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Abstract. In this article, we describe the use of ivmediate, a new command
to estimate causal mediation effects in instrumental-variables settings using the
framework developed by Dippel et al. (2020, unpublished manuscript). ivmediate
allows estimation of a treatment effect and the share of this effect that can be
attributed to a mediator variable. While both treatment and mediator can be
potentially endogenous, a single instrument suffices to identify both the causal
treatment and the mediation effects.
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1 Introduction

There are many settings where a researcher would like to understand the mechanism
that underlies an estimated effect of a treatment T on an outcome Y . For example,
Becker and Woessmann (2009) are interested in the Weber hypothesis that religion,
specifically Protestantism, affects economic growth. Because Protestantism promoted
reading of the Bible,1 they establish that an underlying mechanism M of the effect
of religion on economic growth works through human capital accumulation, especially
literacy. Given that the prevalence of religion across regions is likely not random, they
introduce an instrumental variable (IV) and show that Protestantism caused higher
literacy rates and thus economic growth. They derive plausible bounds for the range of
a mediation effect but lack a formal framework to causally estimate the indirect effect
of religion on economic growth that works through literacy.

Such an exercise of unpacking mechanisms is called mediation analysis, where a
treatment T and one of its outcomes M , that is, the mediator, jointly cause a final out-
come of interest Y . Mediation analysis has long been used in settings where T can be
assumed to be randomly assigned. However, when T is systematically nonrandom and

1. As opposed to Catholicism, where at that time religious content was mainly consumed through
sermons at church.
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therefore needs to be instrumented by a variable Z,2 there has been a lack of frameworks
for undertaking mediation analysis in such IV settings without having separate instru-
ments for both T and M .3 The command ivmediate fills this gap and provides a new
regression command that allows researchers to use a single IV to estimate the causal
effect of the intermediate variable on a final outcome using the estimator developed
by Dippel et al. (2020). This complements existing ways to estimate causal mediation
effects that assume randomness in the assignment of treatment T (Imai, Keele, and
Tingley 2010) or require separate instruments for T and M (for example, Frölich and
Huber [2017]; Jun et al. [2016]).

Table 1 illustrates the identification challenge described above. As a starting point,
we show the standard IV estimations of the causal effect of T on M (model I) and the
causal effect of T on Y (model II). In model I, T is considered endogenous (that is,
εT 6⊥⊥ εM ) and we introduce for the endogenous treatment T an IV Z, which is both
uncorrelated with the omitted variables (Z ⊥⊥ εT , εM ) and a reasonably strong predictor
of T . Model II fits the TE of T on Y using the same IV approach: εT 6⊥⊥ ηY , but Z is
exogenous (that is, Z 6⊥⊥ εT , ηY ). Table 1 is reprinted from Dippel et al. (2020).

2. The requirements for a valid instrument are that it significantly affects the treatment conditional
on covariates (relevance condition) and that it affects Y only through T but not directly (exclusion
restriction).

3. The traditional approach to mediation analysis makes the strong assumption that both T and M
are exogenous, applies ordinary least squares (OLS) to estimate three equations,

Y = δTY × T + ηY , M = βT
M × T + εM , and Y = βT

Y × T + βM
Y ×M + εY

and compares the total effect (TE) δTY with the indirect effect βM
Y × βT

M . See Baron and Kenny
(1986) and MacKinnon (2008) for an overview.
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Table 1. The identification problem of mediation analysis with IVTable 1: The Identification Problem of Mediation Analysis with IV

A. Graphical Representation

Model I: Model II: Model III:
IV for M IV for Y IV for the Mediation Model

εT

T M

εM

Z

εT

T YZ

ηY εT

T M Y

εM

Z

εY

B. Model Equations

T = fT (Z, εT ) T = fT (Z, εT ) T = fT (Z, εT ), M = fM (T, εM )
M = fM (T, εM ) Y = gY (T, ηY ) Y = fY (T,M, εY )
Z ⊥⊥ (εT , εM ) Z ⊥⊥ (εT , ηY ) Z ⊥⊥ (εT , εM , εY )

Notes: (a) Model I is the standard IV model, which enables the identification of the causal effect of T on M . Model II
is the standard IV model that enables the identification of the causal effects of T on Y . Model III is the IV Mediation
Model with an instrumental variable Z. (b) Panel A gives the graphical representation of the models. Panel B presents
the non-parametric structural equations of each model. Conditioning variables are suppressed for sake of notational
simplicity. We use ⊥⊥ to denote statistical independence.

1 Introduction

Instrumental variables (IV) are broadly used to identify the causal effect of a treatment variable on

an outcome in observational data. Standard IV estimation, however, is unable to unpack the causal

chain that arises when the treatment and its outcome jointly cause a second outcome of interest.

We investigate the problem of identifying causal relations when an endogenous treatment and

its outcome together cause a second outcome of interest. We propose a solution to the problem

that does not require additional instrumental variables and can be easily implemented using the

well-known two-stage least squares (2SLS) estimator. We begin by clarifying the identification

challenge. The starting point is to estimate the effect of a non-random treatment T . on an outcome

M . The ordinary least squares (OLS) estimate of said treatment effect may be biased by omitted

variables that affect both T and M . The solution involves using an instrumental variable Z that

affects T (i.e. there is a first-stage relation) but is uncorrelated with the omitted variables (i.e. the

exclusion restriction holds). This is the standard IV solution and is depicted in Model I in Table 1.

T is endogenous in a regression of M on T (i.e. εT �⊥⊥ εM ), but Z is exogenous (i.e. Z ⊥⊥ εT , εM ).

1

notes: (a) Model I is the standard IV model, which enables the identification of the causal effects of T
on M . Model II is the standard IV model that enables the identification of the causal effects of T on Y .
Model III is the IV mediation model with an instrumental variable Z. (b) Panel A gives the graphical
representation of the models. Panel B presents the nonparametric structural equations of each model.
We use ⊥⊥ to denote statistical independence.

To identify what fraction of the TE is explained by the indirect effect, we have to
perform a mediation analysis that decomposes the TE of T on Y into 1) the mediated
“indirect” effect of T on Y that operates through M and 2) the residual “direct” effect
that does not work through M . Model III of table 1 shows the main identification
challenge in combining the two IV models into a general mediation model. Equations
M = fM (T, εM ) and Y = fY (T,M, εY ) imply that T causes Y indirectly through M as
well as directly, which is graphically represented by the arrow directly linking T to Y .
In a regression of Y on both T and M , there are two potentially endogenous regressors
(that is, εT 6⊥⊥ εY and εM 6⊥⊥ εY ), but there is only one instrument Z to address this
endogeneity.

To overcome the underidentification problem, we do not assume away endogeneity
in any of the key relationships in model III (εT 6⊥⊥ εM , εM ⊥⊥ εY , and εT ⊥⊥ εY
are all maintained), yet we do not need additional instruments. Instead, the omitted
variable concerns themselves can suggest a natural solution. This is the case when T is
endogenous in a regression of M on T because of confounders that jointly affect M and
T and when T is endogenous in a regression of Y on T because of the same confounders
that affect Y primarily through M .

Dippel et al. (2020) show that this assumption alone is sufficient to unpack the causal
channels in model III, therefore allowing us to identify the extent to which T causes Y
throughM . Under linearity, the resulting identification framework is straightforward to
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estimate using three separate two-stage least squares (2SLS) regressions; these estimate
i) the effect of T onM , ii) the effect of T on Y , and iii) the effect ofM on Y conditional
on T .

In the following section, we will briefly explain the underlying econometric theory
before we explain the estimation procedure in section 3. There, we also provide further
guidance on the interpretation of results and issues regarding weak identification that
are typical concerns for applied researchers. Section 4 describes the syntax and options
of ivmediate. Section 5 provides a brief simulation exercise in section 5.1 to show
not only how ivmediate estimates the correct TE of a treatment but also how these
can be decomposed into direct and indirect effects. We then apply the command to a
real-life example using the data and empirical setting of Becker and Woessmann (2009)
in section 5.2 to estimate how Protestantism affects local economic performance in
Prussian counties in 1877 and how much of this effect is causally mediated by literacy.

2 Causal mediation analysis in IV models

Under linearity and with an instrument Z, the causal relations in model III in table 1
can be written as

Z = εZ (1)

T = βZ
T × Z + εT (2)

M = βT
M × T + εM (3)

Y = βT
Y × T + βM

Y ×M + εY (4)

Equations (1)–(4) can be compactly expressed as X = Ψ×X+ ε in (5):
Z
T
M
Y


︸ ︷︷ ︸

X

=


0 0 0 0
βZ
T 0 0 0
0 βT

M 0 0
0 βT

Y βM
Y 0


︸ ︷︷ ︸

Ψ

×


Z
T
M
Y


︸ ︷︷ ︸

X

+


εZ
εT
εM
εY


︸ ︷︷ ︸

ε

(5)

Equation (6) presents the covariance matrix ΣX of observed variables X:

ΣX ≡ Var


Z
T
M
Y

 =


σZZ σZT σZM σZY

· σTT σTM σTY

· · σMM σMY

· · · σY Y

 (6)
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Let Σε denote the covariance matrix of unobserved error terms ε. Because Z is an IV,
it implies that εZ is statistically independent of εT , εM , and εY . Thus, Σε is given by

Σε ≡ Var


εZ
εT
εM
εY

 =


σ2
εZ 0 0 0
· σ2

εT ρTMσεT σεM ρTY σεT σεY
· · σ2

εM ρMY σεMσεY
· · · σ2

εY


The identifying assumption in Dippel et al. (2020) is that T is endogenous in a regres-

sion of Y on T , but endogeneity cannot arise from confounders that jointly influence T
and Y , only from confounders that jointly affect T and M (for example, Protestantism
and literacy in Becker and Woessmann [2009]). The framework also allows for con-
founders that jointly influence M and Y (for example, literacy and economic growth in
Becker and Woessmann [2009]). Formally, the identifying assumption is ρTY = 0 in Σε,
while allowing ρTM 6= 0 and ρMY 6= 0.

In section 5.1, we describe how to generate a simulated dataset with these dependent
relations.

3 Estimation

3.1 Estimation procedure

The estimation equations to identify all linear coefficients are associated with well-known
econometric estimators as follows (control variables are suppressed for notational sim-
plicity and without loss of generality):

1. Parameter βT
M is identified by standard 2SLS estimation, described by the following

two-equation system:

First stage: T = βZ
T × Z + εT (7)

Second stage: M = βT
M × T̂ + εM (8)

where T̂ stands for the estimated values of T in the first stage.

2. Dippel et al. (2020) show that the identifying assumption ρTY = 0 yields a new
exclusion restriction, which allows for the use of Z as an instrument for M when
conditioned on T (but not unconditionally). This implies that βM

Y and βT
Y are the

expected values of the estimators of a 2SLS regression where T plays the role of a
conditioning variable, Z is the instrument, M is the endogenous variable, and Y
is the dependent variable. Namely, βM

Y and βT
Y can be fit by the following 2SLS

model:

First stage: M = γZM × Z + γTM × T + εT (9)

Second stage: Y = βM
Y × M̂ + βT

Y × T + εY (10)

where M̂ are the estimated values of M in the first stage.
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The estimation procedure associated with (7) and (8) is the standard IV approach. By
contrast, the estimation procedure associated with (9) and (10) is novel and a property
of the framework laid out in Dippel et al. (2020).

There are two first stages here in (7) and (9) for which ivmediate provides tests
for weak identification by reporting the corresponding F statistics on the excluded
instrument. If robust or cluster–robust standard errors are requested, the regression
output displays the F statistic by Kleibergen and Paap (2006). To implement estimation
of their corrected F statistic, we rely on the ranktest command by Kleibergen and
Schaffer (2007).

In section 5.1, we compare the unbiased estimates resulting from (7)–(10) with the
associated OLS estimates.

3.2 Interpretation

There is another explicit link between (7)–(10) and the direct estimation of the TE in
model II of table 1. Model II is obtained from model III by substituting (8) into (10):

Y = βM
Y ×

(
βT
M × T + εM

)
+ βT

Y × T + εY

=
(
βM
Y × βT

M + βT
Y

)︸ ︷︷ ︸
TE

×T + βM
Y εM + εY︸ ︷︷ ︸

ηY

≡ gY (T, ηY ) (11)

Equation (11) shows that the direct estimate of TE produced by model II is alge-
braically identical to the product of estimates βT

Y + βT
M × βM

Y produced by model III
[that is, (7)–(10)].4 This algebraic equivalence holds for a scalar instrument Z, but
may not hold with a vector of instruments Z ′. The ivmediate command, therefore, is
limited to the use of a single scalar instrument.5

It is also worth noting that, in the mediation framework, either βT
Y or βT

M ×βM
Y (but

not both) can have opposite signs. For example, there is nothing logically inconsistent
about having a positive TE that is composed of a (larger) positive indirect effect that is
partly offset by a negative direct effect, or vice versa. In such a case, a statement like
“the indirect effect explains more than 100 percent of the total effect” is not incorrect,
but it does require careful explanation to avoid confusion.

4. To see that the direct estimation of model II requires Z as an IV, note that the correlation between
εM and εT also gives rise to a correlation between ηY and εT , while Z ⊥⊥ (εT , εM , εY ) also implies
the independence Z ⊥⊥ (εT , ηY ).

5. As with standard 2SLS regression, multiple instruments can be applied to predict a single en-
dogenous variable. However, the resulting second-stage coefficient on the endogenous variable will
be a generalized method of moment weighted average of the prediction coming from the different
instruments’ first-stage coefficients, with weights being determined by the relative importance of
each instrument. This makes it difficult to interpret the second-stage result.
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3.3 Weak identification with two first-stage regressions

Applied researchers are now well aware of the bias introduced by weak identification in
an IV setting (Bound, Jaeger, and Baker 1995). A rule of thumb is that an F test of the
excluded instrument(s) in the first stage should yield an F statistic of 10 or more (Stock
and Yogo 2005). How does this apply to the IV mediation setting with two first stages?
Currently, there is no theory to guide applied researchers. Instead, we apply the code
from section 5.1 to simulate the behavior of the estimator under different instrument
strengths in the treatment and the mediator first stages. This is done by varying the
amount of noise in εT and εY .

Figure 1 plots the coefficient values of the total, direct, and indirect effects over
different values of the first-stage F statistic. The left panel manipulates the strength of
the instrument in the treatment first stage, and the right panel manipulates that in the
mediation first stage. The instrument is only ever weak in one of the two first stages
but not in both at the same time. Samples were simulated according to (1)–(4) with
1,000 observations for each value of the error variance. The values increase from 1 to 15
in increments of 0.5. In the example, the true values of the direct and indirect effects
are both 1, summing up to a true TE of 2. The ivmediate simulations were then run
100 times for each error variance value.
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Figure 1. Coefficient values under differing IV strengths in either first stage.
note: The left panel simulated data for different values of Var(εT ), and the right simulated data

for different values of Var(εY ) ranging from 1 to 15. The value of Var(εT ) increases in steps of 0.5,

and at each step, 100 random samples were drawn according to (1)–(4) with 1,000 observations. Both

panels show binned scatter plots of coefficient values of the total, direct, and indirect effects over

different values of the corresponding first-stage F statistics where the strength of the instrument was

manipulated. The true TE is 2, and the true direct and indirect effects are equal to 1.

The left panel shows that, as the treatment first-stage F statistic approaches the
rule of thumb value of 10, all effects begin to center on their true values. This is also
the case for the right panel, however, here the direct effect takes longer to center on its
true value. It only begins to center on the true value from a mediation first-stage F
statistic of 30. A conservative approach would therefore require a stronger instrument
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in the mediator first stage to accurately identify all three effects. If interest only lies
on the indirect effect, the commonly used approximation rule for a reasonably strong
instrument seems applicable.

4 The ivmediate command

4.1 Syntax

ivmediate depvar
[
indepvars

] [
if
] [

in
]
, mediator(varname)

treatment(varname) instrument(varname)
[
absorb(varname) full

vce(vcetype) level(#)
]

4.2 Description

ivmediate implements the causal mediation analysis framework for IV models intro-
duced by Dippel et al. (2020). The command allows the estimation of the causal treat-
ment and mediation effects for potentially endogenous treatment and mediator variables
without the need for an additional instrument for the mediator. A single IV suffices to
identify both effects.

4.3 Options

mediator(varname) includes a single mediator variable. mediator() is required.

treatment(varname) includes a single treatment variable. treatment() is required.

instrument(varname) includes a single IV. instrument() is required.

absorb(varname) allows the absorption of one fixed effect. For details, see [R] areg.

full displays intermediate results together with the main results. Specifying this option
will display three intermediate output tables:

1. the IV regression of Y on T (instrumented with Z)

2. the IV regression of M on T (instrumented with Z), for which the first-stage F
statistic is reported as first stage one in the main table

3. the IV regression of Y onM (instrumented with Z) and controlling for T , for which
the first-stage F statistic is reported as first stage two in the main table

The TE is the coefficient on T in the first table; the direct effect is the coefficient
on T in the third table; the indirect effect is the product of the coefficient on T
in the second table and the coefficient on M in the third. The mediation effect as
percentage of the TE is therefore the indirect effect divided by the TE times 100.
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vce(vcetype) may be robust to estimate Eicker/Huber/White standard errors or may
be cluster clustervar to estimate cluster–robust standard errors. The default is
vce(unadjusted) standard errors.

level(#) specifies the confidence level, as a percentage, for confidence intervals. Inte-
gers between 10 and 99 inclusive are allowed. The default is level(95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

4.4 Stored results

ivmediate stores the following in e():

Scalars
e(N) number of observations
e(fstat1) F statistic for the excluded instruments in first stage one (T on Z)
e(fstat2) F statistic for the excluded instruments in first stage two (M on

Z | T )
e(mepct) mediation effect expressed as percentage of the TE
e(N clust) number of clusters used to adjust standard errors if cluster was spec-

ified in vce()

Macros
e(depvar) name of the dependent variable
e(treat) name of the treatment variable
e(med) name of the mediator variable
e(inst) name of the IV
e(vcetype) vcetype specified in vce()
e(clustvar) name of the cluster variable if cluster was specified in vce()

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix

5 Empirical example

5.1 Simulation exercise

A simulated dataset with the assumed dependent relations can be straightforwardly
generated in the following way:

• Separately generate error terms εT and εY that are normally distributed with
mean 0 and variance 1, N(0, 1). These are statistically independent, that is,
εT ⊥⊥ εY .

• Let error term εM be defined as εM =
√
ω×εT +

√
(1− ω)×εY for any ω ∈ [0, 1].6

The correlation between εM and εT is given by ρTM =
√
ω. Thereby, εM 6⊥⊥ εT .

By symmetry, we also have that ρMY =
√
(1− ω) and εM 6⊥⊥ εY . Having drawn εT

and εY independently implies that the correlation between εT and εY is ρTY = 0.
However, conditioning on εM = e induces a linear relation between εT and εY , namely,

6. Note that εT ∼ N(0, 1) and εY ∼ N(0, 1) imply εM ∼ N(0, 1).
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εT = e/
√
ω −

√
(1− ω)/ω × εY . Thus, the correlation between εT and εY conditioned

on εM is ρTY |εM = −1 and, thereby, εT 6⊥⊥ εY |εM . A high ω implies a high ρTM . By
contrast, a low ω implies a high ρMY .

It is instructive to investigate the bias generated by a misspecified model where T and
M are assumed to be exogenous, that is, the mutual independence of εT , εM , and εY is
wrongly assumed. Let the data be generated by (1)–(4) and the model coefficients be
normalized to equal 1, that is, βZ

T = βT
M = βT

Y = βM
Y = 1. The true parameters βT

M , β
T
Y ,

and βM
Y are identified through (7)–(10). If the error terms εT , εY , and εM were wrongly

assumed to be statistically independent, then parameters βT
M , βT

Y , and βM
Y could be

estimated by OLS through the following equations:

OLS : βT
M =

σTM

σTY

OLS : βT
Y =

σMMσTY − σTMσMY

σMMσTT − σ2
TM

OLS : βM
Y =

−σTMσTY + σTTσMY

σMMσTT − σ2
TM

While the true parameters are set to be 1, the OLS estimators may range from 0 to 2
depending on the error correlations. Because a high ω implies pronounced bias in the
relation between T andM (a high ρTM ), the OLS estimate of βT

M diverges from the true
value 1 as ω increases. By contrast, the OLS estimates of βT

Y and βM
Y converge to the

true value 1.

. * set seed for replicability

. set seed 12345

. * weights for the mediation error

. global omega = 0.5

. * model parameters

. global betaYT = 1

. global betaYM = 1

. global betaMT = 1

. capture program drop ivmedsym

. program ivmedsym
1. clear
2. set obs 1000
3. * generate error terms as described in the article

. generate e_t = rnormal(0,1)
4. generate e_y = rnormal(0,1)
5. generate e_m = sqrt($omega)*e_t + sqrt(1-$omega)*e_y
6. * generate variables according to (1)-(4) in section 2

. generate z = rnormal(0,1)
7. generate t = z + e_t
8. generate m = t*$betaMT + e_m
9. generate y = t*$betaYT + m*$betaYM + e_y

10. * naive OLS
. regress y t
11. scalar bols = _b[t]
12. * ivmediate regression

. ivmediate y, mediator(m) treatment(t) instrument(z)
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13. scalar te = _b["total effect"]
14. scalar de = _b["direct effect"]
15. scalar ie = _b["indirect effect"]
16. end

. simulate b_ols = bols b_total = te b_direct = de b_indirect = ie, reps(200):
> ivmedsym

command: ivmedsym
b_ols: bols

b_total: te
b_direct: de

b_indirect: ie

Simulations (200)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

. summarize

Variable Obs Mean Std. Dev. Min Max

b_ols 200 2.355732 .0404492 2.25768 2.454119
b_total 200 2.003096 .0561753 1.859572 2.117501

b_direct 200 1.004551 .0867107 .8003523 1.274698
b_indirect 200 .9985453 .0556392 .8147842 1.141245

Given the model parameters, the TE of βM
Y × βT

M + βT
Y = 1 × 1 + 1 = 2 is not

recovered by simple OLS. In fact, not even the 95% confidence interval would include
the true TE. On the other hand, 2SLS did recover the TE, but it could not disentangle
the direct effect of the treatment (net of the mediator) from the indirect effect of the
mediating variable. The simulation shows how ivmediate can both recover the true
TE and decompose it into the direct and indirect effects as described in the theoretical
section.

5.2 Applied example using the Becker and Woessmann (2009) data

The example below uses data from Becker and Woessmann (2009), who estimate the ef-
fect of Protestantism on economic prosperity in Prussian counties. To obtain exogenous
variation in the share of Protestants in these counties, they used the fact that Protes-
tantism spread concentrically around Wittenberg, the city where Martin Luther taught
and preached. Following their example, we use distance to Wittenberg (kmwitt) as an
instrument for the share of Protestants (f prot) with the outcome being the per capita
income tax (inctax) in 1877 as a measure for economic performance. The mediator we
consider is the share of literate population (f rw).

According to Becker and Woessmann (2009), Protestantism promoted reading of
the Bible, which led to human capital accumulation and therefore promoted economic
development. They are interested in estimating

Y = αProt + χLit +X′γ + ε (12)
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though they note that the “problem with such a model is that not only Protestantism
but also literacy may be endogenous in this setting” (p. 570). Because they have no
additional instrument for literacy, they use different types of bounding exercises using
estimates from previous literature on the returns to education (see section VI.C in the
original study). Using ivmediate, we can go further and directly estimate the mediation
effect of literacy that goes through Protestantism with only one instrument.

. use ipehd_qje2009_master

. global controls "f_jew f_fem f_young f_pruss hhsize pop gpop f_miss"

. ivmediate inctax $controls, mediator(f_rw) treatment(f_prot)
> instrument(kmwitt)
Linear IV Mediation Analysis

Outcome: inctaxpc Number of obs = 426
Treatment: f_prot
Mediator: f_rw

inctaxpc Coef. Std. Err. z P>|z| [95% Conf. Interval]

total effect .8347728 .2723283 3.07 0.002 .3010192 1.368526
direct effect .0826879 .0825493 1.00 0.316 -.0791057 .2444815
indirect effect .7520849 .2912821 2.58 0.010 .1811824 1.322987

Mediator f_rw explains 90.09% of the total effect.
F-statistic for excluded instruments in
- first stage one (T on Z): 48.394
- first stage two (M on Z|T): 65.274
Excluded instruments: kmwittenberg

As in the original study, we condition on further covariates in the estimation of (12),
which are the share of Jewish population, female population, individuals aged below
10, the share of population of Prussian origin, average household size, population size
of the county, the percentage population growth between 1867 and 1871, and the share
of the population with missing information on literacy.7

The TE estimates that every 1 percentage point increase in the share of Protes-
tants increases per capita income tax revenues by 0.83 Marks. Under the typical IV

assumptions, this effect is causal. The direct effect estimates that only 0.08 Marks of
this increase are because of Protestantism itself and it is not statistically significant.
However, the indirect effect estimates that 0.75 Marks of this increase are caused by
literacy as a mediating factor. This implies that literacy explains 90% of the TE of
Protestantism on economic outcomes. This is in line with the findings by Becker and
Woessmann (2009), who conclude that “Protestants’ higher literacy can account for
roughly the whole gap in economic outcomes between the two denominations [Catholics
and Protestants]” (p. 576).

7. For brevity, we omit their controls for the share of population with physical or mental disabilities
(blind, deaf-mute, and insane), as these do not significantly affect the results.
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6 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-3

. net install st0611 (to install program files, if available)

. net get st0611 (to install ancillary files, if available)
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