N-M

M

S|D|W

 

1.75 1.80 1.85 1.90
Cowell-Flachaire, I(0.75)

S N-M

M

S|D|W

 

4.0 4.1 4.2 4.3 4.4 4.5
Cowell-Flachaire, I(0.9)

S N-M

M

S|D|W

 

0.55 0.56 0.57 0.58 0.59 0.60
J

S N-M

M

S|D|W

 

0.20 0.25 0.30
Abul Naga & Yalcin, ANY(1,1)

S N-M

M

S|D|W
 

0.2 0.3 0.4
Abul Naga & Yalcin, ANY(4,1)

S N-M

M

S|D|W

 

0.30 0.35 0.40
Abul Naga & Yalcin, ANY(1,4)

note: Each component figure shows point estimates of inequality and polarization indices and their

associated 95% confidence intervals (derived using bootstrap standard errors; 500 replications using

appropriate bootstrap weights). “S|D|W”: separated, widowed, or divorced. “M”: married. “S N-M”:

single, never married.

Figure 4. Indices of life-satisfaction inequality and polarization, by marital status group

4.4 Using grouped data with ineqord

ineqord is designed for use with datasets containing individual-level responses, but it
is straightforward to also use it if only grouped response data are available, specifically,
if one has information on the number of individuals reporting each response level (or
fraction of individuals) or the empirical CDF.

For example, Abul Naga and Yalcin (2008, table 2) report the empirical CDF for
self-reported health status recorded on a 5-level scale (“very bad”, “bad”, “so so”,
“good”, “very good”) for each of seven statistical areas in Switzerland. The empirical
CDF for the Central region can be reproduced using the following code to characterize
the distribution of responses:

. set obs 100
number of observations (_N) was 0, now 100

. generate central = .
(100 missing values generated)

. replace central = 2 if _n <= 2
(2 real changes made)
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. replace central = 3 if _n > 2 & _n <= 13
(11 real changes made)

. replace central = 4 if _n > 13 & _n <= 76
(63 real changes made)

. replace central = 5 if _n > 76
(24 real changes made)

. tabulate central

central Freq. Percent Cum.

2 2 2.00 2.00
3 11 11.00 13.00
4 63 63.00 76.00
5 24 24.00 100.00

Total 100 100.00

No individuals in the Central region reported “very bad” health status and so simply
typing ineqord central will produce incorrect results, for the reasons discussed earlier.
However, typing ineqord central, nlevels(5) produces estimates that are the same
as those reported by Abul Naga and Yalcin (2008, table 4). Application of analogous
code using information about the empirical CDFs for the other six regions reproduces
the estimates for the regions reported in Abul Naga and Yalcin’s table 4, as well as
provides estimates for other indices that they did not consider. With appropriate use of
ineqord options, it is easy to also derive the outputs required to undertake dominance
checks.

Using the same grouped-data approach, I have verified that ineqord produces the
same estimates of ANY polarization indices as reported by Madden (2010) for self-
reported health status in Ireland in each year 2003–2006. I can also reproduce the
estimates of the Blair–Lacy 1 − l2 polarization index shown by Blair and Lacy (2000,
table 2) once I account for some typographical errors (estimates of l2 are reported in
the wrong table rows).

5 Summary and conclusions

The personal well-being of individuals is increasingly being measured using questions
requiring responses on a Likert-type scale. Life satisfaction and self-assessed health
status are leading examples of these measures, and they yield distributions of ordinal
data. To compare such distributions across groups of individuals or over time, we should
not apply the toolbox of methods developed for cardinal variables such as income. These
methods rely on the mean as a reference point, but changing the scale in the ordinal data
case can change the orderings of distributions according to their means or other measures
based on the mean, including conventional inequality indices. Thus, we should use an
analogous toolbox that accounts for the ordinal nature of the responses. This article
reviewed these methods and introduced a new command, ineqord, for undertaking
distributional comparisons. As the empirical illustrations demonstrated, ineqord can
be used for dominance checks as well as for estimation of indices of polarization and
inequality.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-3

. net install st0606 (to install program files, if available)

. net get st0606 (to install ancillary files, if available)
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