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1 Introduction

Many time series exhibit too much long-range dependence to be classified as stationary
or I(0) processes but do not exhibit the infinite memory of a nonstationary process or
I(1) process. Time series that display long memory are known as fractionally integrated
series, or I(d), where d is no longer an integer and falls in the interval (—1/2 < d < 1)
but excludes 0. These processes have autocorrelations that decay more slowly than
those of stationary processes, but the pattern of the decay differs from that of an
integrated process (Granger and Joyeux 1980; Hosking 1981). Once the restriction that
d takes only integer values is relaxed, the ARFIMA(p, d, q) class of model is introduced,
where FI stands for “fractional integration”. Fractionally integrated I(d) time series
have attracted the attention of empirical researchers because long memory provides a
suitable description of the characteristics of economic and financial data and because it
provides a useful extension to the I(0) and I(1) dichotomy.

The practical econometric problem posed by the concept of long memory is that of
estimating the appropriate fractional difference parameter d from a long-memory process
y;. There are two broad approaches to the estimation of d. A classical time-series
approach is to specify the full ARFIMA(p,d, q) model and estimate all the parameters,
including d, by maximum likelihood (Sowell 1992). The Stata command arfima (see
[Ts] arfima) implements the full maximum-likelihood estimation of the ARFIMA(p, d, q)
model, requiring specification of the orders of the AR(p) and MA(g) polynomials. A
second approach to providing consistent and asymptotically normal estimates of the
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fractional difference parameter, d, without fully specifying the ARMA components of
the model, involves shifting from the time domain to the frequency domain. Once an
estimate of d is available, an ARMA model is then fit to the fractionally differenced
series to obtain consistent estimators of the remaining model parameters. It is this
latter approach with which this article is concerned.

A number of well-known estimators of d in the frequency domain do not require the
specification of the full ARFIMA model. These include the estimators due to Geweke
and Porter-Hudak (1983), Phillips (1999, 2007), and Robinson (1995b). These estima-
tors are implemented in Stata using the community-contributed commands gphudak,
modlpr, and roblpr, respectively. For a full discussion of the estimators and their im-
plementation in Stata, see Baum and Wiggins (2000). These estimators of d are all
essentially regression based. In this article, we implement the Whittle likelihood-based
approach to estimating the fractional difference parameter d. Both the local Whittle
and exact local Whittle estimators are provided in the new command whittle.

2 Whittle estimation

Maximum likelihood estimation of the parameter d of a fractionally integrated time
series in the frequency domain is based on the approximation to a Gaussian likeli-
hood introduced by Whittle (1951). See also Fox and Taqqu (1986), Whittle (1962),
and Choudhuri, Ghosal, and Roy (2004). The popularity of the frequency domain ap-
proach stems from the fact that unlike the time domain estimator, the frequency domain
maximum-likelihood estimator is invariant to the unknown mean of the process (Cheung
and Diebold 1994).

2.1 The Whittle likelihood

Consider a sample of T observations of a stationary centered process ¥i, ...,y uni-
formly spaced in the time domain and a sequence of m frequencies,

2

wj = T forj=1,2,....,m

These frequencies, with m < T, represent a set of angular frequencies that are all
multiples of the fundamental frequency 27 /T, so called because it corresponds to a
single oscillation with period T.' The discrete Fourier transform of y, is given by

V2nT

The Whittle likelihood follows from the fact that the coefficients ¢(w;) of y, are asymp-
totically independent Gaussian random variables with mean value zero and variance

T
1 ,
&lwy) = > et (1)
k=1

1. In a sampling context, frequencies with k > T/2 cannot be identified because of aliasing. For a
good discussion of aliasing, see Press et al. (1992).



C. F. Baum, S. Hurn, and K. Lindsay 567

given by the spectral density of the process at that frequency. Consequently, the likeli-
hood function at frequency wj is

b= e )

in which I(w;) is the sample periodogram given by
I(w;) = le(wy)I”

and f,(w;) is the spectral density at w;,

(2)

where 7, denotes the autocovariance at lag k.

Local Whittle estimation of the fractional differencing parameter, d, starts from the
recognition that the behavior of the spectral density of y; at low frequencies is defined
by the condition

lim w?f,(w) =G (3)

w—0+ i

where G is a positive quantity that depends upon the parameter d. The process y; has
finite power provided 2d < 1, and for this reason, d is taken as a measure of the long-term
duration of the memory of process y;. If d € [0, 0.5), the series is still covariance
stationary, but the autocorrelations disappear more slowly than in the I(0) case. In
fact, they decay hyperbolically to zero by contrast with the faster, geometric decay of
a stationary ARMA process. For d € [0.5, 1), the process is mean reverting, although
it is not covariance stationary because there is no long-run impact of an innovation on
future values of the process. Granger and Joyeux (1980) show that a process is in fact
nonstationary for d > 0.5 because it possesses infinite variance. For d € (—0.5,0], the
process is said to exhibit intermediate memory (antipersistence), or long-range negative
dependence.

When f,(w;) is replaced by its asymptotic approximation Gw;Qd from (3), the neg-
ative of the log likelihood at w; satisfies

1 1
—log L;(G,d) = 5 {log 27 +log G — 2dlogw; + ijzd|8(wj)|2}

It is this expression that forms the basis of the local Whittle estimators of d.
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2.2 The local Whittle estimator

The local Whittle estimator of d analyzed by Robinson (1995a), motivated by the ap-
proach of Kiinsch (1987) and based on the m lowest frequencies wy, . .., wy,, is obtained
by minimizing the negative log-likelihood function

m 2d 11 &
—log L(G,d) = — < log 27 + log G — —Zlogwj+——2w2d |e(w;)|? (4)
2 m = ij:l

Partial differentiation of (4) with respect to G demonstrates that the optimal value of
G for any value of d is?

~ 1 & N
Gld) = - " w | 2lwy)
j=1
Given this result, it is clear that the local Whittle estimator of d, a?, minimizes
~ 2d ~ 1 o= o
R(d) =log G(d) — — dYow  Gd) = ~ > wI(w;) (5)
j=1

As demonstrated in the appendix, it is straightforward to prove that R(d) is a convex
function of d. Therefore, R(d) will take its minimum value at an interior point of the
interval [dg, d1] provided R'(dp) x R’(d1) < 0, and this stationary point will be unique.

Robinson (1995b) shows that the local Whittle estimator d obtained by minimiz-
ing (2) is consistent if d € (1/2,1) and asymptotically normally distributed for d €
(1/2,3/4), so that

\/ﬁ(é—d) 4N (01)

2.3 The exact local Whittle estimator

An exact local Whittle estimator was introduced by Shimotsu and Phillips (2005). The
exact local Whittle estimator is defined by the minimizer of the function®

~

~ 2d — 1 &
R(d) =log G(d) — — dwi,  Gd)= ~ > W pay (w;) (6)
Jj=1 j=1

2. The expression for the Fourier coefficients in (1) can vary between authors by a constant factor.
The value of the fractional differencing parameter d, however, is independent of this multiplier
although the choice will affect the value of G.

3. The algorithm used here is that proposed by Shimotsu and Phillips (2005, 1893). The generalization
that allows for an unknown initial value is not implemented.
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where Ipa,(wg) is the periodogram of the fractionally differenced series A%y, and the
difference operator is now defined by the binomial expansion

d d(d—1 dd—1)(d—-2
Adyt :yt_iytfl‘i‘% tfz—wyta‘s

d(d—1)(d—2)(d—3

Yt—a

The appearance of Ixa,(w;) in the function to be optimized requires that a fractional
difference of y; be computed every time d is altered. Exact local Whittle estimation is
thus computationally more demanding than simple local Whittle estimation. Further-
more, it is no longer straightforward to demonstrate that the function in (6) is a convex
function of d. Note, however, that the limiting properties of this estimator are the same
as those of the local Whittle estimator, so that the asymptotic standard error of the
estimate of d in both cases is

~ 1
> (d) ~2ym
3 Practical considerations

The local Whittle estimator is determined by the behavior of the spectrum of Y at low
frequencies. It is common practice to consider the lowest frequencies w; < wo < --- <
Wm. A common choice for m is m = T%/3. In computing the periodogram I(wj) of Y
by means of the discrete Fourier transform (DFT), one may be tempted to accelerate
the computation using an implementation of the DFT commonly referred to as the fast
Fourier transform. The most common implementation of this algorithm requires that
T be a power of 2. If this is not the case, the original series is padded with zeros.
The fast Fourier transform is not used here; instead, the simple DFT is used, and only
the required m frequencies are computed to reduce computation time. The reason for
this choice is that the process of padding does not allow comparison with other Stata
commands that do not rely on padding, such as the gphudak log-periodogram regression.

Suppose that it must be established a priori that the function R(d) has a mini-
mum value in the interval [dg, d1]. Ordinarily, the quadratic rate of convergence of the
Newton—Raphson algorithm would make this approach the method of choice, particu-
larly because (as detailed in the appendix) analytic expressions for the first and second
derivatives of R(d) are available, at least for the local Whittle estimator. However,
here we propose a golden section search that estimates d by systematically reducing the
length of the interval containing the minimum of R(d) from its original length |dy — d;|
to a final length determined by an error tolerance, say, €. Each evaluation of R(d) allows
the interval containing the minimum to be reduced by fraction (v/5 — 1)/2 ~ 0.6180,
which is the golden section ratio. When the minimum is contained within an interval
of length 2e, no further computations of R(d) are performed, and d is returned as the
midpoint of the final interval of search. Unlike the Newton—Raphson algorithm, the
golden section search is totally robust: the algorithm cannot trigger prematurely as can
happen infrequently with a conventional convergence criterion. The default termination
criterion is set at € = 5.0 x 10~7 or six decimal places of rounding accuracy.
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For completeness, we must consider the possibility that the minimum value of the
negative log-likelihood function is achieved at the endpoints of the interval of search,
that is, either d = dy or d = dy. Suppose the latter is true without loss of generality.
Then, in this case, the golden section search algorithm will select a sequence of values
of d that increase monotonically toward d;. Specifically, after n iterations, the search
points will be d; — Lr"™ and d; — Lr™*!, where L = |dy — d;| and r = (v/5 — 1)/2 is the
golden ratio. The search will stop whenever the termination condition

|(dy — Lr™*h) — (dy — Lr™)| < 2¢

is satisfied, and the location of the minimum will be returned as d = dy — Lr"™(1+7r)/2 =
dy — Lr™~1/2, the midpoint of the final interval of search. The termination condition
may be further simplified to get Lr"*? < 2, which in turn means that whenever
the negative log-likelihood function has no minimum within the interval of search, the
estimated value of d will lie within ¢/73 = (2 +1/5) e < 5¢ of an endpoint.

Consequently, an estimated value of d should be rejected whenever this value lies
within (2 +v/5) € of an endpoint of the interval of search. The command automatically
checks this condition and will issue an error message whenever the estimate of d lies
within 5 ¢ of an endpoint of the interval of search.

4 The whittle command

The command whittle calculates the local Whittle estimate of d, the order of fractional
integration. The exact local Whittle estimate, derived by Shimotsu and Phillips (2005),
can be computed as an option.

4.1 Syntax

Before using these commands, and as with other Stata time-series commands, one must
tsset or xtset the data, so that the variable of interest is defined as a proper time
series. The command syntax:

whittle warname [zf] [m] [, powers (numlist) detrend exact}

Note that varname may not contain gaps. wvarname can contain time-series operators.
The command can be applied to one unit of a panel. whittle supports the by: prefix,
which can be used to operate on each time series in a panel.
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4.2 Options

powers (numlist) specifies a list of one or more fractional values for the power of sam-
ple size T to be included in computing the local Whittle estimate. The default is
powers(0.65).

detrend specifies that a linear trend be removed from the varname before the local
Whittle estimate is computed.

exact specifies that the exact local Whittle estimator of Shimotsu and Phillips (2005)
be used rather than the local Whittle estimator.

4.3 Stored results

whittle stores the following in r():

Macros
r(varname) variable name
r (cmdname) command name
Matrices
r(whittle) 6 X p array

The r(whittle) matrix contains p columns corresponding to the list of powers (). The
6 rows provide the number of observations, power, truncation lag (number of ordinates
included), Whittle point estimate, estimated standard error, and asymptotic standard
€rTor.

5 Simulation experiments

To evaluate the performance of the local and exact local Whittle estimators, we under-
take a small simulation exercise. The traditional approach to simulating long-memory
processes is a two-step method suggested by Brockwell and Davis (1991) in which the
autocorrelation function of a long-memory process is computed recursively and then
used to generate the observations. For a given fractional difference parameter d, the au-
tocorrelation function of a long-memory process may be constructed using the relation

.
:/?1;[ (7)

Once the autocorrelation function is available, the synthetic data are computed using
the recursion

= Wtk + e 8)
k=1

where €, (t € Z) are independent Gaussian deviates with mean value zero and variance
2 =1 in this instance.
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Each simulated time series generated using (7) and (8) was initialized with a draw
from N(0,1), and 10,000 observations were generated using d = {0.35,0.65}. The first
8,000 observations were treated as the “burn in”, and the remaining 2,000 observations
were divided into samples of T = 500 and 7" = 2000 observations. For each sample
size, the local Whittle and exact local Whittle estimators of d were used to estimate
the fractional index based on three different sets of frequencies: m = T35, m = 7065,
and m = T°75. Each estimation was repeated 10,000 times to build an accurate picture
of the distribution of the estimators. Figures 1 and 2 show the distributions of d
obtained by local Whittle estimation and exact local Whittle estimation, respectively.
The left-hand column in each figure shows the results for d = 0.35, and the right-hand
column shows the results for d = 0.65. In each cell, the histogram with no face color
represents 7" = 500, and the gray-colored histogram represents 7" = 2000.

d=0.35m=T05 d=0.65m=Toss
15+ 15
2‘10’ 310
59 54
-2 0 2 4 6 8 0 2 4 6 8 1
d=0.35 m=T06 d=0.65m=Toe
15 15

;
-2 0 2 4 6 8 0 2 4 6 8 1
d=0.35,m=T0" d=0.65m=To7s
15 15
> 107 > 107
2 2
a 8
] Aﬂ]mmmmh]lh;_ 5 Aﬂﬂlﬂ[ﬂ]ﬂm
0 — - 0 - -
; . . ; ;
2 0 2 4 6 8 0 2 4 6 8 1

Figure 1. Distributions of estimated fractional difference parameter using the local
whittle command
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d=0.35 m=T0% d=0.65 m=T0%
159 15
> 10+ > 10
2 2
2 2
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54 5
04 = = ,ﬁrrﬁ-ﬂﬂ-[mﬂh‘n\ 0 - mnﬂﬂﬂmnnh*rm
T T T T T T T T T T T T
-2 0 2 4 6 8 0 2 4 6 8 1
d=0.35,m=T0& d=0.65m=Toe
15+ 15
2 10 > 10
] ]
§ s
01 - — — 04 - ——
T T T T . T T T . T T T
-2 0 2 4 6 8 0 2 4 6 8 1
d=0.35 m=T0" d=0.65m=T07"
154 15
> 104 > 10
] ]
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- Aﬂﬂmﬂmﬂhﬁl}» . Aﬂﬂﬂﬂ]m:l:[hﬂlhn
01 - g 0 — —
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2 [} 2 4 6 8 0 2 4 6 8 1

Figure 2. Distributions of estimated fractional difference parameter using the exact
local whittle command

The results suggest that the two commands are behaving largely as expected. There
is clear evidence of the asymptotic normality of the distribution of d. There is no clear
evidence to suggest that the exact local Whittle estimator is superior to the local Whittle
estimator. Despite the fact that the choice of d = 0.65 represents a nonstationary
process and encroaches on the upper bound of 1, both estimators deal adequately with
this situation. If anything, there may be a slight upward bias in d when d = 0.65.

The intention of this simulation is not to provide evidence of the efficacy of various
estimators of d or provide practical guidance concerning the choice of the estimator.
The purpose is rather to demonstrate that the local and exact local Whittle estimators
behave as expected. On the evidence in figures 1 and 2, however, there seems little
to suggest that the extra computational burden of the exact local Whittle estimator is
justified. Of course, this result could very well be different if the starting point is treated
as unknown, as in the generalization of the exact local Whittle estimator in Shimotsu
and Phillips (2005).
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6 Empirical illustrations

6.1 The water level of the Nile

One of the best-known examples of long memory is the time series of the minimal water
level of the Nile River for the years 622-1284 measured at the Roda Gauge near Cairo
(Beran 1994). The data in nile.dta represent annual minimum levels of the Nile River
for the period 622-1284.

1600

1400

1200

1000

800
600 700 800 900 1000 1100 1200 1300

Figure 3. Annual minimum levels of the Nile River for the period 622-1284

From figure 3, it is apparent that there are long periods where the observations
tend to stay at a high level, and, on the other hand, there are long periods with low
levels. When we looking at short time periods, there seem to be cycles or a local trend.
However, when we look at the whole series, there does not appear to be a persistent
cycle.

Figure 4 plots the autocorrelations of the Nile data out to a horizon of 40 lags and
compares it with the autocorrelations of simulated FI(d = 0.5) series of similar length.
The autocorrelations of the fractionally integrated data decay quickly at short horizons,
but at longer horizons, the speed of decay slows down. The autocorrelations of the Nile
data exhibit a pattern that is remarkably similar to that of the simulated data. This
pattern is known as hyperbolic decay and is typical of a stochastic process with long
memory.
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(a) Fractionally integrated process (d=0.5)

1.00 1
0.504
0.004
-0.50
T T T T T
0 10 20 30 40
(b) Nile data
1.00 1
0.004
-0.50
T T T T T
0 10 20 30 40

Figure 4. Autocorrelations of a simulated ARFIMA(0,0.5,0) process (top panel) com-
pared with the actual autocorrelations of the Nile data (bottom panel). The simulated
dataset comprises 500 observations. The Nile data are annual data for the period
622-1286.

The fractional difference parameter d is now estimated using some existing com-
munity-contributed regression-based methods. The Geweke and Porter-Hudak (1983)
estimator gives point estimates of d varying between 0.40 and 0.58 depending on the
number of frequencies used in the estimation. Furthermore, standard ¢ tests reject the
null hypothesis of d = 0: this conclusion holds for tests based on both the estimated
standard error of d and the asymptotic standard error.

Phillips’ (1999, 2007) modified Geweke and Porter-Hudak (1983) estimator indicates
clearly that the value of d is different from either 0 or 1, implying that the Nile series is
neither I(0) nor I(1), reflecting long-memory behavior. Robinson’s (1995b) estimator of
the series also clearly rejects the null hypothesis of d = 0, with d varying between 0.38
and 0.58. All three of the semiparametric estimators yield similar results, and while the
hypothesis of d = 0 is soundly rejected, none of the estimation methods can reject the
hypothesis that d > 0.5. This is a unanimous result that has important implications for
the characterization of the series according to Hosking’s (1981) taxonomy.



576 Local Whittle estimation of the long-memory parameter

. use nile

. tsset year
time variable: year, 622 to 1284
delta: 1 unit

. gphudak nile, powers(0.5(0.05)0.7)

GPH estimate of fractional differencing parameter

Asy.
Power Ords Est d StdErr t(HO: d=0) P>|t| StdErr z(HO: d=0) P>|z|
.5 26 .503829 .1451 3.4730 0.002 .157 3.2088 0.001
.55 36 .575852 .1397 4.1227 0.000 .1276 4.5133 0.000
.6 50 .53672 .118 4.5486 0.000 .1045 5.1353 0.000
.65 69 .449863 .1004 4.4787 0.000 .08666 5.1911 0.000
7 95 .396243 .07975 4.9686 0.000 .07249 5.4661 0.000

. modlpr nile, powers(0.5(0.05)0.7)

Modified LPR estimate of fractional differencing parameter for nile

Power Ords Est d Std Err t(HO: d=0) P>t z(HO: d=1) P>|z|
.5 25 .5311095 .1487055 3.5716 0.001 -3.6559 0.000
.55 35 .612678 .1507924 4.0631 0.000 -3.5732 0.000
.6 49 .5745827 .1304911 4.4032 0.000 -4.6438 0.000
.65 68 .4693571 .1081714 4.3390 0.000 -6.8236 0.000
.7 94 .4020765 .0847216 4.7459 0.000 -9.0399 0.000

. roblpr nile, powers(0.5(0.05)0.7)

Robinson estimates of fractional differencing parameter for nile

Power Ords Est d Std Err t(HO: d=0) P>t
.5 25 .5034895 .1449611 3.4733 0.002
.55 35 .5751942 .1394794 4.1239 0.000
.6 49 .5354816 .1176952 4.5497 0.000
.65 69 .4551935 .0987049 4.6117 0.000
7 95 .3846952 .0785415 4.8980 0.000

. whittle nile

N Power Trunc Est d StdErr Asy.StdErr

663 0.65 68 .409044 .06212 .06063

. whittle nile, detrend

N Power Trunc Est d StdErr Asy.StdErr

663 0.65 68 .393717 .06541 .06063
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. whittle nile, exact

N Power Trunc Est d StdErr Asy.StdErr

663 0.65 68 .407459 .06243 .06063

. whittle nile, detrend exact

N Power Trunc Est d StdErr Asy.StdErr

663 0.65 68 .397066 .06582 .06063

The local Whittle and exact local Whittle estimators produce a lower estimate of
d. The range for the estimate is from 0.394 to 0.409. The estimated standard errors
of d are very similar to the asymptotic standard errors. Although these results would
not reject the hypothesis of d = 0.5 and hence long-memory behavior, the evidence in
favor of nonstationarity, namely, d > 0.5, is much weaker than in the regression-based
approaches presented earlier. These results do not appear to be sensitive to the choice
of truncation lag.

. whittle nile, powers(0.5(0.05)0.7)

N Power Trunc Est d StdErr Asy.StdErr
663 0.50 25 .466848 .1139 .1
663 0.55 35 .469123 .09495 .08452
663 0.60 49 .459277 .07914 .07143
663 0.65 68 .409044 .06212 .06063
663 0.70 94 .385763 .05091 .05157

6.2 Global sea level

The thermal expansion of oceans and melting of land-based ice implies that global
warming is very likely contributing to the rise in sea level observed during the 20th
century. Ventosa-Santaularia, Heres, and Martinez-Herndndez (2014) argue strongly
that mean sea-level data exhibit long memory and build a model for sea level and
global temperature based on fractional cointegration.

Figure 5 plots monthly time-series data from January 1880 to December 2009 from
sealevel.dta. The plot indicates the presence of a trend in global sea levels, so the
issue of identifying the long-memory parameter must account for this. Calling the
command to estimate the fractional difference parameter using local or exact local
Whittle estimation, with small numbers of frequencies, results in a fractional difference
parameter close to 1. The value of —999 returned as the standard error indicates that
this estimate of d should be ignored.
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Figure 5. Monthly mean global sea level for January 1880-December 2009

. use sealevel, clear
. format datevec %tmCCYY
. whittle Sea, powers(0.5 0.65)

N Power Trunc Est d StdErr Asy.StdErr

Unreliable Whittle estimate - value too close to upper boundary
1558 0.50 39 1 -999 .08006
1558 0.65 118 .859211 .04384 .04603

. whittle Sea, exact powers(0.5 0.65)

N Power Trunc Est d StdErr Asy.StdErr

Unreliable eWhittle estimate - value too close to upper boundary
1558 0.50 39 1 -999 .08006
1558 0.65 118 .801612 .03494 .04603

This result is not an artifact of the estimation procedure. Using regression-based
approaches on the same data shows that the commands are trying to push the difference
parameter toward the boundary at 1.
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. gphudak Sea, powers(0.5(0.05)0.7)

GPH estimate of fractional differencing parameter

Asy.
Power Ords Est d StdErr t(HO: d4=0) P>|t] StdErr z(HO: d=0) P>|z]|
.5 40 1.0218 .04089 24.9904 0.000 .1194 8.5575 0.000
.55 58 .987866 .03885 25.4297 0.000 .09552 10.3416 0.000
.6 83 .973678 .03605 27.0089 0.000 .07768 12.5346 0.000
.65 119 .90265 .03487 25.8852 0.000 .06353 14.2076 0.000
7 172 .928184 .03527 26.3151 0.000 .05206 17.8305 0.000

. roblpr Sea, powers(0.5(0.05)0.7)

Robinson estimates of fractional differencing parameter for Sea

Power Ords Est 4 Std Err t(HO: d=0) P>t
.5 39 1.021511 .0408652 24.9971 0.000
.55 57 .9872563 .0388347 25.4220 0.000
.6 83 .9685342 .0357526 27.0899 0.000
.65 119 .9009264 .0345313 26.0901 0.000
.7 171 .9237293 .0350966 26.3196 0.000
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It is apparent that not accounting for a deterministic trend in the data causes the
estimation to fail. Operating on the detrended data yields the following results.

. whittle Sea, detrend powers(0.5 0.65)

N Power Trunc Est d StdErr Asy.StdErr
15568 0.50 39 .5561102 .08104 .08006
1558 0.65 118 .454184 .04165 .04603

. whittle Sea,

detrend exact powers(0.5 0.65)

N Power Trunc Est d StdErr Asy.StdErr
1568 0.50 39 .524068 .07937 .08006
1568 0.65 118 .486036 .04394 .04603

The estimate of the fractional difference parameter is very similar to that returned
by the modlpr command, which accounts for a deterministic trend by default.

. modlpr Sea, powers(0.5(0.05)0.7)

Modified LPR estimate of fractional differencing parameter for Sea

Power Ords Est 4 Std Err t(HO: d=0) P>t z(HO: d=1) P>|z|
.5 39 .6135026 .1324401 4.6323 0.000 -3.7639 0.000
.55 57 .587982 .1036759 5.6713 0.000 -4.8508 0.000
.6 82 .5449442 .0819157 6.6525 0.000 -6.4258 0.000
.65 118 .5245408 .0674101 7.7813 0.000 -8.0540 0.000
.7 171 .4766134 .0526453 9.0533 0.000 -10.6728 0.000
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7 Conclusion

The command whittle was introduced, which computes the local Whittle and exact
local Whittle estimates of the fractional difference parameter d in time series assumed to
exhibit long memory. The command always removes the mean from the time series under
investigation and allows for detrending using a deterministic trend and for controlling
the number of frequencies to be used in constructing the Whittle log-likelihood function.
The command returns an estimate of the standard error of the estimated degree of
fractional integration. Because the problem is a one-dimensional optimization and the
solution is confined to the range —0.5 to 1.0, a golden section search is used to find
the estimate. Golden section is a robust search algorithm that is guaranteed to find
the optimum provided that the search area brackets the optimum and the function is
convex in the search domain.

A small simulation study demonstrated that the command performs broadly as ex-
pected, and the empirical examples highlighted some of the practical problems that are
often encountered when estimating the fractional difference parameter. Note that there
is no attempt to compare the various available estimators, because this would represent
an endeavor worthy of an entire article in its own right.

8 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-3
. net install st0609 (to install program files, if available)
. net get st0609 (to install ancillary files, if available)
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A Appendix: Convexity of the local Whittle log-likeli-
hood function

Formal differentiation of R(d) in (5) with respect to d yields

~ ~ N 2
iR G2 er_ G@6E - {Ga]
dd — Gd) m P o dd? G(d)2
where
2 & ' P
= Z: log wi )wp? T (wg) G"(d) = - ;(logwk)Qwidl(wk)
Consider

I
S‘ux
H'MS

g)E
Ms

(log wi ) w24 (wy,) Z log w;) w T (w;)
j=1

Z (log wy, )wid wk)}
k=1

=2 Z wp I (we) I (wy) { (log wi)® — (log w;) (log wy) } (9)
k;:
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Reversing the order of summation in (9) gives

@“(d)@(d)f{@ } - m2 Z w2 T ()T (w)

{<1ogwj> ~ (logwx)(logwj) } (10)
Adding (9) and (10) gives
@G~ {G'@)} = 25 3 (rey)™ Iy () (loges; ~loges)® > 0
k,j=1

As a by-product of these computations, the local Whittle estimate, c/l\, which mini-
mizes R(d), has an estimated standard error given by

( ) Dbt WI%JI(WIC)
2\/2? 1 wkdl W) Z?:kﬂ W?dl(‘*’j) (logw; — 1ogwk)2
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