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Abstract. Coefficient plots are a popular tool for visualizing regression estimates.
The appeal of these plots is that they visualize confidence intervals around the
estimates and generally center the plot around zero, meaning that any estimate
that crosses zero is statistically nonsignificant at least at the alpha level around
which the confidence intervals are constructed. For models with statistical sig-
nificance levels determined via randomization models of inference and for which
there is no standard error or confidence intervals for the estimate itself, these plots
appear less useful. In this article, I illustrate a variant of the coefficient plot for
regression models with p-values constructed using permutation tests. These vi-
sualizations plot each estimate’s p-value and its associated confidence interval in
relation to a specified alpha level. These plots can help the analyst interpret and
report the statistical and substantive significances of their models. I illustrate us-
ing a nonprobability sample of activists and participants at a 1962 anticommunism
school.
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1 Introduction

Visual alternatives to traditional estimate tables have become increasingly popular in
the social sciences, especially with the growing interest in data science and computa-
tional social science (Healy 2019; Wickham and Grolemund 2017). One visualization
that is supplanting more traditional regression tables is the coefficient plot (Gelman
et al. 2018; Jann 2014; Lander 2018). Coefficient plots can provide a more parsimo-
nious method for reporting regression coefficients, especially when many independent
variables (IVs), models, or both make tables difficult to read or present. Thus, these plots
have become quite popular in sociological research, ranging in application from cultural
sociology (for example, Lizardo and Skiles [2016a,b]; Stewart, Edgell, and Delehanty
[2018]) and social networks (Bahr and Abraham 2016) to the sociology of education
(Schiihrer, Carbonaro, and Grodsky 2016) and the sociology of work and occupations
(Friedman and Laurison 2017; Laurison and Friedman 2016).

Coefficient plots visualize the confidence intervals (CIs) and their corresponding re-
gression estimates. The graphs are generally centered around zero—meaning that any
estimate that crosses zero is statistically nonsignificant at least at the alpha level around
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which the CIs are constructed. Consider, for example, the coefficient plot in figure 1
below, which was generated from a basic linear-additive multiple ordinary least-squares
(oLs) model regressing systolic blood pressure readings on a vector of covariates using
the National Health and Nutrition Examination Survey data available from StataCorp.
The plot is interpreted like a regular regression table: black individuals, for example,
have systolic blood pressure readings that, on average, are about 2.333 mm/Hg. higher
than white individuals’ readings, net of their weight, height, sex, age, and self-reported
health. The plot also shows that this difference is statistically significant with at least
an « = 0.001 because the thinnest band does not cross zero (the vertical line).
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Figure 1. Coefficient plot of OLS estimated effects on systolic blood pressure.
NOTE: Constant = 127.028 (p < 0.001). n = 10335. Race reference category = White.
Unstandardized coefficients are reported. CIs are two sided.

For all their utility, coefficient plots still come with assumptions about the infer-
ence statistics accompanying the estimates—mnamely, coefficient standard errors (SEs)
and their CIs. This is, of course, a valid assumption for the majority of analysts us-
ing probability samples and relying on the asymptotic properties of random sampling
distributions. However, analysts using nonprobability samples must adopt a different in-
ference model. Such an alternative—the “randomization model” (Ernst 2004; Ludbrook
and Dudley 1998) or what might be termed the “process inference” model (Darlington
and Hayes 2017, 513-514)—allows for sample-specific inferences by using Monte Carlo
permutation tests to derive empirical p-values. These p-values indicate the proportion
of test statistics—say, a specific coefficient—from the models computed from the ran-
domly permuted samples that are greater than or equal to the observed test statistic
(in the case of a right-tailed test).



M. A. Taylor 311

The randomization model poses problems for the standard coefficient plot. Specifi-
cally, unlike the conceptually similar bootstrap technique, SEs derived from Monte Carlo
permutation tests are with respect to the p-value—not the coefficient itself. Thus, there
are no coeflicient-specific CIs to report and no way to visualize the effect’s proximity to
zero without explicit reference to the effect’s p-value.

In this article, I illustrate a variant of the coefficient plot for regression models
with p-values constructed using permutation tests and discuss its utility in interpreting
and presenting research. These visualizations, which I refer to as permutation p-value
(PPV) plots, plot each estimate’s p-value and its associated CI in relation to an alpha
level of the analyst’s choice. These plots can help the analyst interpret and report
the statistical and substantive significances of their models with permutation-based
inference without recourse to tables. This article unfolds as follows: First, I overview
the logic behind Monte Carlo permutation tests and how they can be used to construct
sample-specific inferences, noting especially how they introduce complications for how
regression estimates and their associated predicted values are visualized. Second, I
introduce PPV plots, illustrate how they can be generated, and demonstrate their utility
for visualizing regression estimates and predicted values. PPV plot illustrations are made
using a series of models predicting heightened perceptions of communist threat among
a nonprobability convenience sample of people who participated in the CACC’s San
Francisco Bay Region School of Anti-Communism in January and February of 1962
(Wolfinger 1992). T then conclude with an outline of how PPV plots can be further
expanded for data visualization.

2 Randomization inference

2.1 Using Monte Carlo permutation tests to generate p-values

The traditional “population model” (Ernst 2004; Ludbrook and Dudley 1998) of sta-
tistical inference with which most social scientists are accustomed is not always ap-
propriate when the sample is constructed using nonprobabilistic procedures or when
the sample suffers from nonrandom systematic error that cannot be mitigated with
bias-correcting statistical adjustments. When such “prestatistical” methodological con-
straints are present, a different model must be adopted if the analyst wishes to use the
language of inferential statistics. One option is the “randomization” (Ernst 2004; Lud-
brook and Dudley 1998; Manly 2007, 1-4) or “process inference” (Darlington and Hayes
2017, 513-514) model—a strategy that has, unfortunately, been slow to gain ground in
sociological research using observational data,! save for work in social network analysis.?

1. The lack of a probability sample can often lead researchers to avoid the language of statistical
inference altogether. In reviewing work using qualitative comparative analysis (QCA), for example,
Thomann and Maggetti (Forthcoming, 12) note that “[flew QCA applications resort to statistical
inference, partly because its use on full or purposive samples yields nonsensical inference to a
nonexistent population.”

2. Permutation-derived p-values have been a common characteristic in statistical models for networks,
because the interdepencies inherent in relational data necessarily violate the observational indepen-
dence assumptions behind asymptotic test statistics (see, for example, Butts [2007]; Krackhardt
[1988)).
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The key distinction between the population model and the randomization model is the
“thing” to which statistical inferences are being made. In both cases, the p-value, its
associated CI (for the coefficient in the population model and the p-value itself in the
randomization model), or both are used to assess the confidence in the inference.?

Consider the following simple OLS estimation equation:
Y, =a+pBX;

On one hand, if p is the p-value attached to some estimated coefficient B, then under
the population model and assuming a two-tailed test, p can be expressed as

pg=p(|6| > ‘3’ |Ho: BZO) (1)

where [ is the true but unobserved estimate of the effect of X on Y. This p-value
expresses the probability that (if the coefficient was truly generated from a random
sample from the target population and with no systematic error) an effect of at least

the absolute size of 5 would be observed from a sample of that population if the true
effect 5 = 0.

On the other hand, under the randomization model with 1,000 Monte Carlo per-
mutation tests and again assuming a two-tailed test, p indicates the proportion of g*
estimates from the 1,000 permutations with an absolute value greater than or equal to
the absolute value of 8 observed prior to randomly permuting the data (see also Baker
and Hubert [1981, 347]).* (The hat over the p will be explained in the next section.) In
other words, this p-value can be written as
St (|8
k

2[A)

Pz =

3. Randomization inference is often (if not usually) discussed within the context of randomized ex-
periments (for example, Aronow [2012]; Edgington and Onghena [2007]; Ludbrook and Dudley
[1998]), where random assignment of participants into treatment and control groups is assumed
but not necessarily random sampling. Nonetheless, as Manly (2007, 180) notes, justification for
using permutation tests for establishing statistical inference in multivariate cases can come in three
forms: 1) in the case of random sampling, when the Hp is that Y L X; 2) in the case of random
assignment to treatment and control conditions (but not necessarily in conjunction with random
sampling); and 3) when, with observational data that are neither from a random sample nor after
an experimental design, “the mechanism generating the data makes any of the Y values equally
likely to occur with any of the sets of X values.” This article adopts the “data-generating mecha-
nism” justification for using permutation tests, given the prevalence of observational data relative
to experimental data in sociology.

4. The variable that is permuted may vary. In experimental settings, the treatment variable, X, is
often permuted while keeping the outcome vector, Y, the same. Others promote incorporating
some form of the model residuals into the permutation procedure (for example, Freedman and
Lane [1983]; O’gorman [2006]). Still others suggest simply permuting the Y vector (Manly 2007;
Stoltz and Taylor 2017). For an overview of different permutation techniques, see Anderson and
Robinson (2001).
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~

i

denotes the ith estimate derived from one
of the k permutations that is greater than or equal in absolute value to B

Bl > ‘ B‘ (Ernst 2004, 679;
Stoltz and Taylor 2017, 33). Making generalizations to some population is, of course,
not possible under the randomization model (at least on statistical grounds) because the
asymptotic properties that come with assuming a probability sample free of nonrandom
error is a luxury not enjoyed for most analysts who adopt the randomization model
over the population model. Instead, working from a null hypothesis that 8 can be
accounted for by randomness, a p under some alpha level would indicate that, whatever
the data-generating process that created S might be, it is likely not a purely random
process. In other words, we reject the null hypothesis when randomness as a mechanism
for generating the observed effects can be ruled out at some level of confidence. In this
case, we test “randomness” by creating it artificially: that is, by using the permutation
procedure to randomly shuffle the observed Yjs across the Xs and therefore “forcing”
the association between Yj and X} to be stochastic (Manly 2007, 2). When the p
associated with the observed B is under a specified «a, then B was likely generated
from a systematic process because its absolute size is larger than or equal to at least

where k is the number of permutations,

,and I (+) is

an indicator function that tallies the total number of times

1 —a% of the total ‘B* , which were generated via an artificial random data-generating

process. The emphasis on quantifying the likelihood of a random versus systematic
data-generating process as opposed to estimating the probability of observing a given
observed effect of at least that size in some population under the condition that there is
not one is the defining feature that differentiates the process model from the population
model of inference.

2.2 Complicating the coefficient plot

Regression estimates generated under the randomization model pose unique problems
for visualization. For the popular coefficient plot, the problem is quite fundamental:
there are no SEs or CIs for the coefficient, 3, so a visualization such as the one in fig-
ure 1 above is not possible. SEs and CIs are instead computed for the coefficient p-value,

-~

ﬁg. Importantly, though SE(8) and CI(3) cannot be calculated without again assuming

asymptotic distributional properties of B, SE@E) and CI(pB) can be computed because
they are with respect to k and not n (the observation sample size). Assuming that k
is a random subset of the total number of possible permutations K, then SE(p3) in-
dicates the average deviation of any randomly sampled p-value ﬁg from the true but
unobserved Ps if every possible permutation was considered.® CI(pE) then provides the

5. Of course, Ps could be observed if every possible permutation can be accounted for.
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range of p-values within which the true Ps would be located with a 1 — « degree of

confidence.b

The fact that SEs and CIs for p-values are still valid provides leverage for constructing
a new type of coeflicient plot for visualizing regression estimates and their subsequent
predicted values under the randomization model. This new series of plots, which I refer
to collectively as PPV plots, is outlined in the following section.

3 The PPV plot toolkit

A PPV plot can be thought of as a coefficient plot for regression models with signif-
icance levels determined via permutation tests. Its structure is quite simple: instead
of arraying model coefficients within a variable-by-Y -unit space, the p-values for each
model coefficient are arrayed within a variable-by-[0, 1] space. Unlike a traditional coef-
ficient plot centered around 0 to indicate no statistically significant effect, the PPV plot
is centered around an analyst-determined alpha level. In this article, I use a combina-
tion of Stata’s permute (see [R] permute) command and a modified version of Jann’s
(2014) coefplot command to construct PPV plots. The code to reproduce all tables
and visualization is available as supplementary material.

T illustrate how PPV plots can be used to visualize regression coefficients and postes-
timation predicted values. Each strategy is addressed in turn below. First, however, I
provide a brief overview of the case that I use for illustration: perceptions of communist
threat among a nonprobability convenience sample of far-right activists who partici-
pated in the 1962 San Francisco Bay Region School of Anti-Communism (Wolfinger
1992).

3.1 The case: An anticommunism school

The Christian Anti-Communism Crusade (CACC) was founded in 1953 by Fred Schwarz.
Schwarz, an Australian originally trained in medicine, spearheaded the “second wave of
religious anti-Communism” in the United States (Herzog 2011, 207) and started CACC in
an attempt to illuminate and teach on the insidious activities of communism—which he
believed to be “the very mask of Satan” (The Schwartz Report 2018). CACC generated
considerable funds by “promoting the belief that no bilateral negotiation could exist
with communism” (Aiello 2005), largely through their tax-exempt and tuition-based
“anti-Communism schools” that the organization would put together. In these schools,

6. SE(ﬁE) can be found with the SE formula for a proportion because Pz is necessarily bound between
0 and 1:

Cl(pg) is then found with
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Schwarz and other organizers would teach on the un-American perils of communism
and put on fundraising activities (Wolfinger et al. 1964, 22).

The fleeting nature of these meetings posed problems for academic researchers wish-
ing to survey the attendees at these “schools”. No clearly definable sampling frame of
participants existed—and, even if it did, it was unlikely that such a list would have been
provided to researchers given the high skepticism of colleges and universities amid the
McCarthyism of the time. Nonetheless, Wolfinger and colleagues wished to know just
who these school attendees were and what they believed. To this end, they adopted
purposive sampling techniques to gather data from attendees at the San Francisco Bay
Region School of Anti-Communism, held from January 29, 1962, to February 2, 1962,
at the Oakland Auditorium in Oakland, California. Wolfinger and colleagues describe
their data-collection process as follows:

We were able to conduct a study of the personal characteristics and political
attitudes and activities of several hundred people who attended this Crusade
school. Under our direction two dozen Stanford undergraduates interviewed
members of the audience and distributed questionnaires (similar to the in-
terview forms) which could be completed later and mailed back to Stanford.
(Wolfinger et al. 1964, 23)

As the excerpt suggests, respondents constituted a convenience (and clearly non-
probabilistic) sample. Given that participants were not known beforehand and were
there for activities completely unrelated to data-collection efforts, data had to be gath-
ered in a way that was not optimally systematic. Using the population model to draw
statistical inferences with this dataset would be inappropriate because the sample was
not a random “draw” from a defined target population of American anticommunists (or
even the “population” of anticommunism school attendees), meaning that asymptotic
distributional properties of probability sampling cannot be assumed. The randomiza-
tion model, however, can be used to draw sample-specific inferences on the likelihood
that statistical associations and relationships could arise from a random data-generating
process. These data (Wolfinger 1992) are used in the remainder of this article to illus-
trate the utilities of the PPV plot toolkit. More specific information on the variables
used are discussed below.

3.2 PPV plots and regression coefficients

Consider the following pseudo-research question: Among the participants at this school,
what were some of the sociodemographic factors that predicted a heightened perception
of impending communist threat (given, of course, an already heightened baseline per-
ception of communist threat relative to the general population because they self-selected
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into an anticommunism school)?” To address this question, I constructed factor scores
from a series of dummy variables related to different perceptions of communist dangers
(for example, communism in academia and communism in the Democratic Party). De-
tails on how these variables were constructed can be found in appendix A; higher scores
indicate higher perceptions of communist threat. This variable was then regressed on
the following variables: degree of political engagement, party identification, level of ed-
ucational attainment, union member status, and whether the respondent was strictly
self-employed.® All predictor variables were observed variables, save for the political en-
gagement score, which was also constructed using factor analysis on a series of dummy
variables. (Details on how these factor scores were constructed are in appendix A.)

The results from this OLS model could be arranged within a table, as shown in
table 1. This table is similar to a traditional regression table, with the only consequen-
tial difference being that the coefficient p-values rather than SEs are reported in the
parentheses.

7. This research question is “pseudo” in the sense that, from the tradition of quantitative sociology,
it identifies only one half of what would be expected from a proper question: the outcome, that
is, heightened perceptions of communist threat. The “missing piece” here would be the specific
IV (or IVs) that we theorize will account for variation in that outcome. For illustrative purposes,
however, this will suffice.

8. I qualify self-employment with “strictly” because, in addition to the “self-employed” category, the
survey also included an option for those who were self-employed and employed by someone else. T
collapsed this “dual employment” category with those who were employed but not self-employed,
retired, unemployed, or students.
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Table 1. OLS model predicting height-
ened perceptions of communist threat
(std) with permutation-derived p-values

v Model
Political engagement (std) —0.236
(0.091)
Self-employed —0.175
(0.547)
Republican —0.525
(0.377)
Other —0.670
(0.328)
Union member 0.268
(0.469)
Grammar school 0.155
(0.839)
College —0.580
(0.133)
Constant 1.021
(0.114)
n 56
R? (adj.) 0.042
Root mean squared error 0.979

# of permutations of DV 1,000

NOTE: p-values in parentheses. Reference cate-
gories for the party and schooling variables are
Democrat and high school, respectively. All
schooling categories are “some/complete” for
the corresponding level.

Alternatively, the model could be represented graphically as a simple PPV plot, as
illustrated in figure 2. Like figure 1, the y axis lists the predictor variables. Unlike
figure 2, the x axis can vary within the [0, 1] interval and is used to plot the coefficient
p-values and their associated CIs. The markers are the p-values, and the numbers above
them are the coefficients themselves. The vertical line represents o = 0.05—meaning
that any coefficient with a p-value to the left of the line is statistically significant at least
at the 0.05 level. For instance, consider the self-employment coefficient, Ssg = —0.175,
which has a p = 0.547. This p-value indicates that after randomly permuting the per-
ception of communist threat variable across observations 1,000 times and recomputing
the difference in intercept between those who were strictly self-employed and those who
were not each time, 54.7% of the permutation estimates had absolute sizes that were
greater than or equal to the absolute size of the observed estimate of —0.175; thus, one
could say that at an alpha level of at least 0.05, it is highly possible that randomness
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can account for the association between self-employment and perceptions of communist
threat in this sample. Further, the p-value’s 95% CI is far to the right of the verti-
cal line—suggesting the p-value itself is not statistically significant (that is, it is likely
greater than 0.05 if all permutations were accounted for and not just 1,000 of them).

Pol Engage (std){ | =~
Self-Employed _A75
z Republican- &
a Other -
Union Member - 268
g’ 155
5 Grammar School e
'g Coll -8
S ollege 1
n
Constant - d
T T T . .
0 2 4 6 8
P-Values

95% Confidence Interval

Figure 2. PPV plot of OLS estimated effects on perception of communist threat.

NOTE: n = 56. Party reference category = Democrat; Schooling reference category =
high school. All schooling categories are “some/complete” for the corresponding level.
CIs are two sided and based on 1,000 permutation tests. Vertical line = 0.05. Dependent
variable (DV) is standardized.

Conceptually, a PPV plot such as figure 2 is constructed in the following simple steps.
First, the regression model is fit. Assume, for instance, the following linear-additive
estimation model,

~

Y, = a4 i X+ BaXoi 4+ B Xmi

Second, the data (in the examples in this article, the DV) are randomly permuted
k number of times, with the p-value for each 31, 32, cee Em determined following (1)
above and the CIs following the equation in footnote 6. These statistics are then used
to construct an m-by-3 matrix, D,
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pa LL Pa UL Pa

D pﬁ LL p§2 UL pEQ

Pgn LL (plgm) UL (p[;m)
where UL(pEm) is the upper CI limit [ﬁg +{z x SE(]/)\E)}] for Phm and LL(pEm) is the
lower limit [p5 — {2 x SE(p3)}].

Lastly, any coefficient plot function can be used to plot D—such as the coefplot
command in Stata (Jann 2014) or R (Lander 2018) or the arm package in R (Gelman
et al. 2018). The goal is to simply map each p-value and its CI into a variable-by-[0, 1]
space and with a clear demarcation of the alpha level (on whichever axis represents the
[0, 1] interval) around which the CIs were constructed.

The fact that D is treated like any other coefficient matrix means that the analyst can
take advantage of virtually any visualization strategies that are available with coefficient
plots. Nested models, for instance, can also be reported in the same PPV plot. If we treat
the regression in figure 2 as nested within a larger model that also conditions perceptions
of communist threat on sex, age, whether the respondent was Protestant, income level,
and industry of employment, then we can combine the plots, as shown in figure 3. This
PPV plot illustrates that, after controlling on this new set of control variables, none of
the effect p-values from model 1 goes to the left of the 0.05 line—meaning that none of
the estimates reaches statistical significance under the randomization model at o = 0.05.
However, the dashed vertical line—indicating a = 0.1—shows that, while a respondent’s
level of political engagement is not associated with perceptions of communist threat
beyond what we would expect under the condition of a random data-generating process
before conditioning on the variables added in model 2, the observed estimate Spgr, =
—0.281 in model 2 is less likely to be due to random association when we relax our alpha
level to 0.1.
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Figure 3. Nested PPV plot of OLS estimated effects on perception of communist threat.
NOTE: n = 56 for both models. Party reference category = Democrat; Schooling refer-
ence category = high school; Industry reference category = service; reference category
for Protestant is “Other”. All schooling categories are “some/complete” for the corre-
sponding level. CIs are two sided and based on 1,000 permutation tests. Solid vertical
line = 0.05; dashed vertical line = 0.1. DV is standardized.

Similarly, the analyst can reconfigure the matrix of p-values and CIs into other plot
types. For example, figure 3 can be displayed as a bar chart (figure 4), where a p-value
below 0.05 (now a horizontal solid line) indicates statistical significance with at least
a = 0.05. In this plot, spikes above the 0.05 reference line indicate an observed coefficient
(8) that was smaller in absolute size than at least 5% of the coefficients (8*) derived
from rerunning the model after we randomly permuted the perceptions of communist

threat values across observations 1,000 times.
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Figure 4. PPV plot reconfigured as a bar chart.
NOTE: Solid horizontal line = 0.05; dashed horizontal line = 0.1. All other interpreta-
tion notes are the same as those for figure 3.

The substantive significance of the estimates can also be incorporated into PPV plots
using standard graphical options. For example, assume an analyst is interested in the
gap in perceptions of communist threat between those who were strictly self-employed
and those who were not. They include an interaction between the political engagement
scale and the dichotomous self-employment variable. They use 1,000 permutation tests
and construct the PPV plot in the top panel of figure 5, which shows a statistically sig-
nificant interaction (BPExSE = 0.862; pprxsk = 0.007, where 0.003 < pprxsg < 0.014).
This PPV plot can also be reconfigured so that the marker shape indicates whether the
effect is positive or negative and the color intensity represents the effect size of the stan-
dardized coefficient. The bottom panel of figure 5 introduces effect-size visualizations in
lieu of the estimates themselves, with squares indicating negative estimates, circles in-
dicating positive estimates, and the hue of the marker and CIs corresponding to the size
of the standardized effect size. As the plot suggests, the interaction between political
engagement and self-employment status was not only the only statistically significant
predictor of the extent to which an attendee perceived heightened communist threats,
but also one of the substantively strongest predictors (as indicated by the darker markers
for the political engagement main effect and the engagement xemployment cross-product
term).
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Figure 5. Multiplicative model with and without effect-size visualization.

NOTE: n = 56. Party reference category = Democrat; Schooling reference category =
high school; Industry reference category = service; reference category for Protestant
is “Other”. All schooling categories are “some/complete” for the corresponding level.
CIs are two sided and based on 1,000 permutation tests. Vertical line = 0.05. Bottom
panel hues based on effect size of standardized estimates; however, estimates reported in
the top graph are unstandardized. Darker markers in the bottom panel indicate larger
absolute effect sizes.
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3.3 PPV plots and predicted values

p-values for postestimation predicted values may be of little use under the population
model of inference when zero is not a meaningful value in the units of Y. This is be-
cause the prediction p-values are typically derived from one-sample ¢- or z-tests of the
null hypothesis that the “true” value for the hypothetical case in question is zero. The
(two-tailed) prediction p-value, then, is just the probability of generating a predicted
value of at least that absolute size if the true value for a case with that profile of 1v
characteristics were zero—again assuming that the sample used to derive that predic-
tion is a random draw from the target population. This means that for Dvs without
a meaningful zero, most empirically plausible predictions with reasonable SEs will gen-
erate large test statistics and therefore small p-values. Further, because a statistically
nonsignificant predicted value under the population model simply indicates a 1 — « or
greater probability of observing that predicted value for that case when the “true” value
is 0, a predicted value for a DV with a meaningful zero (such as a standardized variable)
could easily have p < 0.05 but still indicate a “nonzero” prediction.

With that said, it might be important for scholars basing statistical significance
on permutation-based p-values to report the p-values for predictions. This is because
permutation-based p-values are based on the differences between the observed prediction
and the predictions from the permuted models and not on the difference of the prediction
from zero. Thus, a two-tailed permutation-based p-value for a single observed prediction
following a regression model indicates the proportion of predictions from the regressions
on the permuted samples that are greater than or equal in absolute size to that observed
prediction.® This p-value, then, provides an estimate of the extent to which the observed
prediction deviates from the predictions generated from models where the association
between the Dvs and Vs are random by design.

PPV plots can also be used to visualize these permutation-based prediction p-values.
One can accomplish this by first writing a program that adds the calculation of pre-
dicted values as an extra step to each of the 1,000 permutation tests. Consider again,
for instance, the multiplicative model used to construct the PPV plots in figure 5, which

9. Unless the predictions from the permuted samples take signs in the opposite direction of the ob-
served prediction, then, for permutation-based p-values for predictions, the two-tailed and one-
tailed tests will have the following equivalencies. If the observed prediction is positive and all of
its k predictions from the permuted samples are positive, then

(2D () 520

And, if the observed prediction is negative and all of its k predictions from the permuted samples
are negative, then

1(|-8|=|-8) . . 1(~B; < -B)

— =L U (v-Frep) p=1-———

In other words, the two-tailed test will be equivalent to the one-tailed test to the right for positively
valued predictions and the inverse of the one-tailed test to the left for negatively valued predictions.
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showed a statistically significant interaction between an attendee’s level of political en-
gagement and their self-employment status when it comes to heightened perceptions
of communist threat. The analyst can now add one additional step to his or her per-
mutation procedure for obtaining permutation-derived p-values for postestimation pre-
dictions: after the analyst randomly permutes the DV k times and fits the regression
model, a series of predictions can be generated for each permutation and compared
with the predictions from the observed regression model. This analysis could result in
something akin to table 2, which presents predicted perceptions of communist threat
(on a standardized scale) for both the self-employed and those who are not, within a
standard deviation (SD) of the sample mean political engagement scale.

Table 2. Predicted standardized perceptions of
communist threat (std) from OLS model

v Model
Not s-E’s political engagement (std)
—1sD 0.771%*
(0.002)
Mean 0.051
(0.789)
+1 sD —0.669*
(0.033)
S-E’s political engagement (std)
—1sD —0.411
(0.224)
Mean —0.269
(0.224)
+1 sD —0.127
(0.672)
n 56
# of permutations of DV 1,000

NOTE: p-values in parentheses. S-E is “self-employed”.
*p < 0.05; **p < 0.01 (two-tailed tests)

Alternatively, these predictions could be displayed as a PPV plot that allows for
a visual comparison of the relative statistical significance levels, as shown in figure 6.
These predicted-value PPV plots can also be easily reconfigured into other plot types—
for example, as a bar chart (figure 7) similar to the coefficient PPV bar chart in figure 4.
Or, alternatively, the prediction p-values can be displayed as a line graph for continuous
variables. Figure 8 provides an example, with separate political engagement p-value
“slopes” for hypothetical respondents of each employment category.
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Figure 6. PPV plot of predicted standardized perceptions of communist threat by self-
employment and level of political engagement
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Figures 6, 7, and 8 indicate that higher levels of political engagement are negatively
associated with higher perceptions of communist threat for those who are not strictly
self-employed (according to the switch in signs for marker labels in figure 6 and the z-axis
labels in figures 7 and 8 for those that are not self-employed), while the estimate remains
negative for the self-employed but loses some of its effect size (as indicated by the smaller
negative effect sizes for those that are self-employed). However, these figures suggest
that this interaction may be asymmetric. Among these 56 school attendees, only those
who are not strictly self-employed with lower than average and higher than average levels
of political engagement have predicted levels of perceptions of communist threat that
deviate from what would be expected under the condition of a random data-generating
process. Non-self-employed (NSE) respondents with lower than average levels of political
engagement exhibit slightly above average perceptions of threat (?NSE = 0.771; 0.000 <
Py < 0.007), and those with higher than average levels of political engagement exhibit

slightly below average perceptions (}A/NSE = —0.669; 0.023 < Paen = 0.046).

The NSE with average levels of political engagement and the self-employed at any
level of political engagement have predicted threat perceptions that never deviate from
what we would expect if the predictions were computed from a model of random asso-
ciations. If this hypothetical analyst were hoping to draw substantive conclusions from
these results—and assuming a properly specified regression model (which these mod-
els, because they are for illustrative purposes, may not be)—he or she may conclude
something to the following effect: Among these 56 school attendees, those who were not
strictly self-employed but who were less politically engaged than the average participant
were more likely to have higher than average perceptions of a communist threat—but,
when they were more politically engaged than the average participant, they tended to
have some of the weakest perceptions of communist threat.

The asymmetry of this interaction would likely have been more difficult to pick up
without adding prediction calculations to the permutation tests, and PPV plots certainly
make this task of comparing effects across groups that much easier.

4 Summary and conclusions

Recent interest in data analytics and computational social science has sparked a flurry
of activity in data visualization among social scientists (Healy 2019; Wickham and
Grolemund 2017). One popular graph type for displaying regression models is the
coefficient plot. While coefficient plots are useful for simultaneously visualizing both
the statistical and substantive significance of the estimates, their applicability assumes
that statistical significance is determined under the population model of inference—that
is, that the coefficients have SEs and CIs, derived either with reference to theoretical
sampling distributions or to some asymptotically based resampling technique such as the
bootstrap or jackknife (Shao and Tu 1995). The PPV plot “toolkit” introduced in this
article offers a way of leveraging the intuitiveness, parsimony, and aesthetic simplicity
of the coefficient plot for regression models with statistical significance levels derived via
the randomization model of inference, where SEs and Cls are reported for the coefficient
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p-values rather than the coefficients themselves and where a plot centered at zero is less
useful.

In this article, I illustrated the utility of PPV plots for visualizing permutation-based
regression estimates and postestimation predictions using the case of heightened percep-
tions of threat among 56 anticommunists at an anticommunism school. In both cases,
PPV plots leverage the same benefits of coefficient plots in that they visualize the direc-
tion and size of the estimates while concomitantly incorporating estimate uncertainty
into the graph. For coefficient plots, the uncertainty is captured with the CIs around
the estimates: the wider the interval, the more uncertainty there is about where the
true population parameter may be. For PPV plots, the uncertainty is captured with the
CI around the p-value. Specifically, the wider the interval, the more uncertainty there is
about where the true p-value would be had every possible permutation been accounted
for. Accounting for this uncertainty is particularly important for boundary estimates:
that is, when a p-value indicates a statistically significant estimate with a CI that spans
across alpha levels or a nonsignificant estimate that spans to the left of the alpha level
necessary to establish statistical significance. PPV plots can be particularly helpful in
the case of a model with many predictors because they can simultaneously display the
number of boundary estimates. Importantly, because the size of the p-value Cls is a
function of the number of permutations performed, PPV plots in this case can also pro-
vide a general sense of how much closer the analyst should approximate an exact test
(that is, account for every possible permutation) to shrink the CIs so that the number
of boundary estimates is minimized.

There will undoubtedly be the question of how much traction visualization strategies
for randomization inference will get in sociology, where this type of statistical inference
is not the disciplinary norm. Indeed, if the population model is far and away the
more common mode of inference, then what real leverage do PPV plots provide? This
concern is itself symptomatic of a fundamental question about quantitative inferential
reasoning: namely, is it really inference if there is no population to which one can infer
things (compare Ludbrook and Dudley [1998, 128])? Such a perspective is likely a partial
function of the fact that the inferential statistics curricula for most statistics courses
in sociology are predicated on the logic that inference is synonymous with generalizing
to a population. Ironically, though, it is the other type of inference that seems to
predominate the actual practice of sociological research, because, as network analysts
have observed for some time, “most social science aims at studying mechanisms rather
than describing specific populations” (Snijders 2011, 135). Perhaps to no surprise,
this implicit reliance on mechanistic reasoning seems particularly important in subfields
where datasets constructed using rigorous probabilistic sampling procedures are by far
the exception rather than the norm—for example, cultural sociology, social movement
studies, and organizational sociology. Following this, I conclude this article with a more
general call for quantitative sociologists to reflect critically on what sort of statistical
inferences are appropriate given their sample design and, by extension, on how they
choose to “see” this significance.
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5 Supplemental materials

A replication repository for this article can be found at https://github.com/Marshall-
Soc/PPV.
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A Principal factor analyses

Six variables were used to construct a “perception of communist threat” variable.
The variables were all dichotomous; thus, tetrachoric correlations were decomposed
to extract the principal factors (Gadermann, Guhn, and Zumbo 2012; Kubinger 2003).
“Communist danger” indicates whether the respondent sees American communists as a
danger to the country at that moment, where 0 = no/some/little danger and 1 = a great
or very great deal of danger. “Communist professors” indicates whether the respondent
believes communist professors have a lot of influence in U.S. higher education, where
0 = no and 1 = yes. “Communist Democrats” indicates whether the respondent sees
communists as having a lot of influence in the U.S. Democratic Party, where 0 = no
and 1 = yes. “Communist speech” indicates whether the respondent believes the U.S.
Communist Party should be allowed to speak on radio or TV, where 0 = no and 1 = yes.
“Communist neighbor” indicates whether the respondent believes there are communists
living in their neighborhood, where 0 = no and 1 = yes. Table 3 provides the interitem
tetrachoric correlations.

Table 3. Tetrachoric correlations between “perceptions of communist threat” variables

C C C C C Local
danger professors Democrats speech neighbor C
C danger 1
C professors 0.560 1
C Democrats 0.580 0.739 1
C speech —-0.415 -0.213 —0.011 1
C neighbor 0.235 0.446 0.256 —0.056 1

Local C 0.752 0.426 0.497 —0.079 0.559 1
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Table 4 contains the loadings for the first principal factor after orthogonal varimax
rotation. All variables load in the expected direction (positive) for a “perceptions of
communist threat” latent variable. This factor explains as much variance as approx-
imately 1.821 of the raw indicator variables (eigenvector, A = 1.821)—that is, about
45.67% of the total variance. Factor weights were derived using the regression method
(Thomson 1951). Higher values indicate heightened perceptions that communists pose
a clear and imminent threat.

Table 4. Factor loadings for table 3

Variable Loadings
Communist danger 0.367
Communist professors 0.600
Communist Democrats 0.594
Communist speech 0.168
Communist neighbor 0.674
Local communism 0.707
A 1.821

% variance explained 45.67%
n 116

NOTE: Principal factor loadings are with or-
thogonal varimax rotation.
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Six dichotomous variables were also used to create a “political engagement” variable,
again using tetrachoric correlations and principal factor analysis. The interitem corre-
lations are presented in table 5. “Attend meetings” indicates whether the respondent
goes to political rallies, meetings, and dinners, where 0 = no and 1 = yes. “Write polit-
ical letters” indicates whether the respondent, in the past year before being surveyed,
ever wrote letters or sent telegrams to the president, congressperson, or state politician,
where 0 = no and 1 = yes. “Organizational member” indicates whether the respondent
was a member of a political organization, where 0 = no and 1 = yes. “Influence vot-
ers” indicates whether the respondent ever tried to convince people to vote one way or
another, where 0 = no and 1 = yes. “Give money/buy tickets” indicates whether the
respondent ever gave money or bought tickets to try to help a candidate or his or her
campaign or party. Finally, “work for the candidate” indicates whether the respondent
did any other work for a candidate or party, where 0 = no and 1 = yes.

Table 5. Tetrachoric correlations between “political engagement” variables
Org Money/
Attend Letters member Voters tickets  Work
Attend 1
Letters 0.466 1
Member 0.658 0.120 1
Voters 0.318 0.145 0.442 1
Money /tickets ~ 0.698 0.329 0.630 0.347 1
Work 0.554 0.222 0.802 0.423 0.582 1

NOTE: Correlations based on 190 valid cases after listwise deletion. All variables are
dichotomous.
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Table 6 lists the loadings for these variables on the first principal factor after orthog-
onal varimax rotation. All variables load in the direction consistent with a “political
engagement” latent variable (that is, they are all positive). This “political engagement”
factor explains as much variance as approximately 2.297 raw indicator variables (about
72.55% of the total variance). The regression method was used to compute the factor
weights. Higher scores indicate that the respondent is more politically active.

Table 6. Factor loadings for table 5

Variable Loadings
Attend meetings 0.541
Write political letters 0.071
Organizational member 0.888
Influence voters 0.459
Give money /buy tickets 0.588
Work for candidate 0.808
A 2.297
% variance explained 72.55%
n 190

NOTE: Principal factor loadings are with or-
thogonal varimax rotation.





