
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2020)
20, Number 3, pp. 532–547 DOI: 10.1177/1536867X20953566

sfcount: Command for count-data stochastic
frontiers and underreported and overreported

counts

Eduardo Fé
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1 Introduction

In this article, we introduce a new command, sfcount, that estimates the parameters
of the count-data stochastic frontier model in Fé and Hofler (2013).

Stochastic frontier models (Aigner, Lovell, and Schmidt 1977; Meeusen and van
den Broeck 1977) are central to the identification of inefficiencies in the production
(and production costs) of continuously distributed outputs. In labor, industrial, and
health economics, production frontiers have also been adopted to explain deviations from
maximum or minimum levels of nontangible and nonpecuniary outcomes. However, in
these latter domains, outcomes are often measured as counts (for example, the number
of patents obtained by a firm or the number of infant deaths in a region). Although these
latter fields of inquiry have not emphasized the idea of inefficiency in the “production” of
nontangible and nonpecuniary outcomes, recent contributions (for example, Fé [2013];
Fé and Hofler [2013]) suggest that inefficiencies are also present in these domains.

The need for specific count-data models for stochastic frontiers arises because this
results in more efficient estimation (for example, Greene [2018]) and, more critically,
inefficiency is typically not nonparametrically identified from data alone. Therefore,
researchers have to make specific assumptions regarding the distribution of inefficiency
in the sample or the population. These assumptions define the class of admissible distri-
bution underlying outcomes. Standard continuous data models attribute any negative
(positive) skewness in the sample to inefficiencies in the production of economic goods
(bads). However, the distributions of discrete outcomes are typically skewed even in the
absence of inefficiencies (for example, the Poisson distribution), and the sign of skewness
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is generally independent of whether one is studying an economic good or an economic
bad. Thus, standard stochastic frontier models can fail to detect any inefficiency in pro-
duction when the outcome of interest is a count—even when the underlying inefficiency
is substantial.

The core count-data stochastic frontier model is based on a mixed Poisson distribu-
tion with a log-half-normal mixing parameter (or a Poisson log-half-normal [PHN] in the
parlance of Fé and Hofler [2013]). Although the motivation behind this model was the
estimation of stochastic frontiers under discrete valued outcomes, the PHN can be used
for modeling underreported counts as well as overreported counts. These situations
are pervasive when studying worker’s absenteeism (Winkelmann 1996), consumer data
(Fader and Hardie 2000), drug abuse (Brookoff, Campbell, and Shaw 1993), or traffic
accidents (Alsop and Langley 2001), among others. Among the models traditionally
used for modeling these events, the beta-binomial and Poisson-lognormal models have
been widely used. The PHN is a complement to these specifications.

The code presented here extends the catalog of Stata commands pertaining to the
stochastic frontier literature, including the original Stata commands frontier and
xtfrontier as the recent extensions sfcross and sfpanel by Belotti et al. (2013).
The original model in Fé and Hofler (2013) was cross-sectional. Therefore, this code
does not account for individual time-invariant heterogeneity. In the continuous outcome
stochastic frontier literature, panel-data extensions abound. For an excellent review—
including extensions—see Greene (2005); a recent important methodological contribu-
tion is Belotti and Ilardi (2018). Similarly, the original model in Fé and Hofler (2013)
did not deal with endogenous regressors. This is an active area of research in the general
stochastic frontier literature. Seminal contributions include Kutlu (2010), Griffiths and
Hajargasht (2016), and Amsler, Prokhorov, and Schmidt (2016).1 The development of
a count-data model with covariates endogenous to inefficiency is an unexplored area of
work.

2 Methods

To introduce the PHN model, we adopt the stochastic frontier terminology in Fé and
Hofler (2013). The relationship to underreported or overreported count models will be
apparent from the context. There is a sample of i = 1, . . . , n units containing data on
a discrete outcome of interest yi ∈ {0, 1, 2, . . .}. The mean production frontier of y is
determined by the mapping

log λ̃ = h(x;β)

where λ̃ ∈ R+. Conditional on a level of inefficiency (or level of underreporting or
overreporting) ε ∈ R+, the mean deterministic frontier is

log λ = h(x;β)± ε

1. Other recent contributions are found in Karakaplan and Kutlu (2017a,b). For accompanying code,
see Karakaplan (2017).
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Because we are modeling nonnegative count data, we transform the last equation to

λ = exp{h(x;β)± ε}

Following convention, we assume that y has a Poisson distribution conditional on a
set of regressors, x, and ε, with λ as the conditional mean of the distribution. The
unconditional distribution follows by endowing ε with a specific density. Following the
convention in the stochastic frontier literature, Fé and Hofler (2013) assume that ε
follows a half normal distribution, so that

f(ε) = f(ε;σ) =
2

σ
√
2π

exp

(
− ε2

2σ2

)
I[0,∞) for σε > 0 (1)

This density has the advantage of allowing some flexibility, thanks to its scale parameter.
It also leads to a model whose first-order moments are well defined (a property that is
not shared by some popular distributions).2

If f(ε) is half normal, we can write ε = |u|, where u has a normal distribution.
With this notation, and letting h(x;β) = x′β, the conditional distribution of y given x
follows by averaging P(y|x, u) over the range of u,

P(y|x;σ,β) = E

(
[exp{− exp(x′β ± σ|u|)}] exp{y(x′β ± σ|u|)}

y!

)
= E [Poisson {exp(x′β ± σ|u|)}] (2)

where expectations are taken with respect to the standard normal distribution. Fé and
Hofler (2013) provide expressions for the moments of f(ε) when this follows a half-
normal density function, as well as expressions for the conditional mean and variance of
y. The PHN distribution does not have a closed-form expression; however, the integral
in (2) can be approximated by simulation. Specifically, Fé and Hofler (2013) advo-
cate combining maximum simulated likelihood (MSL) estimation of the PHN model with
Halton sequences (Gentle 2003). Applying simulation, we approximate the conditional
distribution of yi (for i = 1, . . . , n) by the sum

P(y|x;θ) ≈ P̂(y|x; sh,θ) =
1

H

H∑
h=1

Poisson{exp(x′β ± σ|sh|)}

where θ′ = (β′, σ) and sh are the terms of a Halton sequence, possibly randomized.
The infeasible log likelihood Ln =

∑n
i=1 logP(y|x;θ) can be approximated by Ln,h =∑n

i=1 log P̂(y|x; sh,θ). The analytical derivatives of Ln,h are given by

∂Ln,h

∂θ
=

n∑
i=1

1

P̂(yi|xi; sh,θ)

1

H

H∑
h=1

Poisson
(
λ̃i,h

)(
yi − λ̃i,h

){
xi

±|sh|

}
2. For example, when that ε has gamma distribution with parameters α > 0 and δ > 0 such that

δ = α; see Fé and Hofler (2013).
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where λ̃i,h = exp(x′
iβ ± σ|sh|). The value θ̂MSL making the above system of equations

equal to zero is the MSL estimator of θ. When the PHN is a correct representation of the
underlying data-generating process, θ̂MSL is a consistent, asymptotically normal and
efficient estimator of the true parameter value, as follows from properties (1) and (2)
above. Standard errors can be computed via the Berndt–Hall–Hall–Hausman estimator
or the minus inverse of the Hessian matrix of Ln,h.

Tests of hypotheses can rely on the Wald score likelihood-ratio trinity. Testing the
null hypothesis of no inefficiency is of particular interest. The null hypothesis would be

H0 : σ = 0

in which case PHN collapses to a standard Poisson model. A formal test can be com-
puted via a likelihood ratio comparing the resulting value with the quantiles of a χ2

1

distribution.

2.1 Estimating cross-sectional inefficiency

Although the parameters of the frontier are of interest in themselves, the ultimate goal
of most stochastic frontier analyses is to obtain approximate efficiency scores (that is,
measures of the deviations away from either maximum or minimum values of the out-
come) for each individual in the sample. Following Jondrow et al. (1982) cross-sectional
inefficiency scores, we can estimate v = exp(±|u|) via E(v|y,x). Using Bayes’s theorem,
we see

f(v|x, y) = P(y|x, v)f(v)
P(y|x)

so that

E(v|y,x) =
∫
vf(v|x, y)dv

The latter expression does not have a closed form. However, we may still approx-
imate the relevant integral via simulation. The simulated E(v|y,x) for the parametric
mixed Poisson model is

v̂i = E(vi|xi, yi) ≈
∑H

h=1 exp(±|sh|σ) Poisson{exp(x′
iβ + σ|sh|)}∑H

h=1 Poisson{exp(x′
iβ + σ|sn|)}

Two remarks are important here. First, the distributions of v and v̂ are not the
same,3 and the lower and upper tails of the distribution of v will be misreported. From
a stochastic frontier perspective, this means that v̂ penalizes outstanding firms and
rewards the least efficient individuals—although the average efficiency in the sample is
correctly approximated. However, the estimator is unbiased in the unconditional sense
E(v̂ − v) = 0 (Wang and Schmidt 2009).

3. As can be seen by noting that var(v) = var{E(v|x, y)} + E{var(v|x, y)} (hence, v̂ has smaller
variance).



536 sfcount

Second, in applications, the scores depend critically on the term Poisson{exp(x′
iβ+

σ|sh|)}. If the mean of this distribution, exp(x′
iβ + σ|sh|), is too large in relation to

Y for any one observation, then Poisson{exp(x′
iβ + σ|sh|)} will be approximately 0.

Therefore, for that observation, the cross-sectional estimate of inefficiency will be 0/0,
which Stata reports as a missing value. We thus recommend researchers ensure that the
explanatory variables are measured in meaningful units, albeit of small magnitude.

3 The sfcount command

3.1 Syntax

sfcount depvar indepvars
[
if
] [

in
] [

, draws(#) technique(string) cost

cluster(string) vce(vcetype)
]

where depvar is the dependent variable and indepvars are the explanatory variables.

3.2 Options

draws(#) specifies the number of Halton draws. The default is draws(200). The model
is fit via MSL. To approximate the likelihood function of the Poisson log-half-normal
model, the command uses Halton sequences (a low-discrepancy sequence). Halton
sequences ensure a good coverage of the unit interval (for example, Niederreiter
[1992]).

technique(string) specifies the optimization technique. The default is technique(nr),
which is the modified Newton–Raphson. You can switch between dfp (Davidon–
Fletcher–Powell), bhhh (Berndt–Hall–Hall–Hausman), and bfgs (Broyden–Fletcher–
Goldfarb–Shanno).

cost specifies that the underlying model is a cost function (or, equivalently, an over-
reporting or deviation above the minimum-level function). By default, sfcount

estimates a production function (or, equivalently, an underreporting or deviation
below the maximum-level function).

cluster(string) specifies the name of a variable that creates intragroup correlation,
relaxing the usual requirement that the observations be independent.
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vce(vcetype) specifies how the variance–covariance matrix of the estimators is to be
calculated. Allowed values are the following:

vcetype Description

"" use default for technique()
oim observed information matrix
opg outer product of gradients
robust Huber/White/sandwich estimator
svy survey estimator; equivalent to robust

The default is vce(oim), except for technique(bhhh), where it is vce(opg). If
cluster() is used, the default becomes vce(robust).

3.3 Cross-sectional estimates of inefficiency

The command automatically generates a variable named inefficiency collecting the
cross-sectional scores.

3.4 Example: Stochastic frontier

For this example, we generated 1,000 observations from a PHN distribution with mean
exp(1 + x1 + x2 − v), where xj ∼ uniform[0, 1] and v has a half-normal distribution
with σ = 1 (the code to generate the data appears in the discussion of the Monte Carlo
simulation below). This yielded the following output:

. sfcount dep x1 x2, technique(bfgs)

(output omitted )

Number of obs = 1,000

dep Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
x1 1.013035 .079668 12.72 0.000 .8568881 1.169181
x2 1.109455 .0776122 14.29 0.000 .9573378 1.261572

_cons .926134 .0694714 13.33 0.000 .7899726 1.062295

eq2
_cons .0229478 .0525059 0.44 0.662 -.0799619 .1258575

Note: _cons in eq2 corresponds to the log of the standard error
of the mixing log-half-normal parameter

Ho: Inefficiency not present in the sample
chi2(1) = 321.68
Prob > chi2 = 0.00

The output follows standard Stata convention. The first block of results, eq1,
presents the estimates of the structural coefficients of the regressors (including an in-
tercept). The second block of results, eq2, presents the estimate of log(σ). Therefore,
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the point estimate of σ can be retrieved by using the transformation σ = exp( cons) in
eq2. Below the table of main results, one finds the likelihood-ratio test for H0 : σ = 0.
In this case, the statistic equals 321.68 with associated p-value of 0.00 (and thus one
would reject the null hypothesis).

sfcount automatically calculates the cross-sectional inefficiency scores and stores
them in a new variable, inefficiency. The following summary statistics compare the
average and actual estimated inefficiencies.

. summarize inefficiency ehat

Variable Obs Mean Std. Dev. Min Max

inefficiency 1,000 .5159984 .1751458 .1174226 .8997577
ehat 1,000 .5291941 .2543593 .0438493 .9997777

The variable ehat collects the true inefficiency scores, whereas the second variable,
inefficiency, collects the estimated inefficiency scores. It is clear that, as Wang and
Schmidt (2009) point out, the cross-sectional estimator is unbiased in an unconditional
sense; thus, it provides very accurate estimates of the average inefficiency. Even though
figure 1 reveals a discrepancy between the actual and the estimated scores (which is
expected because, in this simulation, xj do not provide any information about the
inefficiency parameter), there is also a strong positive correlation between the actual
and estimated inefficiencies. The smaller standard deviation (SD) in the estimated
inefficiencies is due to v̂ being a shrinkage of v toward its mean (as Wang and Schmidt
[2009] note).
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Figure 1. Real versus estimated cross-sectional inefficiency
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4 Monte Carlo simulation

To verify the properties of the method and the robustness of the software, we run a
Monte Carlo simulation. We drew samples of 100 observations from a PHN model with
conditional mean exp(1+x1+x2−σv), where xj ∼ uniform[0, 1] and v has a half-normal
distribution with σ ∈ {0.5, 1, 2}. We estimated the parameters of this model 500 times.
We wrote a short ado-file, mc1, to generate the data, fit the model, and return the result
to Stata’s simulate command.4 The results of each experiment are presented now. For
σ = 0.5, we obtained the following results.

Variable Obs Mean Std. Dev. Min Max

b0 500 .9968649 .1848761 .4428408 1.652993
b1 500 1.00012 .1827392 .4863433 1.519381
b2 500 .9707445 .1909647 .4019189 1.443396
s 500 .4656329 .1557467 .0001077 .8336025

reject 500 .654 .4761696 0 1

Here b0 corresponds to the intercept, b1, b2 are the coefficients of x1, x2, respec-
tively, s is the estimate of σ, and reject is the proportion of times the null hypothesis
σ = 0 was rejected by the likelihood-ratio test. We observe that, even for the very small
sample size considered, the parameters of the model are very accurately estimated on
average. Specifically, the critical parameter σ was tightly concentrated around the true
value of 0.5. The empirical power of the likelihood-ratio test was 65%, which is accept-
able given the small sample size. Similar conclusions were reached with the alternative
specifications.5

What would occur if the standard normal–half-normal model in Aigner, Lovell, and
Schmidt (1977) were fit to these data instead? We illustrate the situation through a
simulation for both the cost and production frontier cases. We maintain the same design
but we will focus on the case σ = 1 for simplicity. Following convention in Aigner, Lovell,
and Schmidt (1977), we fit the model

log y = θ0 + θ1 log x1 + θ2 log x2 ± u+ v

where now, u is the inefficiency term (distributed half-normal) and v is the idiosyncratic,
zero-mean error term. The case +u corresponds to the cost function, whereas the case
−u corresponds to the production frontier. The code to run this simulation is similar
to mc1.ado; however, sfcount is replaced by the built-in command frontier, and
the variables are transformed to logs. The critical parameters in this model are the
standard errors of u and v, say σu, σv. Specifically, the ratio λ = σu/σv is the commonly
used measure of the magnitude of inefficiency in the sample. In addition to this, the
likelihood-ratio test of σu = 0 serves, as before, as the statistic to draw inferences
regarding the statistical significance of inefficiency in the sample. The result of this is

4. The code for the simulation can be obtained from the authors upon request.
5. The results can be also obtained from the authors upon request.
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Variable Obs Mean Std. Dev. Min Max

b0 500 .2211184 .0890768 .0012678 .6122401
b1 500 .2313553 .0854484 .0486661 .6074979
b2 500 2.499497 .2308907 1.412019 3.118477
s 500 2158507 8511800 .0325458 5.28e+07

reject 500 .726 .4464556 0 1

k3 500 -.1886938 .1433905 -.6482261 .213362

The critical quantities in the simulation are k3 and s (which corresponds to the ratio
λ = σu/σv). The production stochastic frontier model expects negative skewness in the
log of the dependent variable, and on this occasion, the average skewness happens
to be negative (but this is not always the case, as illustrated below). Indeed, the
type of skewness exhibited by log Y will depend on the specific parameterization of
the generating process (note that the untransformed data will always have a positively
skewed distribution). The most critical aspect of these results is that the parameter λ is
estimated very imprecisely. The large value of the estimated parameter suggests that too
often the model cannot separate inefficiency from pure noise and that all the variation
in the sample is erroneously attributed to inefficiency. In contrast, the likelihood-ratio
test rejects the null hypothesis only about 70% of the time. The results for the cost
frontier are similarly worrying:

Variable Obs Mean Std. Dev. Min Max

b0 498 .2829813 .0885495 .0617461 .6670547
b1 498 .2877539 .0910561 .0603849 .6406236
b2 498 2.79976 .3151728 2.19097 3.677881
s 498 97321.05 1311344 .0013252 2.15e+07

reject 498 .3815261 .4862496 0 1

k3 498 .0985375 .2989368 -.7290995 .9630092

In this case, maximum likelihood failed to converge in two replications. As with the
production frontier case, the parameter λ is imprecisely estimated (because all variation
tends to be attributed to inefficiency). Yet, paradoxically, the significance of the inef-
ficiency term is rejected only about 38% of the time. The critical aspect of this result
is that although the distribution of log Y has the right type of skewness (positive), its
magnitude is very small; therefore, the cost stochastic frontier model fails to identify
any inefficiency, even though this is prevalent in the data.

An even more problematic example arises when we let σ = 3 and try to estimate a
production frontier. Here the skewness of log Y is positive, which presents a violation
of one of the assumptions underlying the continuous-data stochastic frontier model. In
this instance, the latter method fails to detect any inefficiency at all:
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Variable Obs Mean Std. Dev. Min Max

b0 500 .1504993 .1210131 -.2304306 .8188418
b1 500 .1507706 .1221521 -.2453529 .7454497
b2 500 1.335596 .4623144 .6625592 3.285585
s 500 479674 3430413 .0114056 3.44e+07

reject 500 .056 .230152 0 1

k3 500 .2978432 .2033263 -.285708 .9867306

As seen from the above results, the likelihood-ratio test rejects the null hypothesis
at the nominal 5% level, whereas λ remains imprecisely estimated.

In summary, the continuous-data stochastic frontier model can be problematic in
practice when data are coming from the PHN specification.

5 Example: The distribution of infant deaths in England

We next illustrate the use of the sfcount command in practice. Specifically, we model
the conditional distribution of infant deaths in England during 2015 and 2016. The help
file accompanying the sfcount command details how to reproduce the results of this
exercise.

Infant deaths have a large opportunity cost for societies and constitute a marker of
the overall health status of a population. Commonly cited risk factors are parental risk
behavior, pollution, economic deprivation, and the quality of health providers, although
a large proportion of infant deaths are not attributable to any specific cause (and are
cataloged as sudden infant death syndrome). It is unclear, however, if the latter deaths
still show systematic variation across different areas even after accounting for the effect
of measurable determinants of infant deaths. The PHN can help us to detect which areas
overreport infant deaths conditional on the area’s characteristics (that is, which areas
are inefficient in the production of infant deaths).

To illustrate the workings of the PHN when addressing this question, we downloaded
data on infant deaths by local area for the years 2015 and 2016 from the website of
the UK Office for National Statistics. We complemented these data with information
on local area characteristics from the 2011 UK Census. The focus of the analysis in this
exercise is socioeconomic status and air quality. Socioeconomic status has been shown
to correlate with health and wealth. Air pollutants can induce respiratory disease (in-
cluding bronchitis, pneumonia, allergies, or asthma). Among these pollutants, nitrogen
oxides (by-products of fuel consumption and the production of electricity) are thought
to be important determinants of respiratory diseases.

We proxy each area’s socioeconomic status with, first, the number of people claiming
income benefits per 1,000 of the population and, second, the area’s employment rate.
Low birthweight is a risk factor for infant mortality; therefore, in our model we also
incorporate the percentage of babies born at a gestational age of greater than or equal
to 37 weeks and with a birthweight of less than 2,500g. Our indicator of air quality
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is the area’s average nitrogen oxide emissions intensity score, NOx. This is an 8-point
scale with higher scores indicating higher emissions. We found a few discrepancies
between the names and geographic boundaries in the 2011 UK Census and the Office for
National Statistics’ most recent data files containing the counts of infant deaths. Given
the limited scope of this example, we opted to discard those areas for which data on
the covariates were not available for that reason. This leaves us with full data for 309
local areas. For the purposes of this analysis, we pooled the 2015 and 2016 data, while
areas’ characteristics were imputed from the 2011 Census.

Descriptive statistics of our limited sample are provided in table 1. The average
number of deaths across England was 6.9; however, the distribution is skewed, with a
long right tail, as can be seen in figure 2 (the maximum number of deaths observed
was 62, in the city of Manchester; note that London has been disaggregated in 31
subareas). The average population in each area is 139,680 inhabitants, whereas the
average proportion of underweight births is 7.2%. On average, 12.9% of the population
was claiming income benefits, whereas the average employment rate was 77%. The
average NOx score in the sample was 4.1. However, variation is vast, ranging from 1.1
to 8.

Table 1. Descriptive statistics

Mean SD Min. Max.

Number of infant deaths 6.945 7.054 0 62
Nitrogen oxide emissions score 4.144 1.649 1.143 8
% Underweight births 7.180 1.323 2.800 11.60
Population 139680.0 83175.8 24457 715402
Employment rate 76.82 3.992 64.73 84.45
Year 2016 0.500 0.500 0 1
East of England 0.149 0.356 0 1
East Midlands 0.129 0.336 0 1
London 0.100 0.301 0 1
North East 0.0324 0.177 0 1
North West 0.120 0.325 0 1
South East 0.214 0.410 0 1
South West 0.107 0.309 0 1
West Midlands 0.0874 0.283 0 1
Yorkshire and the Humber 0.0615 0.240 0 1

N 618
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Figure 2. Distribution of infant deaths in England. Years 2015 and 2016.

Before undertaking our analysis, and in view of the results presented in section 4,
we studied the empirical distribution of the logarithm of the count of infant deaths.
This variable would be sitting at the core of any stochastic frontier analysis using the
benchmark continuous-data models (for example, the normal–half-normal model). The
mean of this variable is based on 584 observations instead of 618 (5.5% of the areas report
0 deaths) and equals 1.642. Importantly, its skewness equals −0.0444. Parametric cost
stochastic frontier models, however, expect the dependent variable to exhibit positive
skewness. Indeed, the distribution of the log-deaths variable does not seem to be skewed
at all, and a standard test of normality based on the third and fourth moments of
the variable did not reject the null hypothesis (sktest; p-value 0.5883). Therefore,
data do not seem to support the premises of standard continuous-output stochastic
frontier models. This suggests that a standard continuous-data frontier model will not
provide a good fit for this variable, as already discussed in section 4. Unsurprisingly,
the normal–half-normal model struggled to converge to a solution (because of a “not
concave likelihood”).

Having discarded the continuous-data stochastic frontier model, we proceeded to fit
a battery of PHN models under nested conditioning sets. Table 2 presents the estimated
coefficients of these models. As expected, population size is an important determinant
of infant deaths, with larger populations seeing a higher number of deaths. Importantly,
we observe that socioeconomic status is negatively associated with infant deaths. Specif-
ically, higher employment rates are strongly associated with a lower count of deaths;
however, we found that income benefits and infant deaths are negatively correlated.
However, the significance of this contradictory result is sensitive to the structure of the
model, which casts some doubts about the reliability of this finding. We did not find any
significant association between low birthweight and infant deaths. The most striking
result, however, is the very strong association between air pollution and infant deaths.
Specifically, higher levels of nitrogen oxides are associated with higher infant deaths.
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Table 2. PHN model (conditional mean)

(1) (2) (3) (4)

Log population 0.396∗∗∗ 0.357∗∗∗ 0.248∗∗∗ 0.268∗∗∗

(6.16) (5.74) (4.30) (4.82)

% Underweight births 0.0391 0.0111 −0.00691
(1.25) (0.41) (−0.26)

Income benefit claimants −0.0281∗∗∗ −0.0178∗ −0.0185∗

(per 1000 pop.) (−3.44) (−2.42) (−2.56)

Employment rate −0.0968∗∗∗ −0.0582∗∗∗ −0.0656∗∗∗

(−13.00) (−7.77) (−7.96)

NOx 0.245∗∗∗ 0.255∗∗∗

(14.20) (11.80)

Year 2016 indicator 0.0499
(1.01)

Intercept −3.901∗∗∗ 4.245∗∗∗ 1.731∗ 2.092∗

(−5.14) (4.73) (2.11) (2.37)

Regional indicators – – – Y

log σ 0.135∗∗ −0.0822 −0.277∗∗∗ −0.377∗∗∗

(3.08) (−1.82) (−6.00) (−7.12)

notes: t statistics in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

All models except (2) return a statistically significant log σ, which suggests that
there is substantial “inefficiency” in the sample in the form of higher levels of deaths
given the levels predicted by our model. Table 3 summarizes the estimated inefficiency
in each of the nine constituent areas. The average value of ν̂ for the whole sample
is 1.9. There is substantial variation across regions. Inefficiency is lowest in the West
Midlands (1.8). However, while the average estimated inefficiency score for most other
regions sits at 1.8–1.9, the estimated inefficiency score for Yorkshire and the Humber
is 2.3. Yorkshire and the Humber has the second-largest employment rate in the sample
and the second-lowest NOx emissions score; however, it has the relatively highest level
of benefit claimants and underweight births. Given the prominence of employment
rate and NOx scores in our model, it would appear that Yorkshire is underperforming
compared with other equally well-off areas of England. In particular, this area seems
to exhibit levels of infant death that more than double their predicted levels, given the
area’s socioeconomic and environmental credentials.
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Table 3. Inefficiency by region

Mean SD Min. Max.

East of England 1.937 0.763 1.152 5.479
East Midlands 1.849 0.533 1.278 3.552
London 1.913 0.672 1.113 3.699
North East 1.791 0.451 1.268 2.723
North West 1.921 0.838 1.149 6.461
South East 1.903 0.720 1.195 6.158
South West 1.870 0.596 1.300 4.320
West Midlands 1.753 0.427 1.255 3.132
Yorkshire and the Humber 2.302 1.516 1.256 6.227

Total 1.908 0.755 1.113 6.461

We conclude this illustration of the sfcount command in practice with two caveats
regarding the preceding application. Some significant limitations restrict the scope and
interpretation of the results. First, the model captures association only between the
dependent and independent variables. In particular, we fall short of making any causal
claims, especially in view that deaths, socioeconomic status and air quality might be
either jointly determined or influenced by common unmeasurable factors. These factors
might also determine the amount of inefficiency in the data. Second, we have considered
a very limited number of explanatory variables, and these were imputed from past
observations. Thus, there is a considerable risk that our results are driven by latent
heterogeneity; in addition measurement error is likely to bias our results away from
any causal parameter. Ultimately, however, the preceding analysis must be understood
within the context of an illustration of our new command in practice.

6 Conclusion

We introduced a new command, sfcount, to fit the count-data stochastic frontier mod-
els in Fé and Hofler (2013). We have illustrated the implementation of this method and,
through simulations, further illustrated the need for such a method. Although originally
designed to estimate production and production-cost functions, our command can be
used to estimate mean regression functions when count data are suspected to be under-
reported or overreported. The latter situations are common in empirical applications.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-3

. net install st0607 (to install program files, if available)

. net get st0607 (to install ancillary files, if available)
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